The water stable isotopic composition of tropical
water and its potential to study the water cycle

Camille Risi

LMD/IPSL, Paris (France)

supervised by Sandrine Bony and Francoise Vimeux



Water stable isotopes
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Goals

What controls the isotopic compaosition of precipitation in
the Tropics? Role of atmospheric convection?

What information on the water cycle, including cloud
processes, surface-atmosphere interactions?

Potential to better constrain parametrizations in models?

» Potential to better constrain the variations in the water

cycle? Past climates?



Tools

» observations

» existing international networks (GNIP)
> rain collected during AMMA, along the monsoon season and
along squall lines

> isotope-enabled models

» Single Column Model (SCM) of radiative-convective
equilibrium

» Squall line model

» General Circulation Model (LMDZ)

» Land Surface Model (ORCHIDEE)



Outline

1. Isotopes and atmospheric convection
2. Isotopes and land surface processes

3. Isotopes and tropical climate variations

definitions:

518 O=enrichment in H13O relatively to a standard in %o
dD=enrichment in HDO relatively to a standard in %o
d-excess = dD — 8- 680
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1. Isotopes and atmospheric convection

Existing observations

» Amount effect
» Effect of convection at the synoptic scale
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Questions: How does convection impacts the isotopic
composition? By which processes? At which time scale?



Single Column Model
» Radiative convective equilibrium model over ocean

Boundary conditions: sea surface Pressyre (hP)
temperature and wind, vertical
profile of vertical velocity

Emanuel convective
parametrization = detailled
representation of rain
evaporation entrain
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Evaluation of the Single Column Model
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» correct simulation of the amount effect



What explains the amount effect?
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> rain reevaporation and convective downdrafts main processes

» consistent with strong sensitivity to reevaporation and

downdraft parameters



What are the time scales of the amount
effect?

» TOGA COARE simulation
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» The isotopic composition integrates convection over the
previous days



Collection of rain samples during the AMMA
campaign

» collection at the end of each event, during the entire 2006
monsoon season, on 3 sites around Niamey
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Isotopic evolution during the season
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Isotopic evolution before the onset
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Isotopic evolution after the onset
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Remaining questions

» process of temporal integration? Atmospheric vapor? Soil
moisture?

» d-excess data?

» processes of convection impact? Local or regional?




Intra-event sampling

11 August 2006 squall line




Intra-event sampling

11 August 2006 squall line




Intra-event sampling

11 August 2006 squall line




11 August 2006 squall line
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Robust properties among squall lines
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» strong variations between lines
» W shape
» d-excess decreases at the beginning of the startiform zone



Simple 2D model of transport and

» Assumptions
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Model results

Z (dBz) at 1km
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» robust properties simulated
» strong sensitivity to the dynamics



What processes control 5307
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» strong impact of downdrafts and rain evaporation



What processes control d-excess?
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Conclusion on the effect of convective
processes on precipitation isotopes

» Both SCM and intra-event data show strong impact of

» Convective and meso-scale downdrafts
» Rain reevaporation

» Potential of water isotopes to better constrain water budgets
in squall line and representation of convection in models?

» Link between event and intra-seasonal/seasonal scales?



Water isotopes and water transport through
the tropopause

» Existing observations
» Less depleted than expected
» Large variablity associated with clouds
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Modelling results

» GCM with same convective parametrization

» impact of convective activity at the daily scale
» enrichment depending on condensate detrainment
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2. Water isotopes and the land surface

» Motivations E
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» interpretation of AMMA data (soil )
memory, d-excess) ‘

» what is the impact of land surface ‘ R
processes on the isotopic
distribution?

» what information can be learned
from isotopes in the land surface?

» Tool: ORCHIDEE land surface model

» double bucket hydrology
» offline or coupled mode with LMDZ GCM



Offline evaluation over the Bray Site

» MIBA data of precipitation, vapor, plants and soils

Seasonal cycle simulated by ORCHIDEE offline
0 and observed (MIBA) in 2007 on the Bray site (Southern France)
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» Evaluation perspectives: other MIBA sites (US), use of the

GNIR data base (rivers)




Sensitivity tests
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» Compositions sensitive to:
» isotopic profiles in the soil, vertical diffusivity

rain inflitration

-= precipitation
= transpiration

-= bare soil evaporation
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» Potential of water isotopes to better constrain processes in the
land surface and their representation in models?



3. Water isotopes and climate variability

» What do isotopic
archives record in
the Tropics?

» Effect of
temperature or
precipitation
variations?
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» Tool: water enabled LMDZ GCM



Evaluation of LMDZ 680 in precipitation

» Simulation 1979-2007 forced by observed SST and nudged by
reanalyses

530 (%) LMDZ

5180 (%0) observations




Evaluation of LMDZ d-excess in precipitation

d-excess (%) LMDZ d-excess (%) observations
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» effect of neglecting bare soil evaporation on d-excess over
continents?



Evaluation of the amount effect
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» horizontal advections dampen the amount effect



Past climates: LGM

CLIMAP SSTs

LGM CLIMAP - present day
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What controls isotopic variations in the
Tropics?

— present day

-- 4
LGM CLIMAP
-~ LGM IPSL

0 2 4 6 8 10 12 14 16 18 20 22
precipitation rate (mm/day)

» At first order, amount effect dominant

» At second order, colder average tropical temperatures shifts
the 6180 distribution to more depleted values by 0.1%0/K



Are isotopic archives a good record of

precipitation variations?

> “perfect model” experiment

. present-day P-§'%0,
simulated Ll%}M change at the inter-annual scale
in 0°0, simulated during 1979-2007

reconstructed if using mter-annual relationship
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Perspectives on climate variability

» Regional modelling over montain regions (zoom)

» South America
» Tibet

Stretched grid

Stretched grid Standard

— Resolution in latitude (km)
— Resolution in longitude (km 0 05 1 15 2 25 3 35 4 45 5
gtude (km) altitude (km)

» Inter-annual and decdal variability, trends

» simulation forced by observed SST and nudged by reanalysis
= good inter-annual variability



General conclusion and perspectives

» Conclusion

» different isotopic composition of fluxes in atmosphere and land
surface = additional information from isotopes

» combination of processes, isotopic composition changes with
climate = paleoclimatic implications

» Perspectives

» Potential of isotopes to constrain continental recycling? How
much and by which processes (evaporation/transpiration)

» controls of atmospheric humidity? impact of precipitation
evaporation? Large-scale motion?

» Tools

» LMDZ-ORCHIDEE coupled simulations

» water tagging = tagging of different evaporative source
(ocean/continent/precipitation, vapor maximum altitude...)

» regional simulations: e.g. South America, West Africa
(AMMA)



