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Abstract

A boundary-based net-exchange Monte Carlo method was introduced (JQSRT 74 (2001) 563) that allows
to bypass the difficulties encountered by standard Monte Carlo algorithms in the limit of optically thick
absorption (and/or for quasi-isothermal configurations). With the present paper, this method is extended to
scattering media. Developments are fully 3D, but illustrations are presented for plane parallel
configuration. Compared to standard Monte Carlo algorithms, convergence qualities have been improved
over a wide range of absorption and scattering optical thicknesses. The proposed algorithm still encounters
a convergence difficulty in the case of optically thick, highly scattering media.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Monte Carlo method (MCM) has been widely used in the field of transport phenomena
simulation, and more specifically in the field of radiative transfer computing [1–3]. In this
particular case, the method mainly consists in simulating numerically the physical statistical
see front matter r 2004 Elsevier Ltd. All rights reserved.
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model of photons transport, from their emission to their absorption in a potentially scattering
medium. A well-known advantage of this method is that the corresponding computing code is
easy to set up and to modify. Another main advantage is that it is a reference method: as the
MCM is a statistical method, a standard deviation may be computed in addition to each result,
that may be interpreted as a numerical uncertainty. Also, it has recently been shown that the
MCM allows the computation of parametric sensitivities with no extra significant computing [4].
This can be helpful for design needs, or when radiative transfer is coupled with other physical
processes. Finally, the MCM is known to be well adapted to the treatment of configurations with
a high level of complexity (complex geometries, complex spectral properties, etc.). However, in
spite of these advantages over other methods and in spite of the regular increase of available
computational powers, the computational effort requirement of MCM often remains a significant
drawback.
Different works in the last fifteen years tried to preserve the main advantages of the method, in

particular its strict analogy with physical processes, and the ability to solve complex problems,
while trying to improve convergence qualities. There are mainly two ways MCM convergence can
be enhanced: formulation changes and adaptation of sampling laws [1]. As far as formulation is
concerned, most attention has been devoted to reverse Monte Carlo algorithms [5], that make use
of reciprocal transport formulations (application of the reciprocity principle to the integral form
of the radiative transfer equation), and to net-exchange Monte Carlo algorithms [6–9], that make
use of net-exchange transport formulations (combination of forward and reciprocal formulations,
photons being followed both ways along each optical path). Net-exchange Monte Carlo
algorithms allowed in particular to bypass the problem of standard Monte Carlo algorithms for
quasi-isothermal configurations. As far as sampling laws optimization is concerned, numerous
works have successfully used the biasing of sampled directions toward the parts of the system that
most contribute to the addressed radiative quantity [10], or the biasing of sampled frequencies as
function of temperature field and spectral properties [6,11].
Recently, the combination of formulation efforts and sampling laws adaptations permitted to

solve the well-known convergence problem of traditional Monte Carlo algorithms in the case of
strong optical thickness configurations [12]. If a gas volume is optically very thick, most emitted
photons are absorbed very close to their emission position, and thus do not take part to the
exchange of the gas volume with the rest of the system. Consequently, very large numbers of
statistical realizations are required to reach satisfactory convergences. This problem could be
solved in the case of purely absorbing systems thanks to a net-exchange formulation in which
emission positions are sampled, starting form the volume boundary, along an inward oriented
sampled direction (a formulation that will be named here a ‘‘boundary-based net-exchange
formulation’’). All sampling laws (frequency, boundary position, direction and emission position)
where also finely optimized in order to insure that the algorithm automatically adapts to system
optical thickness in the whole range from the optically thin to the optically thick limits.
The present paper is one of a series that seek to improve the MCM through such

methodological developments. It proposes techniques to take into account scattering in the
above-mentioned boundary-based net-exchange algorithm. The formulation used in [12] has been
generalized and clarified in order to take into account the scattering phenomena. Developments
are fully 3D, but convergence illustrations are presented for plane parallel configurations that are
specifically meaningful in the atmospheric science community.
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Section 2 of this article puts the emphasis on the multiple integral theoretical developments on
which our Monte Carlo algorithm is based. Section 3 presents gas volume emission results in a
simple test case, thus revealing the algorithm convergence qualities together with its limits of
applicability. Finally, Section 4 completes this convergence illustration in terms of radiative flux
divergence profiles.
2. Theoretical developments

The next three paragraphs deal with improvements that were brought to the standard bundle
transport MCM during the last few years, through a number of different methodological
developments.
2.1. Exchange formulation

Let us consider that, for the purpose of a 3D radiative transfer computation, the considered
system is divided into volume and surface elements. Until further mention, this geometric division
is only motivated by the required level of analysis and it therefore implies no physical assumption:
the volume and surface elements have any geometrical shapes and are inhomogeneous.
The energy rate Ei;j emitted by an arbitrary gas volume i and absorbed by an arbitrary gas

volume j may be expressed as:

Eij ¼

Z
Vi

dViðPÞ

Z
4p
doðu0Þ

Z
GðP;u0Þ

pðg;P; u0Þdg kaðPÞ
X1
n¼1

Tg;n

Z lþg;n

l�g;n

dsnðP
0
nÞ

�kaðP
0
nÞBðPÞ exp �

Z sn

l�g;n

ds0 kaðs0Þ

 !
; (1)

where BðPÞ is the monochromatic blackbody intensity at point P. GðP;u0Þ represents the space of
(infinite) optical paths g originated from point P, in the direction u0, distributed according to
pðg;P; u0Þ. Every such path will finally reach volume Vj and will even cross it an infinite number of
times. lg is the curvilinear coordinate along the optical path g and lg;n are the values of this
curvilinear coordinate at the positions of the nth intersection between optical path g and gas
volume Vj : l�g;n stands for the nth entry point coordinate, and lþg;n stands for the nth exit point
coordinate. sn is the curvilinear abscissa of point P0

n in the nth intersection interval between g and
Vj. T g;n is the transmitivity between point P and the position l�g;n: it is a product of exponential
attenuations and of surface reflectivities for surface reflexions.
The integral over GðP;u0Þ, according to the distribution pðg;P; u0Þ, will not be detailed in this

paper, because the purpose of this work is to put the emphasis on the net-exchange formulation
itself, and not to deal with the physical model used for optical paths representation. These paths
are purely random walk optical paths, and all the complexities associated with the formulation of
scattering angles and free path length are deported into the expression of pðg;P; u0Þ, that
represents formally the existence probability density of a given optical path g.
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This formulation may be used to derive a standard path integrated Monte Carlo algorithm, that
may be described as follows:
	
 First, the emission point P is randomly chosen in the gas volume Vi, and the emission direction
u0 is randomly chosen in the unit sphere ð4pStÞ.
	
 The optical path g is generated with a standard random walk technique.

	
 Each time this optical path reaches the gas volume Vj, a point P0 is randomly chosen along the
part of g that intersects Vj.
	
 Finally, the optical path g ends when it is long enough for the energy bundle to be considered as
totally attenuated (as function of the required level of accuracy).

Using a Monte Carlo algorithm based on a traditional formulation, the net-radiative budget is
expressed as the difference between approximate emitted and absorbed energy rates that are
computed separately, and that can be close the one to the other for nearly isothermal
configurations, inducing numerical convergence difficulties.

2.2. Net-exchange formulation

The net-exchange formulation is based on the net-exchange rates Cij between all pairs of
elements (either surface or volume elements) i and j, which is defined as the difference between the
energy rate emitted from element i and absorbed by element j, and the energy emitted from
element j and absorbed by element i.
The advantages of formulating radiative transfers in terms of net-exchange rates have been

shown by Green [13]. The net-exchange formulation has been introduced in the MCM by
Cherkaoui et al., [6,7]. This radiative transfer formulation solved the convergence problem
encountered by the MCM in nearly isothermal configurations. A general formulation of a net-
exchange rate Cij between two gas volumes i and j may be directly deduced from the energy rate
equation Eq. (1), replacing BðPÞ by ½BðPÞ � BðP0Þ� [8]:

Cij ¼

Z
Vi

dViðPÞ

Z
4p
doðu0Þ

Z
GðP;u0Þ

pðg;P; u0ÞdgkaðPÞ
X1
n¼1

T g;n

Z lþg;n

l�g;n

dsnðP
0
nÞ

�kaðP
0
nÞ½BðPÞ � BðP0

nÞ� exp �

Z sn

l�g;n

ds0 kaðs0Þ

 !
; (2)

where BðP0
nÞ is the monochromatic blackbody intensity at point P0

n in volume Vj (see Fig. 1).
Similarity of Eqs. (1) and (2) makes fairly easy the implementation of a net-exchange formulation
in a standard Monte Carlo algorithm: the monochromatic blackbody intensity BðPÞ has to be
replaced by ½BðPÞ � BðP0Þ�.
Using a net-exchange formulation, the net-radiative budget of a gas volume i may be expressed

as a sum of net-exchange rates:

Ci ¼
X

j

Cij : ð3Þ

Here, using a Monte Carlo algorithm based on a net-exchange formulation means that all net-
exchange rates are computed separately (as pondered sums of blackbody intensity differences
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Fig. 1. Discretization of an absorbing and scattering semi-transparent medium into volume elements.
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½BðPÞ � BðP0Þ�, which induces no numerical difficulty) and are then added to produce the net-
radiative budget. In the limit case of nearly isothermal configurations, no convergence difficulty
will be encountered: as it does no longer compute the difference between two very close
approximate values, a Monte Carlo algorithm based on a net-exchange formulation will lead to
much better accuracies than traditional Monte Carlo algorithms [6,7].

2.3. Boundary-based net-exchange formulation

A typical difficulty that is encountered by any standard MCM (both bundle transport and path-
integrated MC algorithms)1 is the problem of optically thick systems. Let us consider the
computation of the emission E from a given gas volume, using a standard path integrated Monte
Carlo algorithm. In the case of an optically thick gas volume, the computation of E will suffer
from a convergence problem: most bundles emitted into the gas volume will be totally attenuated
when they cross the volume boundary. Only those emitted very close to the boundary will have a
chance to leave the gas volume with a significant computational weight. Thus, the computation of
E will require a great number of statistical realizations N in order to get a good accuracy over E.
This convergence difficulty is due to the fact that emission positions are chosen uniformly among
the gas volume. A possible way to solve this problem would be to sample more often emission
positions close to the volume boundary, so that most bundles would leave the gas volume with a
significant energy, thus contributing more significantly to E. Modifying the way emission
positions are sampled means to modify sampling laws used in the algorithm, without modifying
the result of the multiple integral; in order to do this, we choose to use a net-exchange formulation
different from the initial formulation presented in Eq. (2). This reformulation—that brings
forward the distance between emission point and first exit point—is the purpose of the present
subsection.
1The term ‘‘bundle transport algorithm’’ is used for algorithms in which the photon bundle’s energy is totally

absorbed at a stochastically determined position. The term ‘‘path integrated algorithm’’ is used for algorithms in which

the photon bundle’s energy is exponentially attenuated along the photon bundle’s optical path.
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Eq. (2) starts with an integration over all locations P within volume Vi, then one integrates over
all optical paths g starting at P and g happens to cross the boundary of Vi (here noted Si) at a
location Q (see Fig. 2): this boundary does not appear as an explicit integration domain. On the
contrary, the following formulation (that will be referred as ‘‘Boundary-Based Net-Exchange
Formulation’’) starts with an integration over all exit locations Q on Si, then one integrates over
the exit hemisphere at Q and then over all the optical paths initiating within Vi and crossing its
boundary at the retained exit location and exit direction: the boundary of Vi appears as an explicit
integration domain, but not the volume Vi itself.

Cij ¼

Z
Si

dSiðQÞ

Z
2p
doðu0Þ u0:nLiðQ; u0Þ

Z
GðQ;u0Þ

pðg;Q; u0Þdg

�
X1
n¼1

T g;n

Z lþg;n

l�g;n

dsnðP
0
nÞkaðPÞ kaðP

0
nÞ½BðPÞ � BðP0

nÞ� exp �

Z sn

l�g;n

ds0 kaðs0Þ

 !
; (4)

where LiðQ; u0Þ is the fraction of the intensity at Q in direction u0 that corresponds to photons
emitted within Vi and crossing Si for the first time. Using the optical path reciprocity principle, it
is possible to formulate LiðQ; u0Þ as:

LiðQ; u0Þ ¼

Z
GðQ;�u0Þ

pð~g;Q;�u0Þd~g
Z ~l

þ

~g;1

0

d ~sðPÞ exp �

Z ~s

0

d ~s0 kað ~s0Þ
� �

; ð5Þ

where GðQ;�u0Þ is the space of optical paths originated from point Q, in the direction �u0 and ~l
þ

~g;1,
stands for the point at which ~g first exits Vi (see Fig. 2).
The Monte Carlo algorithm that was derived from this new formulation of net-exchange rates

Cij may be described as follows:
	
 First, a point Q is randomly chosen on the boundary Si surrounding gas volume Vi, and the
initial direction u0 is randomly chosen in the exit unit hemisphere ð2pStÞ.
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Fig. 2. Boundary-based reformulation of net-exchange rates.
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Starting at Q in the direction �u0, the optical path ~g is generated with a standard random walk
technique until it first exists Vi and P is then randomly chosen within Vi along this truncated
path.
	
 Starting at Q in the direction u0, the optical path g is generated with a standard random walk
technique.
	
 Each time g reaches volume Vj, a point P0 is randomly chosen along the part of g that intersects
Vj.
	
 Finally, the optical path g ends when it is long enough for the net-exchange bundle to be
considered as totally attenuated (as function of the required level of accuracy).

At this point of the developments, only the boundary-based reformulation of net-exchange rates
has been achieved. In the next subsection, it will be shown how the sampling laws that arise from
this formulation (Monte Carlo computation of the corresponding multiple integrals) may be
optimized in order to solve convergence difficulties in the optically thick limits.
2.4. Optimization of sampling laws

The above-described algorithm principle requires successive random generations 2 of an exit
position Q, an exit direction u0, a first exchange position P (via the curvilinear abscissa ~s), and
second exchange positions P0 (via the curvilinear abscissa s). It can be easily shown that any non
zero probability density function may be used for each such sampling insuring the same integral
solution at the limit of an infinite number of bundles. One way of illustrating this point is to
rewrite net-exchanges ratesCij, starting from Eq. (4) and transforming all successive integrals into
statistical averages:

Cij ¼
X1
n¼1

In
1

bn

* +

¼

Z
Si

pdf SðQÞdSiðQÞ

Z
2p

pdf Oðu0Þdoðu0Þ

�

Z
GðQ;�u0 Þ

pð~g;Q;�u0Þd~g
Z ~l

þ

~g;1

0

pdf ~Sð ~sÞd ~sðPÞ

�

Z
GðQ;u0Þ

pðg;Q; u0Þdg
Y1
n¼1

Z lþg;n

l�g;n

pdf Sn
ðsnÞdsnðP

0Þ

 ! X1
n¼1

In

1

bn

( )
; (6)
2The random walk sampling laws corresponding to the generations of ~g and g are left apart in the present article

cause no optimization is proposed concerning this part of the algorithm. Such an optimization process is nontrivial

d none of the attempts made at date have enough generality to be implemented on a standard basis. Among the most

ccessful attempts, a specific mention can be made to the work of Berger et al. reported in [1] for simulation of

tically thick radiation shields.
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where In is the net-exchange density:

In ¼ ðu0:nÞkaðPÞ exp �

Z ~s

0

kað ~s0Þd ~s0
� �

T g;nkaðP
0
nÞ½BðPÞ � BðP0

nÞ�

� exp �

Z sn

l�g;n

ds0 kaðs0Þ

 !
(7)

and b the correction term:

bn ¼ pdf SðQÞpdf OðoÞpdf ~Sð ~sÞpdf Sn
ðsnÞ: ð8Þ

Eqs. (6)–(8) insure a continuous link between the retained photon transport model (with a given
formulation choice, here Eq. (4)) and the Monte Carlo algorithm: successive integral averages are
translated into successive random sampling events and for each set of sampled variables the retained
quantity is the sum of all In1=bn (whose average value will be an approximation of Cij). Once the
transport model and the integral formulation have been chosen the only remaining question is the
choice of the sampling probability density functions: this last choice does not modify the algorithmic
structure, neither does it change the solution after convergence, but it strongly affects algorithmic
convergence via the variance of

P1

n¼1 In1=bn. The more physical knowledge is introduced in these
probability density functions, the smaller the variance of

P1

n¼1 In1=bn and the faster the
convergence [1]. The probability density functions proposed hereafter are designed to insure
satisfactory convergence speeds for a wide range of absorption and scattering optical thicknesses.
The main objective was generality, hoping that such a set of probability density functions can serve
as a start basis for more detailed adjustments when addressing specific configurations families.
	 Sampling of exit points Q: The boundary sampling law pdf SðQÞ has been chosen as uniform:

pdf SðQÞ ¼ 1=Si. In the general case, having no information concerning the parts of Si through
which Vi exchanges most radiative energy with its environment, no better pdf adjustment could
be proposed. Obviously, for specific configurations where Vi exchanges radiation with hot spots
at identified locations, this information can be directly used to modify pdf SðQÞ so that the areas
of stronger net-exchanges are more frequently sampled.
	 Sampling of exit directions u0: In the work of De Lataillade et al. [12], the angular sampling

law pdf Oðu0Þ was optimized for the case of a purely absorbing medium. The lambertian
distribution was used for strong optical thicknesses, whereas the isotropic distribution was used in
case of optically thin gas volumes. The limit between weak and strong optical thicknesses was set
to ta ¼ 1 where ta is the absorption optical thickness of the considered volume:

pdf Oðu0Þ ¼
1

2p
if tao1;

pdf Oðu0Þ ¼
u0:n

p
if taX1: (9)

In the present work, the limit criteria is modified in order to account for the effect of scattering.

pdf Oðu0Þ ¼
1

2p
if teq ¼ ta þ ð1� gÞtso1;

pdf Oðu0Þ ¼
u0:n

p
if teq ¼ ta þ ð1� gÞtsX1; (10)
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where ts is the scattering optical thickness of the considered volume and g is the phase function
asymmetry parameter. In the case of a purely absorbing medium, teq ¼ ta and we are back to the
proposition of [12]: when ta41, the absorption mean free path la ¼ 1=ka is smaller than the
system size which insures that the specific intensity of emitted photons (photons emitted within the
gas volume that reach the boundary) is close to isotropy. Multiple scattering also induces an
isotropic distribution of specific intensity at the volume boundary, but here the relevant scale is
not the scattering mean free path ls ¼ 1=ks but the scattering transport mean free path ls=1� g
which accounts for the shape of the scattering phase function (forward scattering induces higher
values of the transport mean free path) [14]. When the medium both absorbs and scatters, the
relevant scale is the total transport mean free path leq defined as 1=leq ¼ 1=la þ ð1� gÞ=ls which
leads to the proposition of Eq. (10).
	 Sampling of first exchange position P: As in [12], the first exchange position P along ~g is

sampled by use of a randomly generated abscissa ~s between 0 and ~l
þ

~g;1 (see Fig. 2). The main
interest of the proposed boundary-based formulation is that the sampling law can be chosen as
function of the absorption optical thickness in order to favor emission positions close to the
boundary in the optically thick limit. This is done using an exponential probability density
function for ~g, which corresponds to an ideal adaptation for isothermal gas volumes:

pdf ~Sð ~sÞ ¼
ka expð�ka ~sÞ

1� expð�ka
~l
þ

~g;1Þ
: ð11Þ

Random generation of ~g is simply performed on the basis of a uniform random generation of r in
the unit interval according to:

~s ¼ �
1

ka

lnð1� rð1� expð�ka
~l
þ

~g;1ÞÞÞ: ð12Þ

For small values of absorption coefficient ka (optically thin limit), the above expression reduces to
~s � r~l

þ

~g;1, which is equivalent to choosing uniformly ~s within ½0; ~l
þ

~g;1�. The physical significance of
this, is that each point of ~l ~g contributes the same way to the radiative transfer, because the energy
emitted at each point is totally transmitted out of the gas volume. On the contrary, for strong
values of ka (optically thick limit), Eq. (12) reduces to ~s � �ð1=kaÞ lnð1� rÞ. ~l

þ

~g;1 is no longer taken
into account and most exchange positions P are sampled in the immediate vicinity of the
boundary: most statistical events have a significant contribution to the net-exchange and the
statistical variance is reduced.
	 Sampling of second exchange positions P0

n: Similarly, second exchange positions are generated
along g by use of randomly generated abscissa sn according to:

pdf Sn
ðsnÞ ¼

ka expð�kaðsn � l�g;nÞÞ

1� expð�kaðl
þ
g;n � l�g;nÞÞ

: ð13Þ

Unlike in [12], when the medium is both absorbing and scattering, the impact of these sampling
laws on the behavior of the associated Monte Carlo algorithm is configuration dependent:
sampling law adaptation is not satisfactory in the whole parameter range. The leading parameter
is the single-scattering albedo: o ¼ ks=ka þ ks

	 For o
1, scattering is negligible compared to absorption. In this case, the medium may be
considered as purely absorbing, and it has been shown in [12] that the proposed sampling laws are
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suitable for such configurations. In particular, they solve the convergence difficulty encountered
by Monte Carlo algorithms in optically thick absorption configurations.
	 For usual values of o (o 2�0; 1½ except for values very close to unity), scattering increases

optical path lengths, and the use of the presented sampling laws results in a correct sampling of
both exchange positions P and P0.
	 For o � 1, absorption is negligible compared to scattering. In this particular case, the

proposed sampling laws fail to sample efficiently the optical path space. The difficulty may be
described as follows: when scattering is the dominant process, the medium may be considered as
optically thin on the point of view of absorption. In this case, all points into a given gas volume
contribute equally to the exchange between this gas volume and the rest of the system. Even if the
use of the proposed law for pdf ~Sð ~sÞ will result in a uniform sampling of first exchange positions P
along all generated optical paths, most of these paths will be very short, because of the medium
strong scattering properties (intense backscattering from point Q). First exchange positions P will
therefore be mainly sampled in the vicinity of the volume boundary which is not in accordance
with the physics of radiative net-exchanges in little absorbing and highly scattering configurations.
The proposed algorithm will therefore encounter convergence difficulties. We will see however
that this difficulty is partly compensated by a reduction of the average number of scattering events
to be numerically generated, the overall cost of the algorithm remaining satisfactory up to high
albedo levels.
3. Convergence illustration: non-isothermal slab emission

As in [12], the proposed algorithm is first tested using the academic problem of monochromatic
slab emission. A single horizontal slab is considered, constituted of semi-transparent medium,
with uniform absorbing and scattering optical properties, between two black boundaries at 0K.
The slab physical thickness is H and the z-axis is downward-positive. The temperature profile
across the slab is such that the blackbody intensity at the considered frequency follows a linear
profile BðzÞ from 0 at the top to B0 at the bottom of the slab. The addressed quantity is the
downward slab emission, which is also the net-exchange rate between the slab and the bottom
boundary.
Figs. 3(a)–6(a) display the number of statistical realizations N needed in order to get a 1%

standard deviation over the slab emission value, as a function of slab total optical thickness tH ,
for four different values of the single-scattering albedo o ¼ ks=ka þ ks. Correspondingly, Figs.
3(b)–6(b) display the mean number of scattering events hNsi along each sampled optical path.
In each figure, N is displayed for three different Monte Carlo algorithms:
1. A standard Monte Carlo algorithm, in which bundles are generated uniformly within the

layer, with isotropic directions, and are attenuated along their multiple scattering optical paths
until they leave the layer (algorithm based on an exchange formulation with a uniform law for
volume sampling and an isotropic law for angular sampling, see Eq. (1)).
2. The boundary-based net-exchange algorithm proposed in Section 2.
3. The same algorithm except that the angular sampling law of [12] is used (see Eq. (9)), instead

of that in which we attempted to account for scattering (see Eq. (10)).
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Fig. 3. (a) Number of statistical realizations N required to compute slab emission with a relative standard deviation of 1% as function

of slab total optical thickness tH (N for o ¼ 0:01). (b) Average number of scattering events hNsi as function of slab total optical

thickness tH (hNsi for o ¼ 0:01). Calculations held with o ¼ 0:01. Presented results correspond to three different algorithms: standard

Monte Carlo algorithm (algo #1), boundary-based net-exchange algorithm (algo #2), boundary-based net-exchange algorithm without

the optimization of angular sampling as function of scattering (algo #3).

10000

100000

1e+06

1e+07

0.01 0.1 1 10 100
τH

algo #1
algo #2
algo #3

0.01

0.1

1

10

100

0.01 0.1 1 10 100
τH

algo #1
algo #2
algo #3

(a) (b)

Fig. 4. Same as Fig. 3, except that o ¼ 0:50. (a) N for o ¼ 0:50, (b) hNsi for o ¼ 0:50.
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Fig. 5. Same as Fig. 3, except that o ¼ 0:90. (a) N for o ¼ 0:90, (b) hNsi for o ¼ 0:90.

V. Eymet et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 91 (2005) 27–46 37
It can be seen in Fig. 3(a) that for small values of the single-scattering albedo ðo ¼ 0:01Þ, N is
stabilizing for algorithms 2 and 3 (boundary-based algorithms) as the slab total optical thickness
tH increases, while for algorithm 1 (standard MC algorithm), N keeps increasing for large values
of tH . In the case of intermediate single-scattering albedoes (Fig. 4(a), o ¼ 0:50) and even for
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moderately strong single-scattering albedoes (Fig. 5(a), o ¼ 0:90), convergence with a 1% error
always requires a lower number of statistical realizations for algorithms 2 and 3.
It is no longer the case for extremely strong single-scattering albedoes (Fig. 6(a), o ¼ 0:9999);

this convergence difficulty for high albedoes was explained in the previous section: for a high
value of o, the medium is optically thin for absorption, and first exchange points P should be
sampled uniformly within the slab. This is what the standard algorithm does, whereas most
optical paths sampled by algorithms 2 and 3 (starting from the slab boundaries) are very short
(because of the medium’s strong scattering coefficient) thus first exchange positions P are mainly
sampled close to the boundaries. Altogether, in the limit of extremely high albedoes, algorithms 2
and 3 require a greater number of statistical realizations because of a non-adapted P sampling
law.
However, the numerical cost of the algorithm is not directly the number of required statistical

realizations N, but the product NhNsi where hNsi is the average number of scattering events.
Concerning hNsi, Fig. 3(b)–6(b) illustrate that:
	

co

di

ex

pr
For low values of tH and o, the mean number of scattering events hNsi required for each
statistical realization is of the same order of magnitude for all three algorithms.
	
 In the special case of both high tH and high o, hNsi can be about 10 times greater for the
standard algorithm than for algorithms 2 and 3.

This may be explained, making the assumption that hNsi � hLi=ls ¼ hLiks with hLi the average
path length and ls ¼ 1=ks the scattering mean free path. For algorithms 2 and 3, it has been
shown (see [15]) that hLi is independent of scattering properties: hLi ¼ 2H. For algorithm 1, it can
be easily shown that hLi is proportional to Hts.

3 At high values of o, this finally gives hNsi � t2H
for algorithm 1 and hNsi � 2tH for algorithms 2 and 3.
3This property may be derived directly fromMarkov theory with absorbing states [16] in a one-dimensional case, with

nstant free path length (problem well known as the ‘‘Gambler’s ruin problem’’). Extension to exponentially

stributed free path length is tedious but is accessible without any specific mathematical difficulty. To our knowledge,

tension to three dimensions is not available, but it may easily be observed experimentally that the proportionality

operty remains valid, at least for qualitative reasonings such as those made in the present text.
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These two competing effects combine at high albedo and results are shown in Figs. 7 and 8.
These figures display the product NhNsi for tH ¼ 10 and tH ¼ 100, as a function of the single-
scattering albedo o. It appears that the two effects previously emphasized for high albedo (N
lower for algorithm 1 than for algorithms 2 and 3, and hNsi greater for algorithm 1 than for
algorithms 2 and 3) result in the fact that algorithm 2 remains faster than algorithm 1 up to
relatively high values of o, and becomes slower above a critical value of o. The value oc at which
both algorithms converge at the same speed depend on tH , oc increasing as tH increases
(oc � 0:91 for tH ¼ 10 and oc � 0:998 for tH ¼ 100).
4. Convergence illustration: radiative flux divergence within a non-isothermal slab

In the preceding example a linear blackbody intensity profile was used for convergence tests
concerning slab emission. This kind of blackbody intensity profile is not relevant for radiative flux
divergence computations in the limit of strong optical thicknesses: with the underlying idea of
Rosseland (diffusion) approximation, the radiative budget is indeed only function of the black-
body profile second-order derivative. Figs. 9–11 therefore present convergence tests with the same
slab configuration as above, but with a parabolic black-body intensity profile (B0 at slab
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Fig. 9. Average value of the radiative flux divergence within each of the 20 layers using N ¼ 10 000 statistical realizations per layer.

The slab width is H ¼ 1m, scattering is isotropic and the single scattering albedo is o ¼ 0:01. (a) Radiative flux divergence profile for

three values of the slab total optical thickness tH (hdivðqrÞi=pDB for o ¼ 0:01); (b) standard deviations corresponding to (a) (statistical

error); (c) radiative flux divergence average in layer 3 as a function of tH (hdivðqrÞi layer 3 for o ¼ 0:01); (d) radiative flux divergence

average in layer 10 as a function of tH (hdivðqrÞi layer 10 for o ¼ 0:01); (e) standard deviations corresponding to (c) (percent error layer

3); (f) standard deviations corresponding to (d) (percent error layer 10).
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boundaries and B0 þ DB at slab center): BðzÞ ¼ B0 þ DB½1� 4ðz=H � 1
2
Þ
2
�. Computations are

performed using a slab discretization into 20 layers of same thickness, with N ¼ 10 000 statistical
realizations per layer. Presented results are the average value of the radiative flux divergence
within each layer.
Figs. 9(a)–11(a) display the radiative flux divergence profile for different values of the slab total

optical thickness tH . In these successive three figures, the single-scattering albedo is respectively,
equal to 0.01, 0.50 and 0.90. For the same values of single-scattering albedo, Figs. 9(c)–11(c) and
9(d)–11(d) display radiative flux divergence averages in layers 3 and 10, respectively, as function of
slab total optical thickness tH . Standard deviations are presented in Figs. 9(b)–11(b), 9(e)–11(e),
and 9(f)–11(f).
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Fig. 10. Same as Fig. 9 with o ¼ 0:5. (c) Layer 3, (d) layer 10, (e) layer 3, (f) layer 10.
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Results concerning layers 3 and 10 are presented in logarithmic scale in order to highlight the
behaviors in the optically thin and optically thick limits where Monte Carlo algorithms commonly
encounter convergence difficulties. In the optically thin limit, the radiative flux divergence is
proportional to ka, and therefore to tH (when both layer width H and single-scattering albedo o
are fixed). In the optically thick limit, short-distance energy redistribution processes are dominant
and the radiative flux divergence follows the diffusion approximation. In the case of a parabolic
blackbody intensity profile, it is constant across the slab and (for fixed values of H and o)
inversely proportional to tH (see Appendix A). Analytical results corresponding to the diffusion
approximation are superimposed to the Monte Carlo results in Figs. 9(c)–11(c) and 9(d)–11(d).
Also presented are the analytical results corresponding to the pure absorption approximation
(neglecting scattering): these analytical solutions are available, in the specific case of a parabolic
blackbody intensity profile, thanks to the 4th and 5th exponential integral functions (see
Appendix A).
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Fig. 11. Same as Fig. 9 with o ¼ 0:9. (c) Layer 3, (d) layer 10, (e) layer 3, (f) layer 10.
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The results of Fig. 9 lead to the same conclusions as those of Figs. 7–8 in [12]: for low albedoes,
the convergence qualities of the present algorithm are similar to those of the previous algorithm
designed for purely absorbing media.4

This is compatible with the fact that, for o ¼ 0:01, the pure absorption approximation appears
as accurate for all optical thicknesses from 10�2 to 102. Using 10 000 statistical realizations per
layer, the statistical uncertainty (more precisely the standard deviation) remains lower than a few
percents for layer 10; it reaches 10% for layer 3 at tH ¼ 10 and is independent of optical thickness
above tH ¼ 10. As explained in [12], the fact that the uncertainty becomes independent of optical
thickness at high optical thicknesses (whereas it diverges for standard Monte Carlo algorithms)
comes from the fact that the boundary-based sampling of emission positions is idealy adapted to
4Note that a scaling error was made in [12]: results of Fig. 8 were presented omitting to divide by a factor 25

corresponding to the narrow band width dZ ¼ 25 cm�1 with which computations were held.
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optical thickness and that the only remaining task is to perform the integration over the
blackbody intensity profile, which is independent of optical thickness. The fact that higher
uncertainties are observed for layer 3 than for layer 10 is due to symmetry reasons: the radiative
balance of layer 10 is the sum of the net-exchanges through its bottom and top interfaces, that are
of same sign, whereas the radiative balance of layer 3 is the difference between a heating and a
cooling term, all net-exchanges being computed with similar uncertainties.
Figs. 10 and 11 lead to very similar observations which means that in terms of required numbers

of statistical realizations, the conclusions of Section 3 are still valid for radiative flux divergence
calculations: no specific difficulty is encountered with the proposed algorithm up to extreme
values of both absorption and scattering optical thicknesses (except for extreme cases where both
optical thickness tH and single-scattering albedo o are very high, typically tH ¼ 100 and
o ¼ 0:9999). The average numbers of scattering events are not displayed in these figures as no
additional observation can be made compared to those made in the preceding section: it increases
less rapidly with the present algorithm than with a standard Monte Carlo algorithm, which
partially compensates the convergence limit at high tH and high o.
5. Conclusion

The above-presented algorithm is an extension to scattering media of the algorithm introduced
in [12] as a way to bypass the difficulties encountered by standard Monte Carlo algorithms in the
optically thick limit. It is based on a boundary-based net-exchange formulation together with a
detailed optimization of optico-geometric sampling laws. It is little sensitive to optical thickness
up to both extreme values of absorption optical thickness and scattering optical thickness, two
major difficulties of standard Monte Carlo algorithms. As it is based on a net-exchange
formulation, it also encounters no difficulty when applied to quasi-isothermal configurations. As
will be presented in a forthcoming publication, this algorithm is in particular suitable for detailed
analysis of infrared radiation in the terrestrial atmosphere, in which are simultaneously
encountered wide ranges of absorption optical thicknesses (because of the line spectra of
atmospheric gases) and wide ranges of scattering optical thicknesses (from optically thin dust
clouds to optically thick water clouds) [17,18].
Structurally speaking, the proposed algorithm is very much similar to most standard Monte

Carlo algorithms, except for the sampling of emission positions that is modified according to the
boundary-based approach. All optimized sampling laws are also mathematically very simple and
corresponding random generation procedures introduce no specific difficulty. Altogether, the
proposed algorithm should therefore be easy to implement on the basis of any existing Monte
Carlo code. We also hope that the presented formal derivations should allow that the reader
derives its own sampling laws for best optimization in front of specific configurations.
Finally, a difficulty remains in the limit of very high scattering optical thicknesses combined

with very low absorption optical thicknesses. We believe that this difficulty (that was already well
identified and intensively explored for nuclear shielding applications [1,19]) can only be faced
working on the diffusive random walk itself, using formulation efforts and sampling laws
adaptations. This point was not addressed in the present paper and it will undoubtedly require
further detailed analysis of the statistics of multiple scattering optical paths in finite-size systems.
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Appendix A. Radiative flux divergence expressions at the scattering optically thin and optically thick

limits

A.1. Diffusion approximation in a plane-parallel configuration

In the case of optically thick configurations, the diffusion approximation (which is equivalent to
the Rosseland approximation) may be used. The radiative flux qrðzÞ can be written as:

qrðzÞ ¼ �
hnc

ka þ ks

D
@G

@z
ðA:1Þ

with GðzÞ ¼ 1=hnc
R
4p Iðz; uÞdoðuÞ the local photon density, where Iðz; uÞ is the specific intensity at

altitude z in direction u and D ¼ 1=3ð1� ogÞ. In optically thick systems, we can make the
assumption that GðzÞ, the local photon density, is equal to the equilibrium intensity at the local
temperature: GðzÞ ¼ 4p=hncBðzÞ, with BðzÞ the local blackbody intensity. With the assumption of
a parabolic blackbody intensity profile BðzÞ ¼ B0 þ DB½1� 4ððz=HÞ � 1

2
Þ
2
�, the radiative flux

becomes (Fig. 12):

qrðzÞ ¼
32pDB

ðka þ ksÞH
D

z

H
�
1

2

� �
: ðA:2Þ

And its divergence is:

divðqrÞðzÞ ¼
32pDB

ðka þ ksÞH
2

D: ðA:3Þ

Finally, the average radiative flux divergence between altitudes zi�1 and zi may be written as:

hdivðqrÞi ¼

R zi

zi�1
divðqrðzÞÞ

zi � zi�1
¼

32pDB

ðka þ ksÞH
2

D ¼
1

tH

32pDB

H
D: ðA:4Þ

Note that even in the optically thick limit, the diffusion approximation is not valid for the
computation of the average flux divergence in the bottom and top layers (layers 1 and 20 in the
text). The diffusion approximation is only valid far from the boundaries.
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Fig. 12. Plane-parallel slab with n homogeneous layers and parabolic black intensity profile.
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A.2. Absorption approximation in a plane-parallel configuration with black boundaries and a

parabolic black intensity profile

The average radiative flux divergence in layer i (between altitudes zi�1 and zi) may be expressed
as:

hdivðqrÞi ¼ 2p
Z 1

0

m
@Iþðz;mÞ

@z
þ

@I�ðz;�mÞ
@z

� �
dm ðA:5Þ

with Iþðz;mÞ and I�ðz;�mÞ, respectively, the upward and downward specific intensities at altitude
z, in the zenithal direction y with m ¼ cosðyÞ. Under the pure absorption approximation, these
intensities may be written as:

Iþðz; mÞ ¼ Bð0Þ exp �

Z z

0

kaðz
0Þ

m
dz0

� �
þ

Z z

0

kaðz
0ÞBðz0Þ exp �

Z z

z0

kaðz
0Þ

m
dz0

� �
dz0

m
; ðA:6Þ

I�ðz;�mÞ ¼ BðHÞ exp �

Z z

H

kaðz
0Þ

m
dz0

� �
þ

Z z

H

kaðz
0ÞBðz0Þ exp �

Z z

z0

kaðz
0Þ

m
dz0

� �
dz0

m
: ðA:7Þ

Introducing the parabolic Planck profile BðzÞ ¼ B0 þ DB½1� 4ððz=HÞ � 1
2
Þ
2
� into the above

expressions leads to:

hdivðqrÞi ¼
2p

zi � zi�1

4DB

Hka

ðE4ðkaziÞ � E4ðkazi�1Þ � E4ðkaðH � ziÞÞ

�

þ E4ðkaðH � zi�1ÞÞÞ þ
8DB

ðHkaÞ
2
ðE5ðkaziÞ � E5ðkazi�1Þ

�E5ðkaðH � ziÞÞ þ E5ðkaðH � zi�1ÞÞÞ þ
16DBðzi � zi�1Þ

3kaH2

�
(A.8)

with En the nth exponential integral:

EnðxÞ ¼

Z 1

0

mn�2 exp �
x

m

� �
dm: ðA:9Þ
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