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Are general circulation models representing processes controlling tropical and
subtropical free tropospheric relative humidity properly?

The added value of water vapor isotope measurements.
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2.3 Intra-seasonal variations in the subtropics

4 Generalization to 7 isotope-
enabled GCMs

1 Introduction
1.1 Goal
Evaluating the representation of processes controlling tropical and subtropical free tropospheric relative humidity
(RH) in atmospheric general circulation models (GCMs) is crucial to assess the credibility of predicted climate
changes ([3]). The goal of this study is todesign diagnostics to detect and understand biases in the represen-
tation of these processes.
As RH is the net result of a subtle balance between many different processes, RH observations are not sufficient by
themselves to evaluate simulated processes controlling it. As the isotopic composition of water vapor is sensitive to
phase changes during the water cycle, we explore here theadded value of water stable isotope measurements to
design diagnostics to detect and understand biases in the representation of processes controlling RH.

1.2 Method
GCMs commonly feature a moist bias in the free troposphere ([1]). We inter-
compare 4 simulations using the isotope-enabled GCM LMDZ ([2]): one using
the AR4 version, and 3 tests exhibiting a moist bias for different reasons:

1. Excessive diffusion during water vapor transport (simple upstream scheme
rather than second order advection scheme)

2. Underestimated subgrid-scale variability of water vapor (standard deviation
of the humidity probability distributionσq divided by 10 in statistical cloud
scheme)

3. Excessive condensate detrainment (precipitaton efficiency ǫp divided by 2 in
convective scheme)

We investigatehow these possible reasons for a moist bias can be detected by
evaluating the simulated 3D isotopic distribution and its temporal variations
against 4 satellite datasets (SCIAMACHY, TES, ACE, MIPAS),4 ground-based
remote sensing datasets and various in-situ measurements.For all model-data
comparisons, outputs were co-located and applied averaging kernels if any.
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2.2 Spatial patterns

a-c: Annual meanδD at 600hPa measured by TES and simulated by LMDZ for the control and diffusive advection simulations. d-f: Same for
JJA-DJF at 600hPa measured by TES. g:i: Same forδD at 200hPa measured by MIPAS.

• Excessive advection over-estimates the depeting effect ofconvection and underestimates the depleting effect of dehydration from the tropics
to the subtropics

5 Conclusion
We can usewater vapor isotope measurements as observational di-
agnostics to understand the reasons for a moist bias in a GCM:

Reason for moist bias Observational test to detect this bias
Excessive diffusion
during water vapor

transport

ReversedδD seasonality troughout the
free troposphere

Convection depletes the vapor throughout
the free troposphere

Underestimated intra-seasonal subtropical
variability of δD due to underestimated

q-δD slope
Underestimated

subgrid-scale variability
of water vapor

Underestimated intra-seasonal subtropical
variability of δD due to underestimated

dry extrema
Excessive condensate

detrainment
OverestimatedδD in the upper

troposphere

Inter-comparing 7 isotope-enabled GCMs suggests thatexcessive dif-
fusion during water vapor transport is a common cause of moist
bias in GCMs.

RH profiles for our different LMDZ
simulations

Daily specific humidityq (a) and vaporδD (b)
at 4.2km retrieved by the ground-based FTIR
at Izana (soild black) and simulated by the 4
versions of LMDZ, during the year 2007. c)
Probability density function for the jointq-δD
distribution (iso-contour encompassing 98%
of data points) from all years of data.

• Excessive diffusion during advection un-
derestimates the depleting effect of dehy-
dration without affecting the amplitude of
dehydration too much

• Subgrid-scale variability affect the variabil-
ity in humidity without affecting the deplet-
ing effect of dehydration too much

• Condensate detrainment affects the mean
δD andq.

2 Multi-dataset evaluation of the simulated iso-
tope distribution
2.1 Zonal averages

a) Relationships between annual mean RH (30◦S-30◦N) and seasonal variation ofδD
(15◦N-30◦N) at 400hPa , for the different SWING2 simulations and our sensitivity tests.
Sensitivity tests to the nudging and resolution are packed together to highlight their simi-
lar behavior.

• in the upper-troposphere, excessive diffusion during advection seems to be a
widespread cause of moist bias in GCMs.

δD measures the enrichment inHDO relatively to
sea water inh.
Zonal mean of annual mean (left) and seasonal vari-
ations (right) ofδD at different levels in the different
datasets. a) surface vapor from in-situ measurements.
b) total column vapor compared to SCIAMACHY and
ground-based FTIR over Wisconsin, Oklahoma and
New-Zealand. c) At 600hPa compared to TES. d) Be-
tween 400 and 300hPa compared to ACE. e) At 300
compared to ACE. f) At 200hPa compared to MIPAS.
Lines represent the satellite datasets and markers the
ground-based datasets. The ground-based FTIR data
at Izana has been added at 800hPa (b), 600hPa and
300hPa.

• Disagreement and scatter increases with height

• Equator to poles gradients are underestimated,
subtropicalδD is too enriched

• Excessive advection leads to reversed seasonality
in free troposphere

• Excessive condensate detrainment leads to too en-
richedδD values.

Interpretation of our simulation results using a
simple theoretical model (see poster 2): example
at 500hPa.q and δD range from values charac-
teristic of a convective region at this level (cir-
cle) to values characteristic of the convection re-
gion at the maximum altitude of the last satura-
tion (square), assuming that this air then slowly
subside conservingq and δD ([4]). a) If lateral
diffusion takes place between convective and dry
subsiding regions, dry regions are re-moistenened
and strongly enriched. b) If the subgrid-scale
variability of water vapor,σq, decreases, a smaller
proportion of air condenses in the large-scale con-
densation scheme. Air is moister and more en-
riched. c) When a higher proportion of conden-
sate is allowed to detrain rather than precipitate,
convective regions are moistened and strongly en-
riched.
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