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The added value of tropospheric water vapor isotopic
measurements for process-oriented evaluation of convective, cloud

and transport processes in climate models

∆δD (h)

Introduction
Differences between model representations of convective and cloud processes remain the dominant source of inter-model
dispersion in climate change projections for a given grenhouse gas scenario. Evaluating the representation of the water cycle
in climate models remain a challenge. Because of fractionation during phase changes, the water vapor isotopic composition
reflects the history of phase changes during the water cycle.The development and availability of a growing number of
remote sensing retrievals of isotopic composition provides an opportunity to explore the added value of tropospheric water
vapor isotopic measurements for process oriented evaluation of climate models. This is investigated here using the LMDZ
GCM enabled with isotopes ([6]).

q = specific humidity;δD= concentration in HDO inh anomalies relatively to sea water; SWING2=isotopic GCM inter-
comparison project
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Effect of precipitation reevaporation
Fig: 1D simulations are run in radiative-convective equilibrium. In a sensitivity test, precipitation
reevaporation is doubled and the troposphere is moistened.Ice sublimation doesn’t fractionate
and enriches the upper troposphere. Rain reevaporation fractionates and its effect depends on the
reevaporated fraction: depleting (enriching) effect for small (large) reevaporated fractions.

Understanding the upper-tropospheric moist bias in
GCMs
Fig: GCMs often feature a moist bias in the upper troposphere. To understand the cause of this bias, we perform
sensitivity tests in which it is amplified. Only an excessivevertical diffusion leads to a reversedδD seasonality compared
to observations. Comparing with 7 SWING2 models suggests that the moist bias frequently results from an excessive
diffusion ([7, 8]).

Factors controling tropical water vapor δD
Fig: Observational and modeling studies have suggested or evidenced the enriching role of convective detrainment
([3]) and the depleting role of unsaturated downdrafts ([4,5]), rain reevaporation ([9]), large-scale condensation
([2]) and large-scale subsidence ([1]) on the water vapor.

Relative contribution of convective and
large-scale precipitation
In GCMs, precipitation can be produced by the convective or large-scale schemes. The
physical meaning of these 2 schemes is model-dependent. Their relative contribution
is arbitrary, but has a strong impact on diabatic heating profiles and tracer transport.
Water isotopes can provide an additional constraint: the balance between compensat-
ing subsidence and convective detrainment (associated with convective precipPconv)
leads to more enrichedδD than the balance between large-scale ascent and large-scale
condensation (associated with large-scale precipPLS) for a givenq.
Fig: Example over the Amazon. In the TES data, during the wet season, the water
vapor is more depleted in the lower troposphere and slightlymore enriched in the up-
per troposphere. LMDZ reproduces this feature. Sensitivity tests show that the larger
the contribution of large-scale precipitation to the precipitation seasonal variation,
the larger the mid-tropospheric depletion during the wet season. This effect is not
detected inq.

Complementarity q- δD
Fig: Rayleigh distillation (resulting from progressive dehydration
by condensation) has a log shape while mixing has a hyperbolic
shape ([9]). This explains whyδD of an air mass depends on the
previous dehydrating and moistening processes. In addition, there
is fractionation during rain reevaporation.

Perspectives
• collocateq, δD and cloud data: e.g. A-train

(TES+CALIPSO/Cloudsat), IASI, ARM sites.

• spatial structure around convective systems, evo-
lution during convective life cycles and during
MJO events using IASI data

• build a theroretical framework to interpret joint
q, δD and cloud distribution

• actually use isotopic data for model evaluation

• combine water isotopic tracers with air tracers
(CO,O3, Be)?

Fig: Observed (IASI) and simulatedδD during the
November 2011 CINDY-DYNAMO campaign case
at 500hPa averaged over 10S-10N.
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Role of convective
detrainment in the
upper tropospheric
moisture budget
Fig: The MIPAS data shows maximum en-
richment in the upper troposphere. LMDZ
has trouble reproducing this latitudinal
gradient. Sensitivity tests show that the
larger the moistening tendency by convec-
tive detrainment, the sharpest the latitudi-
nal gradient. This effect is not detected in
q. No test and none of the SWING2 mod-
els can capture theδD gradient. Data or
model issue?
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