1. Introduction

Deep convection in the tropics can take the form of small isolated cumulonim-
bus (fig 1a), or organize into bigger and longer-lived convective systems, e.g.
squall lines or tropical cyclones (fig 1b-c). Convective aggregation measures
the degree to which convection is clustered into a small number of systems.
Over the oceans, for a given rain rate in average over some large-scale domain
(a few degrees), the tropospheric relative humidity (RH) 1s drier when convec-
tion 1s more aggregated [8]. If convective aggregation is effectively responsible
for the drying and if it depends on sea surface temperature, it could be involved
in a climate feedback that is not accounted for in global climate models.

In this study, we set 2 questions:

1. Do aspects of convective organization other than aggregation, such as life
duration of convective systems or their propagation speed, covary with tro-
pospheric humidity?

2. What are the mechanisms (convective or large-scale) underlying the
organization-humidity relationships? What is the role of microphysical pro-
cesses?

Can water isotopic measurements help address this question?
— Look at 0 D, in addition to RH.

This work has also paleoclimate implications. More depleted water vapor and
precipitation is observed in/near squall lines [9] or tropical cyclones [3]. Iso-
topic paleo-records have thus been used to reconstruct past cyclonic activity
[1] or large continental organized convective systems [4].
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2. Methods

e TOOCAN [2]: algorithm tracking mesoscale convective systems (MCS)

e For a given domain and period, number of convective systems (/V), mean
life duration (D)), mean propagation speed (v,), proportion of MCS area
belonging to cyclones and squall lines (p7¢ and pg;) from TOOCAN (fig
2).

e NV describes spatial aggregation: highly correlated with Iorg or SCAI

e Composites as a function of TRMM precipitation rate (F°), N, D, v,, prc
and pgy.
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Aggregation, meso-scale properties and
large-scale conditions

e For a given P and NV, a wide range of D is possible (fig 3).

e All variables listed in Methods are composited in the D — N diagram (not shown) =3 poles are identified (fig 3).

1. red: long, large MCS, strongly “organized” at the meso-scale, frequent cyclones and squall lines, high v, often at the

edges of the ITCZ

2. blue: disaggreated convection, typical of deep ITCZ (e.g. Western Pacific)

3. green: small and/or shallow MCS, typical of shallow ITCZ (e.g. Eastern Pacific)

e When P increases, about 50% is due to increase in /V and 10% to increase in D (not shown).
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4. Impact on RH and 0D,

e RH:

— increases with NV [8] (fig 4a-b blue)
— RH also increases slightly with D and, in the upper-troposphere, with v, (fig 4a-b red, pink).

o 0D,:
— decreases with D and v, (fig 4¢-d red, pink)

— the decrease with D explains about 50% of the amount effect (decrease of 0 D, with P) (not shown)

— environment around tropical cyclones stand out as very depleted (fig 4d purple).
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5. Added value of 0 D, to understand mechanisms?

One hypothesis to explain larger RH for larger /V is the larger surface of exchange between clouds and their environment, leading to more moistening
by rain evaporation or cloud detrainment [8].
=Use q¢ — 0D, relationships to test this hypothesis (fig 5a-b):

e Indicates more rain evaporation when /N increases (fig Sc red) and D increases (fig Sc green) and for tropical cyclones (fig 5d blue)

e Limitation due to the high vertical coherence of 0.D,: e.g. larger rain evaporation in the lower tropospere impacts 0 D, at all altitudes, but does not
contribute to the moister upper-troposphere...
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6. Conclusions

e Convective aggregation (/V) not sufficient to describe convective organization.
e RH sensitive to /V, but also to meso-scale properties of convective systems (D), vy).

e 0D, observations to understand the mechanisms? Indicate effect of N on rain evaporation, but limitation due to the high vertical coherence of
0D,...

e Paleoclimate implications: in tropical regions, D is the main factor affecting 0 .D,,.
=-confirms 1sotope-based paleo-tempestology studies.

7. Perspectives

e Mechanisms for impact of D and v, on RH and 0D, ? Can we use CRM simulations?

— RH: idealized (RCE) CRM simulations capture higher RH when /N increases, but simulates smaller RH when D increases [5]... Why?
=Use global CRMs (DYAMOND, [7])? Capture higher RH when N and D increases (paper in prep).

— 0D, idealized CRM simulations show 0D, lower inside cyclones and squall lines due to rain evaporation [6]. But domain-mean ¢, more
enriched for cyclones than for isolated convection... Why? Global CRMs have no isotopes yet...

e Is the impact of D and v, on RH associated with climate feedbacks? = sensitivity to SST in idealized CRM simulations [10].
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