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zation used and on the relative role of convective and lamgee condensation parameterization to produce|  the precipitation seasonal variation, the larger the midgospheric depletion during the wet season.
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concert to modify environmental properties (e.g. moistgrat different levels, dissipation of buoyancy), in
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Cindy-Dynamo case study
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Fig: Humidity tendencies from the different parameteiimas, and theid D signature in the free troposphere event. In LMDZ, it depends
(example in 1D). Convective detrainment has a strongercaimg effect than large-scale ascent for a given, on the physical package and
moistening. Large-scale condensation has a stronger tiagleffect than compensating subsidence for a  the resulting balance between
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