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Can we assess the credibility of future relative humidity changes predicted by climate
models usingpresent-day observations?

The added value of water vapor isotope measurements.
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3 How can we evaluate processes controlling
RH?

δD measures the enrichment inHDO relatively to sea water
in h.
δD as a function of RH in our LMDZ sensitivity tests and
predicted by the theoretical framework. Our framework cap-
tures the isotopic signature of excessive condensate detrain-
ment and of underestimatedσq .

• Each reasons for a moist bias impactδD differently

• More on poster 1.

For questions 2 and 3, we
explore the added value of
isotope measurements:

Simple theoretical model to interpret our
sensitivity experiments. We assume char-
acteristic profiles of specific humidity and
isotope compositionqdtr andδDdtr in con-
vective plumes, depending on the precip-
itation efficiencyǫp in convective clouds
and on the humidity and isotope compo-
sition at the lifting condensation levelqs0

andδD0. Though not realistic, large-scale
mean ascent constitutes a second source of
vapor significant in GCMs. The humid-
ity and δD in the convective zone,q⋆ and
δD⋆, depend onqdtr, δDdtr, the subgrid-
scale variability of water vapor in anvils
and stratiform clouds (σq), the proportion
of air coming from convective detrainment
rdtr and a large-scale condensation rate.q
and δD are then conserved during subsi-
dence, until they mix with moister air by
lateral diffusion.
For numerical applications, we tookpa-
rameters from our LMDZ simulations
when readily diagnosticable, otherwise op-
timized them.

radiative
subsidence

2 How do processes controlling RH impact
∆RH predictions?

a) Zonal, annual, multi-model mean of∆RH in CMIP32×CO2 exper-
iments, normalized by∆SST. Stippling shows where multi-model∆RH
exceeds inter-model standard deviation of∆RH. b)∆RH as a function
of PD RH at 200hPa c)∆RH at 300hPa as a function of PDΓ.

• Obvious links between∆RH and PD RH are rare
([3])

• Moist GCMs simulate more negative∆RH at
200hPa. This is consistent with a moist bias due
to excessive lateral diffusion.

• GCMs with a strongΓ simulate more negative
∆RH at 300hPa

How ∆Γ and∆P ⋆ affect RH at 200hPa in our
simple theoretical model

• decrease inΓ dries convective regions
where condensate is detrained, but moist-
ens subsident regions

• decrease inP ⋆ dries subsident regions

if Γ ց

P ⋆

if Γ ց

P
(h

P
a)

RH (%)
convective regionssubsident regions

PD PD

if Γ andP ⋆ ց

P

5 Conclusion
• Projected∆RH in the upper-troposphere are significantly sensitive to (1) processes controlling

RH at present-day (PD), including cloud micro- and macro-physics, and (2) the balance of ther-
modynamical vs dynamical changes.

• The diversity of how GCM handle RH processes and predict the balance of changes makes it
difficult to find clear relationships between PD variables and ∆RH ([3]).

• How a PD moist bias affects∆RH projections depends on the reason for the bias. Water stable
isotopes measurements combined with RH measurements can help diagnose this reason.

• Long term monitoring of RH andδD may constitute an additional diagnostic to check the credi-
bility of simulated∆RH.

4 How can we check that ∆RH results from the
right combination of reasons?

∆δD as a function of∆RH at 300hPa in 4xCO2 LMDZ experiments with different processes at PD, different SST patterns
and/or with the addition of possible microphysical changes. Our theoretical framework predicts qualitatively the trajectories
of ∆δD versus∆RH in the different experiments.

• If long-termδD observations are available in addition to RH andT , the relative contributions of thermodynamical (∆SST,
∆Γ), dynamical (∆P ⋆) and microphysical (ǫp) changes can be disentangled.

1.2 Method
1. We inter-compare several PD and 4xCO2 simulations with the isotope-enabled GCM LMDZ ([4]),

including tests exhibiting a PD moist bias for different reasons (poster 1) to investigate how mis-
representation of RH processes impact∆RH predictions;

2. inter-compare 10 CMIP3 climate models to explore the linkbetween PD climate and predicted∆RH;

3. interpret our results using a simple theoretical framework. For simplicity, we consider only thermody-
namical changes (∆SST, lapse rate change∆Γ) and increase in convective detrainment height as factors
forcing ∆RH. We leave for future work the role of poleward shift of jets([2]) and changes in shallow
or deep convection. Our assumptions best applies to the upper troposphere (UT) ([1]).

1 Introduction
1.1 Goal
Tropical and subtropical free tropospheric relative humidity (RH) impacts the longwave outgoing radia-
tion, the cloud distribution and modulates deep convection. Therefore, predicting future RH changes as
climate changes (∆RH) is crucial to predict not only the water vapor feedbacks,but also cloud feedbacks
and regional changes of precipitation ([5]).
How can we assess the credibility of ∆RH predicted by climate models?

If RH is a function ofn processesFi, including tropospheric thermal structure, large-scale dynamics,
mixing during transport, cloud macro- and micro-physics, then∆RH = ∑n

i=1 ∆Fi ·
dRH
dFi

(F1, ...Fn): ∆RH
depends on the balance of thermodynamical, dynamical and cloud physics changes (∆Fi), and the response
to each of these changes is modulated by processes controlling RH (dRH

dFi
).

1. How do processes controlling RH at play at present-day (PD) impact∆RH?

2. How can we evaluate the representation by GCMs of these processes?

3. How can we check that simulated∆RH results from the correct combination of thermodynamical,
dynamical, and cloud physics changes?

RH (%)

Theoretical response of RH at 200hPa to thermodynamical changes and
to an increase in detrainment height, as a function of RH.

• macro- and micro-physical processes controlling RH impact∆RH
significantly

• The higher the impact of condensate detrainment on the UT vapor
budget (lowerǫp, stronger lateral diffusion), the more negative∆RH
(as in fig a)

• The lower theΓ, the less negative∆RH (fig c)

• Since the effects ofΓdecrease andP ⋆ decrease on RH nearly balance
each other,∆RH is very sensitive to the relative contributions of
these 2 changes.

Checking our theoretical framework against our LMDZ sensitivity tests

• Our simple framework captures the more negative∆RH when a moist
bias is due to excessive lateral diffusion, and the small impact on∆RH
of underestimatedσq.

• The more negative∆RH when condensate detrainment is excessive is
counter-acted by the lower convective contribution to precipitation in
our excessive condensate detrainment simulation .
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