Influence of large scale climate variations on the
ISotopic composition of tropical precipitation

Camille Rist*, Sandrine Bony Francoise Vimeux
'LMD/IPSL, Paris (France)?LSCHIPSL, Paris (France):contact: crimd@Imd.jussieu.fr

| ntroduction

Water stable isotopes(DO, Hi°0O) constitute a promising tool to reconstruct past
climate variations. In the tropics, however, the intergtien of isotopic composition
changes in terms of climate variations is debated. By amayzmulations of a single-
column model run in radiative-convective equilibrium ardé@eneral circulation model
(LMDZ GCM) equipped with water stable isotopes, we investtegthe relative contri-
butions of regional dynamical changes and of coherentdebpemperature changes on
the isotopic composition of the tropical precipitationtls interannual time scale and in
climate change.

Notation §'*0 anddéD measures the enrichment in heavier isotopes. Deuteriusssxc
d = 6D — 8- 580 measures the enrichment#hDO relatively to H1°0.

1. Water stableisotopesin LMDZ

1.1 Evaluation for the present day

LMDZ simulates reasonably well the annually averaged giotoomposition of the pre-
cipitation (fig 1). The amount effect, i.e. the anti-cortela observed at the monthly
scale in the Tropics between the heavy isotopes in pretgitand precipitation rate
([2]), 1s well reproduced (fig 2). Compared to single columodal (SCM) simulations,
thehorizontal advections act to damp the amount effect in LMDZ.
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1.2 LGM smulation

We conducted a Last Glacial Maximum (LGM) simulation siniigia forced by
CLIMAP SST. The model simulates reasonably well the mordeadeg precipita-
tion during the LGM at high latitudes, but underestimates diepletion observed
ponctually in tropical ice cores, as most other isotopic GAM6, 5]).
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Fig 3: LGM - present day change if*°O in precipitation simulated by LMDZ, compared to some
available observations from ice cores, speleothems orrghauaters (cited in [4, 6, 5]).

2. Areilsotopesin tropical precipitation
a good proxy for precipitation rate?

Slope d§'*O / d P Goo/mm.day)
from LMDZ at the inter-annual scale

The amount effect is a maj@on-
trol of precipitation composition
In the Tropics ([2]). To what ex-
tent can past precipitation rates
(P) be reconstructed from'*O
records?

In a “perfect model” experiment,
we calculate in every location the
slopedf;% at the inter-annual scale
for the present day (PD) simula-
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2005 simulation (fig 4a). These % 8
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similar at the inter-annual and IS0
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e at first order and at the regionalp predicted by the slope in a and the precipitatidfO change

13 ... | simulated by LMDZ in fig 3. ¢) LGM - present day change’in
scale, 0°0 records precipita simulated directly by LMDZ.

tion changes.

3. Relative contribution of dynamical changesin precip-
Itation and global temper ature changes

At the regional scale, the amount effect dominates the
precipitations 'O signal at seasonal, inter-annual and cli-
matic scales. But is there a larger-scale isotopic sigeatur
of climate change, as suggested by the enhanced deple-

tion in most tropical data available at the LGM? annual scale. As SST increases, surface evaporation,

Fig 5 compares the relative impact 610 of changes in which enriches the low-level vapor, is increased (fig
tropical mean SSTI() and in regional precipitation rate 6).

P, for both SCM ([1]) and LMDZ simulations.

e The amount effect isobserved only if the precipita-
tion changes are related to dynamical changes (re-
lated to changes in large-scale vertical velocity in
SST anomaly, — 7). Changes in precipitation related
to changes in SST lead to a reversed amount effect (fig

e For a givenP, ¢'°O increases as the mean tropical
SST increases, by about0.1 to 0.2%0/ K (fig 5a,b,c).
This Is robust in both SCM and LMDZ simulations,
both In climate change experiments and at the inter-

Consequently, dynamical changes of precipitation
dominate the 6'°0O signal of precipitation at the re-
gional scale. However, tropical mean changes is SST
dightly shift the precipitation §'°0O over the whole

5a). tropics.
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Fig 5: a) §'%0 as a function of precipitation raté® for different SST and in SCM

radiative-convective equilibrium experiments. BJO as a function ofP in LMDZ for

different idealized simulation in which global SST aretshif ¢)5'*0O as a function ofP

in a LMDZ 1979-2005 simulation. Monthly values are comgabeccording to tropical
mean SST. d) Same as b but as a functidfi ef 1" instead ofP.

Fig 6: Conceptual scheme representing the different vari-
ables at play and comparing the impact of dynamical change
at the regional scale and of global temperature changes on
precipitationd'®O.
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