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◮ Can we assess the credibility of projections of South American
precip using past changes?
If a model is good for the past, do we expect it to be good for
the future?
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Assesing future precip projections using

CMIP5 analysis

Conditions to constrain projections using the past:

1. link between projected and past behavior

2. common physical processes

3. observations available and precise enough
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Assesing future precip projections using

CMIP5 analysis

Conditions to constrain projections using the past:

1. link between projected and past behavior

2. common physical processes

3. observations available and precise enough

CMIP5:

◮ 4 models for LGM

◮ 9 models for MH =⇒focus on MH

◮ RCP with same models

◮ Idealized simulations -> role of SSTs, CO2
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Multi-model EOF of future precip changes

0.060.040.020−0.02−0.04−0.06−0.08−0.1−0.12

80W

Eq

10N

10S

20S

60W 40W

(86%, 16 models)EOF 1 annual-mean ∆PRCP8.5-PI

4/18



Multi-model EOF of future precip changes

0.060.040.020−0.02−0.04−0.06−0.08−0.1−0.12

80W

Eq

10N

10S

20S

60W 40W

Guyane

Nordeste

(86%, 16 models)EOF 1 annual-mean ∆PRCP8.5-PI

4/18



Multi-model EOF of future precip changes

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.060.040.020−0.02−0.04−0.06−0.08−0.1−0.12

80W

Eq

10N

10S

20S

60W 40W

Guyane

Nordeste
∆
P

(mm/d)

INMCM4 MRI-CGM3 GFDL-ESM2
G

GFDL-ESM2
M BCC-CSM1 EC-EARTHMIROC-ESM FGAOLS CCSM4 MIROC5IPSL-CM5A-

LR HadGEM2-C
CMPI-ESM-LRIPSL-CM5A-

MR HadGEM2-E
S

Guyane-NordesteRCP8.5-PI pre
ip 
hange

Group 1 Group 2 Group 3

(86%, 16 models)EOF 1 annual-mean ∆PRCP8.5-PI

4/18



Link between future climate and MH
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Link with response to SST, CO2, present-day

biases

In models where precip decreases in Guyane and increases in
Nordeste in RCP8.5:

◮ similar precipitation dipole in MH (r=0.93) ⇒Potential for
constraining future projections using paleo data
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In models where precip decreases in Guyane and increases in
Nordeste in RCP8.5:

◮ similar precipitation dipole in MH (r=0.93) ⇒Potential for
constraining future projections using paleo data

◮ similar pattern in sstClim4xCO2-sstClim (r=0.92) ⇒ some of
the dispersion is due to direct CO2 effect

◮ similar pattern in amipFuture-amip (r=0.78)⇒ some of the
dispersion is associated with atmospheric response to SSTs

◮ southern Atlantic warms more than Northen Atlantic (r=0.67)
⇒ some of the dispersion is due to change in SST pattern

◮ the double ITCZ problem is less frequent (r=-0.66) ⇒link
with present day biases
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Perspectives on CMIP5 analysis
◮ Work in progress to understand mechanisms in future, MH:

Bony et al 2013: decomposition of future precip changes:

CO2 change

thermodynamical changes

SST changes precipitation
changes

dynamical changes

thermodynamical component

dynamical component

dynamical component due to CO2

precipitation change 2090 − preindustrial

60W60E 180E 60W60E 180E
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Bony et al 2013: decomposition of future precip changes:

CO2 change

thermodynamical changes

SST changes precipitation
changes

dynamical changes

thermodynamical component

dynamical component

dynamical component due to CO2

precipitation change 2090 − preindustrial

60W60E 180E 60W60E 180E

◮ Actually using paleo constrains: ex: water isotopic archives?
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What does δ18Op records?

◮ Thompson et al 2000 → proxy de temperature
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What does δ18Op records?

◮ Thompson et al 2000 → proxy de temperature

◮ Vuille et al 2005, Pausata et al 2011 → proxy de precipitation
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=⇒ Use LMDZ with isotopes:
11 different climates (e.g. LGM, MH); 4 different model physics
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Paleo simulations with LMDZ-iso
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◮ underestimate of LGM depletion= frequent problem in GCMs
◮ improvement with resolution
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Causes of δ18Op changes at LGM?

−1.2

−0.8

−0.4

 0.4

 0

−0.4

 0.4

 0

Illimani LGM Botuvera LGM

Rp = Rv + (Rp − αloc ·Rv) + (αloc ·Rv −Rv)

Rv =
Roce/αi

αK ·(1−hi)+hi
·







h
loc
·qs(Tloc)

qs(Ti)







αloc−1
+ residual

distillation
vap-
ond diseq

initial vapor e.g. upstream 
onve
tion
∆
δ1

8
O

p

site(h

)

Ttotal diseq hloc resα's Ttotal diseq hloc resα's
◮ importance of temperature effect
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Temperature and amount effects at LGM
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◮ temperature effect over land + slight amplification with

alitude, compensated by changes in α’s
◮ amount effect due to rain-vapor desequilibrium + residual

(⇒upstram convection), compensated by changes in hloc
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Is δ18Op a proxy for temperature?
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◮ temperature = significant control at paleo time scales
◮ but sensitive to model physics
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Is δ18Op a proxy for precipitation?
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◮ δ18Op influenced by past regional precipitation changes
◮ but sensitive to model physics
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Summary on isotopic paleo records in South

America

◮ LMDZ can reproduce several aspects of past δ18O changes,
but underestimates depletion at LGM

◮ At paleo time-scales and especially during LGM, temperature
is a major control in LMDZ

◮ Also significant relationship with upstream precip

◮ But sensitive to the model physics
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Comparison with the Tibetan Plateau
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◮ Temperature effect, stronger, more robust to model physics,
stronger amplication with altitude

◮ Relationship with upstream precip, sensitive to model physics
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Perspectives (1/2)

◮ Why does LMDZ underestimate δ18O changes at LGM?
◮ more data synthesis needed for paleo δ18O to evaluate models
◮ temperature or precip effects underestimated? missing process?
◮ how common is it among models?
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Perspectives (2/2)

◮ Senstivity to model and model parameters: which is the most
realistic?

◮ understand sensitivity to model physics: what controls the
dominance of temperature vs precip effect?
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Use present-day measurements?
◮ are some sensitivity tests more realistic at daily time scales?
◮ do we expect them to be more realistic for paleo time scales?
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Use present-day measurements?
◮ are some sensitivity tests more realistic at daily time scales?
◮ do we expect them to be more realistic for paleo time scales?
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=⇒Understanding daily controls not enough to understand paleo
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