Can we assess the credibility of future relative humidity changes predicted by climate models using present-day observations?

The added value of water vapor isotope measurements.

Camille Risi^{1*}, David Noone¹, Sandrine Bony²

¹ CIRES, University of Colorado, Boulder, USA, ²LMD/IPSL, CNRS, Paris, France *contact: camille risi@colorado edu

Introduction

1.1 Goal

Tropical and subtropical free tropospheric relative humidity (RH) impacts the longwave outgoing radiation, the cloud distribution and modulates deep convection. Therefore, predicting future RH changes as climate changes ($\triangle RH$) is crucial to predict not only the water vapor feedbacks, but also cloud feedbacks and regional changes of precipitation ([5]).

How can we assess the credibility of $\triangle RH$ predicted by climate models?

If RH is a function of n processes F_i , including tropospheric thermal structure, large-scale dynamics, mixing during transport, cloud macro- and micro-physics, then $\Delta RH = \sum_{i=1}^{n} \Delta F_{i} \cdot \frac{dRH}{dE}(F_{1}, ..., F_{n})$: ΔRH depends on the balance of thermodynamical, dynamical and cloud physics changes (ΔF_i) , and the response to each of these changes is modulated by processes controlling RH $(\frac{dRH}{D})$.

- How do processes controlling RH at play at present-day (PD) impact ∆RH?
- 2. How can we evaluate the representation by GCMs of these processes?
- 3. How can we check that simulated ΔRH results from the correct combination of thermodynamical, dynamical, and cloud physics changes?

For questions 2 and 3, we explore the added value of isotone measurements:

1.2 Method

- 1. We inter-compare several PD and $4xCO_2$ simulations with the isotope-enabled GCM LMDZ ([4]). including tests exhibiting a PD moist bias for different reasons (poster 1) to investigate how misrepresentation of RH processes impact ∆RH predictions;
- 2. inter-compare 10 CMIP3 climate models to explore the link between PD climate and predicted ΔRH ;
- 3. interpret our results using a simple theoretical framework. For simplicity, we consider only thermodynamical changes (Δ SST, lapse rate change $\Delta\Gamma$) and increase in convective detrainment height as factors forcing Δ RH. We leave for future work the role of poleward shift of jets ([2]) and changes in shallow or deep convection. Our assumptions best applies to the upper troposphere (UT) ([1]).

Simple theoretical model to interpret our acteristic profiles of specific humidity and isotope composition q_{dtr} and δD_{dtr} in con-vective plumes, depending on the precipand on the humidity and isotope composition at the lifting condensation level a.o. and δD_0 . Though not realistic, large-scale mean ascent constitutes a second source of vapor significant in GCMs. The humidity and &D in the convective zone, a* and δD^* depend on a_{34} , δD_{34} , the subgridscale variability of water vapor in anvils and stratiform clouds (σ_a), the proportion of air coming from convective detrainment r.i., and a large-scale condensation rate, a and δD are then conserved during subsidence, until they mix with moister air by lateral diffusion.

For numerical applications, we took parameters from our LMDZ simulations when readily diagnosticable, otherwise op-

2 How do processes controlling RH impact \triangle **RH** predictions?

CMIP3 models

control simulation

diffusive advection

LMDZ tests

 $\sigma_q/10$

- ullet Moist GCMs simulate more negative ΔRH at 200hPa. This is consistent with a moist bias due to excessive lateral diffusion
- \bullet GCMs with a strong Γ simulate more negative

How $\Delta\Gamma$ and ΔP^* affect RH at 200hPa in our simple theoretical model

- decrease in Γ dries convective regions where condensate is detrained, but moistens subsident regions
- decrease in P* dries subsident region

Common key for sections 2 and 3:

Effect of processes controlling RH

diffusion during transpport

Precipitation by convection

Theoretical response of RH at 200hPa to thermodynamical changes and to an increase in detrainment height, as a function of RH.

- macro- and micro-physical processes controlling RH impact ARH
- . The higher the impact of condensate detrainment on the UT vapor budget (lower ϵ_n , stronger lateral diffusion), the more negative ΔRH (as in fig a)
- The lower the Γ , the less negative ΔRH (fig c)
- Since the effects of Edecrease and P* decrease on RH nearly balance each other, ΔRH is very sensitive to the relative contributions of

Checking our theoretical framework against our LMDZ sensitivity tests

- Our simple framework captures the more negative \(\Delta RH \) when a mois bias is due to excessive lateral diffusion, and the small impact on ΔRH of underestimated σ .
- The more negative $\triangle RH$ when condensate detrainment is excessive is counter-acted by the lower convective contribution to precipitation in our excessive condensate detrainment simulation

3 How can we evaluate processes controlling RH?

 δD measures the enrichment in HDO relatively to sea wate

δD as a function of RH in our LMDZ sensitivity tests and predicted by the theoretical framework. Our framework captures the isotopic signature of excessive condensate detrain ment and of underestimated a

- \bullet Each reasons for a moist bias impact δD differently
- More on poster 1.

4 How can we check that ARH results from the right combination of reasons?

ΔδD as a function of ΔRH at 300hPa in 4xCO2 LMDZ experiments with different processes at PD, different SST patterns and/or with the addition of possible microphysical changes. Our theoretical framework predicts qualitatively the trajectories of $\Delta \delta D$ versus ΔRH in the different experiments.

ullet If long-term δD observations are available in addition to RH and T, the relative contributions of thermodynamical (Δ SST, $\Delta\Gamma$), dynamical (ΔP^*) and microphysical (ϵ_n) changes can be disentangled

5 Conclusion

- Projected ΔRH in the upper-troposphere are significantly sensitive to (1) processes controlling RH at present-day (PD), including cloud micro- and macro-physics, and (2) the balance of thermodynamical vs dynamical changes
- . The diversity of how GCM handle RH processes and predict the balance of changes makes it difficult to find clear relationships between PD variables and ΔRH ([3])
- \bullet How a PD moist bias affects \triangle RH projections depends on the reason for the bias. Water stable isotopes measurements combined with RH measurements can help diagnose this reason.
- Long term monitoring of RH and δD may constitute an additional diagnostic to check the credibility of simulated ΔRH

References

[1] I. Folkins and R. Martin. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J. Atmos. Sci., 62:560-1573, 2003 [2] J. V. Hurley and J. Galewsky. A last saturation diagnosis of subtropical water vapor response to global warming. Geophy. Res. Lett., 37:L06702, doi:10.1029/2009GL04231

[4] C. Risi, S. Bony, F. Vimeux, and J. Jouzel. Water stable isotopes in the LMDZ4 General Circulation Model: model evaluation for present day and past climates and application to climatic interpretation of tropical isotopic records. J. Grophys. Res., in press.doi:10.1029/2009/ID013255, 2010. [5] S. C. Sherwood, W. Ingram, Y. Tsushima, M. Satoh, P. L. V. M. Roberts, and P. A. O'Gorman. Relative humidity changes in a warmer climate. J. Geophys. Res., 115