lmd_Picon2010.bib

@comment{{This file has been generated by bib2bib 1.95}}
@comment{{Command line: /usr/bin/bib2bib --quiet -c 'not journal:"Discussions"' -c 'not journal:"Polymer Science"' -c '  author:"Picon"  ' -c year=2010 -c $type="ARTICLE" -oc lmd_Picon2010.txt -ob lmd_Picon2010.bib /home/WWW/LMD/public/Publis_LMDEMC3.link.bib}}
@article{2010CRGeo.342..390R,
  author = {{Roca}, R. and {Bergès}, J.-C. and {Brogniez}, H. and {Capderou}, M. and 
	{Chambon}, P. and {Chomette}, O. and {Cloché}, S. and {Fiolleau}, T. and 
	{Jobard}, I. and {Lémond}, J. and {Ly}, M. and {Picon}, L. and 
	{Raberanto}, P. and {Szantai}, A. and {Viollier}, M.},
  title = {{On the water and energy cycles in the Tropics}},
  journal = {Comptes Rendus Geoscience},
  year = 2010,
  month = apr,
  volume = 342,
  pages = {390-402},
  abstract = {{The water and energy cycles are major elements of the Earth climate.
These cycles are especially active in the intertropical belt where
satellites provide the most suitable observational platform. The history
of Earth observations of the water cycle and of the radiation budget
viewed from space reveals that the fundamental questions from the early
times are still relevant for today's research. The last 2 decades have
seen a number of milestones regarding the documentation of rainfall,
mesoscale convective systems (MCS), water vapour and radiation at the
top of the atmosphere (TOA). Beyond dedicated missions that provided
enhanced characterizations of some elements of the atmospheric water
cycle and field campaigns that allowed the gathering of validation data,
the advent of the long record of meteorological satellites lead to new
questioning on the homogenisation of the data time series, etc. The use
of this record to document the tropical climate brought new results of
the distribution of humidity and reinforced the understanding of some
robust features of the African monsoon. Challenges for the immediate
future concerns the deepening of the understanding of the role of cloud
systems in the monsoon circulation, the downscaling of the documentation
of the water and energy cycle at the scale of these cloud systems, the
research of better adequation between the users and the satellite
estimate of rainfall and finally a much needed methodological effort to
build exploitable time series for the estimation of climatic trends in
the water and energy cycle in the Tropics. The required observations to
address these challenges are rapidly presented with emphasis on the
upcoming Megha-Tropiques (MT) mission.
}},
  doi = {10.1016/j.crte.2010.01.003},
  adsurl = {https://ui.adsabs.harvard.edu/abs/2010CRGeo.342..390R},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}