The added value of tropospheric water vapor isotopic measurements for evaluation cloud and precipitation processes in climate models

Camille Risi

LMD/IPSL/CNRS

Seminar at ITP-CAS, April 2013

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Inter-model spread in climate projections

Inter-model spread in climate projections

• $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

- $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

Overview of my activities

< □ > < @ > < E > < E > E 4/32⁽)

1. evaluation of atmospheric processes

- processes controlling humidity
- atmospheric deep convection

Overview of my activities

- 1. evaluation of atmospheric processes
 - processes controlling humidity
 - atmospheric deep convection
- 2. evaluation of land surface processes
 - partitionning of water fluxes at land surface
 - Iand-atmosphere feedbacks, continental recycling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview of my activities

- 1. evaluation of atmospheric processes
 - processes controlling humidity
 - atmospheric deep convection
- 2. evaluation of land surface processes
 - partitionning of water fluxes at land surface
 - Iand-atmosphere feedbacks, continental recycling
- 3. evaluation of tropical precipitation changes
 - what do tropical water isotopic proxies record
 - link between past and future behavior (CMIP5)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LMDZ and ORCHIDEE models

components of IPSL climate model

- ▶ isotope-enabled (*Risi et al 2010a*) + water tagging
- nudging capability \implies realistic dynamical context
- zoom capability down to 30km

0) Introduction

 isotopeenabled + water tagging

0) Introduction

<ロ> (四) (四) (三) (三) (三) (三)

6/32

for remote-sensing : focus on spatio-temporal variations

6/32

► account for sampling and instrument sensitivity 0) Introduction

Evaluation of LMDZ water vapor and precip

0) Introduction

Evaluation of LMDZ-ORCHIDEE precipitation and rivers

0) Introduction

8/32

I) Using water vapor measurements to evaluate atmospheric processes

- what controls the water vapor composition
- 2 examples

Processes controlling isotopic composition

- observational studies (Risi et al 2008b), in particular at intra-event time scales (Risi et al 2010c, Tremoy et al 2012)
- modeling studies (Risi et al 2008, 2010b, 2012b)

$q-\delta D$ complementarity

I) Atmospheric processes

I) Atmospheric processes

I) Atmospheric processes

What causes the moist biases in GCMs?

What causes the moist biases in GCMs?

► frequent reason for moist bias=excessively diffusive advection 1) Atmospheric processes 13/32^C 13/32^C

2) Upper tropospheric convective moistening

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

14/32

MIPAS data at 200hPa, annual

2) Upper tropospheric convective moistening

I) Atmospheric processes

2) Upper tropospheric convective moistening

I) Atmospheric processes

Conclusion on atmospheric processes

 Potential of isotopic measurements to evaluate a broad range of processes in atmospheric models

Perspectives on atmospheric processes

• Combine q, δD + cloud \Rightarrow better constrain large-scale precip

Perspectives on atmospheric processes

- Combine q, δD + cloud \Rightarrow better constrain large-scale precip
- Combine q, δD + chemical tracers : CO, O₃, ¹⁰Be ⇒ better characterize fluxes
Perspectives on atmospheric processes

- Combine q, δD + cloud \Rightarrow better constrain large-scale precip
- Combine q, δD + chemical tracers : CO, O₃, ¹⁰Be ⇒ better characterize fluxes
- ► MJO project : cause of models' difficulties ? ⇒ Relate MJO biases to specific problems in parameterizations, isotopes as additional diagnostic.

Perspectives on atmospheric processes

- Combine q, δD + cloud \Rightarrow better constrain large-scale precip
- Combine q, δD + chemical tracers : CO, O₃, ¹⁰Be ⇒ better characterize fluxes
- ► MJO project : cause of models' difficulties ? ⇒ Relate MJO biases to specific problems in parameterizations, isotopes as additional diagnostic.
- ► IASI data : daily global coverage ⇒convective organization, life cycle

16/32

II) Using river water and water vapor measurements to evaluate land surface processes

2) Continental recycling

Water tagging:

2) Continental recycling

Water tagging:

2) Continental recycling

Continental recycling feedbacks moisture convergence P P ET P P r_{con} r_{con} r_{con} r_{con}

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

20/32

II) Land surface processes

Continental recycling feedbacks

use D1_iso to evaluate role of cont recycling

II) Land surface processes

Conclusion on land surface processes

Perspectives on land surface

- ► isotopes in 11-layer hydrology of ORCHIDEE ⇒ better simulation of soil profiles, more physical runoff-drainage partitioning
- use d-excess signal in the vapor to constrain evaporation/transpiration partitioning?
- link between present-day representation of the water cycle and simulated hydrological response to climate changes

Perspectives on land surface

- ► isotopes in 11-layer hydrology of ORCHIDEE ⇒ better simulation of soil profiles, more physical runoff-drainage partitioning
- use d-excess signal in the vapor to constrain evaporation/transpiration partitioning?
- link between present-day representation of the water cycle and simulated hydrological response to climate changes
- irrigation changes using water tagging

III) What does tropical $\delta^{18}O_p$ record?

Based on new understanding, revisit interpretation of δ¹⁸O records ? And can we use these records to evaluate models' capacity to simulate climate changes ?

III) What does tropical $\delta^{18}O_p$ record?

- Based on new understanding, revisit interpretation of δ¹⁸O records ? And can we use these records to evaluate models' capacity to simulate climate changes ?
- Interpretations in the litterature :
 - \blacktriangleright Thompson et al 2000 \rightarrow proxy for temperature
 - \blacktriangleright Vuille et al 2005, Pausata et al 2011 \rightarrow proxy for monsoon intensity, upstream precipitation

III) What does tropical $\delta^{18}O_p$ record?

- Based on new understanding, revisit interpretation of δ¹⁸O records ? And can we use these records to evaluate models' capacity to simulate climate changes ?
- Interpretations in the litterature :
 - \blacktriangleright Thompson et al 2000 \rightarrow proxy for temperature
 - \blacktriangleright Vuille et al 2005, Pausata et al 2011 \rightarrow proxy for monsoon intensity, upstream precipitation

⇒ process studies at the daily time scale (*Gao et al 2011, submitted*) using precip data
III) paleo

Process study using satellite observations

He You's PhD thesis : use of TES data

Process study using satellite observations

He You's PhD thesis : use of TES data

convection in India depletes mid-tropospheric vapor

 $\stackrel{\bullet}{\underset{(III) \text{ paleo}}{\bullet}} \text{ depleted anomaly is transported downstream to Lhassa}$

24/32

Does this apply to paleo scales?

Can we use present-day observations to better understand processes controlling paleo $\delta^{18}O$ and evaluate them in models? \Longrightarrow modelling study

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Does this apply to paleo scales?

Can we use present-day observations to better understand processes controlling paleo $\delta^{18}O$ and evaluate them in models? \Longrightarrow modelling study

 simulations of 11 different climates : LGM with different SSTs, MH , 2x and 4x CO2 with different SSTs, last interglacial

• paleo relationships between $\delta^{18}O$ and climate?

Does this apply to paleo scales?

Can we use present-day observations to better understand processes controlling paleo $\delta^{18}O$ and evaluate them in models? \Longrightarrow modelling study

- simulations of 11 different climates : LGM with different SSTs, MH , 2x and 4x CO2 with different SSTs, last interglacial
 - paleo relationships between $\delta^{18}O$ and climate?
- sensitivity tests to model physics and resolution (including 50km zoom)

robustness of simulated relationships?

Evaluation for LGM and MH

Evaluation for LGM and MH

(日) (四) (日) (日) (日)

26/32

LMDZ captures LGM and MH observed depletion

III) paleo

Causes of $\delta^{18}O$ changes?

III) paleo

Is $\delta^{18}O$ a proxy for temperature?

Is $\delta^{18}O$ a proxy for temperature?

temperature = significant control at paleo time scales

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

28/32

robust to model physics

III) paleo

Is $\delta^{18}O$ a proxy for precipitation?

Is $\delta^{18}O$ a proxy for precipitation?

Upstream precipitation plays a role at paleo time scales

< ロ > < 同 > < 回 > < 回 >

29/32

Sensitive to the model physics

III) paleo

$\delta^{18}O$ controls accross time scales

Is understanding daily controls enough to understand paleo controls?

30/32

Conclusion on paleo

- LMDZ can reproduce several aspects of past $\delta^{18}O$ changes
- At paleo time-scales and especially during LGM, temperature is a major control
- At paleo time-scales and especially during MH, relationship with upstream precip but sensitive to the model physics
- ► Surface and satellite data can help understand processes controlling $\delta^{18}O$ at daily time scale \Rightarrow role of convection
- \blacktriangleright But relationship between precip and $\delta^{18}O$ depends on time scale

Perspectives on paleo

- Better evaluate climate- $\delta^{18}O$ relationships :
 - \blacktriangleright more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
 - are some sensitivity tests more realistic at daily time scales?
 - b do we expect them to be more realistic for paleo time scales?

compare with other models

Perspectives on paleo

- Better evaluate climate- $\delta^{18}O$ relationships :
 - more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
 - are some sensitivity tests more realistic at daily time scales?
 - b do we expect them to be more realistic for paleo time scales?
 - compare with other models
- use $\delta^{18}O$ records to better constrain future precip changes?
 - common behavior in past/ future ? common mechanisms

 \Rightarrow investigation using past and future simulations in CMIP5.

Perspectives on paleo

- Better evaluate climate- $\delta^{18}O$ relationships :
 - more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
 - are some sensitivity tests more realistic at daily time scales?
 - b do we expect them to be more realistic for paleo time scales?
 - compare with other models

• use $\delta^{18}O$ records to better constrain future precip changes?

common behavior in past/ future? common mechanisms

 \Rightarrow investigation using past and future simulations in CMIP5. Bony et al 2013 : decomposition of future precip changes :

32/32

III) paleo
Appendix

Evaluation of ORCHIDEE land surface isotopes

▶ Le Bray (France, *Wingate et al 2009*)

Evaluation of ORCHIDEE land surface isotopes

► Le Bray (France, *Wingate et al 2009*)

Evaluation of ORCHIDEE land surface isotopes

► Le Bray (France, *Wingate et al 2009*)

Interplay convection - large-scale schemes

Interplay convection - large-scale schemes

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

35/32

Convection vs large-scale precip

Convection vs large-scale precip

Convection vs large-scale precip

Surface water budget

 soil water isotopic measurements -> bare soil evaporation ratio

Diffusion/infiltration in soils

Diffusion/infiltration in soils

Evaluating continental recycling feedbacks

Evaluating continental recycling feedbacks

< ロ > < 同 > < 回 > < 回 >

э

39/32

- Does LMDZ underestimate the role of continental recycling ?
- Or atmospheric problems?