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1 Introduction
1.1 Goal

Evaluating the representation of processes controlliagi¢al and subtropical free tropospheric relative hurgidit
(RH) in atmospheric general circulation models (GCMs) isc@l to assess the credibility of predicted climate
changes ([3]). The goal of this study is design diagnostics to detect and understand biases in the represen-

tation of these processes.

As RH is the net result of a subtle balance between many diffgsrocesses, RH observations are not sufficient by
themselves to evaluate simulated processes controllirgithe isotopic composition of water vapor is sensitive to
phase changes during the water cycle, we explore heredthel value of water stable isotope measurements to
design diagnostics to detect and understand biases inghesentation of processes controlling RH.

1.2 Method

GCMs commonly feature a moist bias in the free troposphdi. (We inter-
compare 4 simulations using the isotope-enabled GCM LMR2J):(one using

the AR4 version, and 3 tests exhibiting a moist bias for diffi reasons:

1. Excessive diffusion during water vapor transport (senppstream scheme

rather than second order advection scheme)

2. Underestimated subgrid-scale variability of water vafstandard deviation
of the humidity probability distribution, divided by 10 in statistical cloud

scheme)

3. Excessive condensate detrainment (precipitaton effigie, divided by 2 in

convective scheme)

We investigatéow these possible reasons for amoist bias can be detected by

evaluating the simulated 3D isotopic distribution and its temporal variations
against 4 satellite datasets (SCIAMACHY, TES, ACE, MIPASYyround-based
remote sensing datasets and various in-situ measurenfenmtsll model-data

comparisons, outputs were co-located and applied aver&gimels if any.
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2.2 Spatial patterns
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a-c: Annual meard D at 600hPa measured by TES and simulated by LMDZ for the damtrbdiffusive advection simulations. d-f: Same for

JJA-DJF at 600hPa measured by TES. g:i: Sameiforat 200hPa measured by MIPAS.
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2.3 Intra-seasonal variationsin the subtropics
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L Symbols and line styles:

© convective region at 500hPa

- convective region profile

O air mass having last saturated at 200 hPa
mixing line representing lateral diffusior

¢ mixture between dry and convective redions
range of values at 500hPa across different
dynamical contexts
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Daily specific humidity, (a) and vapor D (b)

at 4.2km retrieved by the ground-based FTIR
at Izana (soild black) and simulated by the 4;
versions of LMDZ, during the year 2007. c)
Probability density function for the joint-d D
distribution (iso-contour encompassing 98%
of data points) from all years of data.

o Excessive diffusion during advection un-
derestimates the depleting effect of dehy;
dration without affecting the amplitude of
dehydration too much

e Subgrid-scale variability affect the variabil-
ity in humidity without affecting the deplet-
ing effect of dehydration too much

e« Condensate detrainment affects the mean
8D andgq.

Interpretation of our simulation results using a
simple theoretical model (see poster 2): example
at 500hPa. ¢ and D range from values charac-
teristic of a convective region at this level (cir-
cle) to values characteristic of the convection re4
gion at the maximum altitude of the last satura-
tion (square), assuming that this air then slowly
subside conserving and 6D ([4]). a) If lateral
diffusion takes place between convective and dry
subsiding regions, dry regions are re-moistenened
and strongly enriched. b) If the subgrid-scale
variability of water vaporg,, decreases, a smaller
proportion of air condenses in the large-scale con+
densation scheme. Air is moister and more en-
riched. c) When a higher proportion of conden-
sate is allowed to detrain rather than precipitate,’
convective regions are moistened and strongly en-
riched.

4 Generalization to 7 isotope-
enabled GCMs

60 ]
GCMs | sensitivity tests nudged by ECMWF
™ o X control
O A ECHAM | [] difusive adveciion
MIROC | O 410
u LMDz "
< Hagaw |Sensitivity to large-scale circulation

cow | M difusive aovecion, ree

Giss X diffusive advection, higher
ok horizontal resolution, nudged by ECMWF

V. diftusive advection, nudged by NCEP

relative humidity (/)

a) Relationships between annual mean RH$80N) and seasonal variation afD
(15°N-30°N) at 400hPa , for the different SWING2 simulations and ouns#ity tests.
Sensitivity tests to the nudging and resolution are packgdther to highlight their simi-
lar behavior.

ein the upper-troposphere, excessive diffusion during efive seems to be a
widespread cause of moist bias in GCMs.

5 Conclusion

We can usevater vapor isotope measurements as observational di-
agnosticsto under stand the reasons for a moist biasin a GCM:

Observational test to detect this bias
Reversed D seasonality troughout the
free troposphere
Convection depletes the vapor throughout
the free troposphere
Underestimated intra-seasonal subtropijcal
variability of § D due to underestimated
¢-6D slope
Underestimated  Underestimated intra-seasonal subtropical
subgrid-scale variability variability of § D due to underestimated
of water vapor dry extrema
Excessive condensate Overestimated D in the upper
detrainment troposphere

Reason for moist bias
Excessive diffusion
during water vapor

transport

Inter-comparing 7 isotope-enabled GCMs suggestsethassive dif-
fusion during water vapor transport is a common cause of moist
biasin GCMs.
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