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Abstract

The feedback concept has been used by several authors in the climatology field to comprehen-
sively describe model behaviors and to separate different mechanisms. Here, a global model of
climate has been built to analyze the water vapor feedback, making use of elementary laws and
parameterizations as determined by GCM results of CO2 doubling experiments. Beyond a static
quantification of the water feedback, an effort to characterize the dynamics of the feedback has
been carried out, without loosing the rigorousness of the formal definition of the feedback gain
concept.

Two conclusions are drawn: (i) The water vapor effect is found to have a feedback gain of 38 %

(1.6 factor), comparable with results from GCM analyses, but with a very long characteristic time
of 8 years. (ii) The water vapor feedback is found negative for time scales below 4 years and
positive for longer time scales. This suggests that the water vapor feedback could reduce the
natural variability over short time scales while enhancing it on longer time scales. A feedback
process does not only influence the equilibrium state, but is rather a dynamic process responsible
for transient trajectory modifications.

1. Introduction

The feedback concept is currently used by several authors in the climatology field to characterize
the behavior of complex models. Although conceptually meaningful, the practical determination

∗corresponding author (hallegatte@centre-cired.fr), CIRED, 45bis Av de la Belle Gabrielle F-94736 Nogent-sur-
Marne, FRANCE, tel:(33) 1 43 94 73 74, fax:(33) 1 43 94 73 70

1



2

of feedback gains from complex simulation models is far from direct. The numerical treatment
of three dimensional equation systems expressing the physical laws and the approximation of
sub-grid processes have the consequence to obscure physical paths of the climate processes. For
example, the atmospheric humidity is linked to clouds, whose radiative properties are depending
on the evolution of the atmospheric water vapor, water droplets and ice particles. It is not easy to
separate clouds effect from pure water vapor feedback in the response to forcing changes.

Another difficulty in the interpretation of feedback processes arises from the tempo of the
different responses. Some processes participating to the feedback loop may be fast, some others
very slow. The usual answer to this problem is to analyze the new equilibrium reached by the sys-
tem after a perturbation has been applied. This current practice might hide important dynamical
components of the response, especially when the forcing is a complex time varying function.

As an introduction to these problems, we first recall in the following section 2. the current
definitions of the feedback gain concept and how they are related to individual climate processes.
In section 3., a simple model for the water vapor feedback loop of the atmosphere is introduced, as
it is supporting our illustration of the feedback methodology in the sequel. We show in section 4.
a direct extension of the feedback concept to include the dynamical characteristics of a climate re-
sponse to forcing. In section 5., the model is used to analyze the dynamical features sustaining the
water vapor feedback. The results are summarized in the final section and remaining difficulties
concerning the application of feedback loop to complex systems are discussed.

2. The feedback gain concept in its application to climate

The feedback gain concept was introduced by Bode (1945) to characterize the response of linear
electric circuit to input signals. The concept is nowadays tentatively applied to climate, although
climate models are non linear. The underlying assumption, suggested by the results of Goodman
and Marshall (2003), is that as soon as all non linear transients have died, the more inert processes
of climate are responding linearly to a moderate amplitude of the forcing change. The feedback
gain have proved to be a very useful concept to built comprehensive interpretation of the climate
behavior when applied to global circulation models. Hansen et al. (1984), among others, analyze
the climate sensitivity in terms of leading feedback mechanisms. Hansen, as well as Bode, uses
the following definitions: a feedback is characterized by its gain (g) or its factor (f ), defined by:

(1− g) · δϕ∞
1 =

1

f
· δϕ∞

1 = δϕ0
1 (1)

where δϕ∞
1 is the change in equilibrium value of ϕ1, after a forcing perturbation has been applied;

δϕ0
1 is the change in the equilibrium value of ϕ1 for the same perturbation but when the feedback

is inoperative. Hence the usual feedback gain definition uses differences between two equilibrium
values, and will be hereafter called the static gain.

Another approach, used by Coakley (1977) or Wetherald and Manabe (1988), has the advan-
tage of detailing the intervening elementary processes in the loop. To assess the role of a set of
feedbacks in the response to a change (∆F ) in the incoming flux (F ), they use the partial deriva-
tives of the outgoing flux (R) with respect to the variable involved in each feedback (xi, i=1,...,n)
and the full derivatives of each involved internal variable with respect to the mean surface tem-
perature (Ts). Because the incoming and outgoing fluxes are equal at equilibrium, a relationship
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between the incoming flux perturbation and the equilibrium mean surface temperature is obtained:

∆F = ∆R ⇒ ∆F =

(
∂R

∂Ts
+
∑

i

∂R

∂xi

dxi

dTs

)
∆Ts (2)

By dividing this equation by ∂R/∂Ts, Eq. (2) can be rewritten in the form of Eq. (1):

δϕ0

1︷︸︸︷
∆F
∂R
∂Ts

=




1 +
∑

i

−gi︷ ︸︸ ︷
∂R
∂xi

∂R
∂Ts

dxi

dTs




δϕ∞
1︷︸︸︷

∆Ts (3)

This method has also been extended by Colman et al. (1997) to account for second order deriva-
tives and give an idea of the non-linearity of the processes.

As a first constraint on the practical application of this formulation, the perturbation to the sys-
tem must go through Ts exclusively, and may not influence directly any other variable. In the case
of climate change, considering a CO2 concentration perturbation with this formalism necessitates
to assume that a CO2 change impacts only upon the surface temperature (which may modify the
lapse rate) but does not impact directly upon the lapse rate. A second implication of the given
definition relates to the addition of individual feedback gain to determine a complete response
of climate through different mechanisms. The full derivative factor in Eq. (3) participating in an
individual gain gi must not include in common processes between the different gis. It may be
difficult in practice to separate these different components of a response in models, as quoted for
instance by Schneider et al. (1999).

Both feedback definitions consider equilibrium states and yield purely static gains. We shall
introduce a dynamical definition of the feedback concept illustrated with a simple model of a
climate feedback loop that we now describe.

3. The Model

The model is mainly built to reproduce water vapor feedback dynamics. As a consequence, other
physical processes than radiative transfer are crudely reproduced. After presenting the main as-
sumptions, we introduce our specific formal treatment of the model equations that will be used to
generalize the definition of feedback.

a. Description

A single column of atmosphere, containing only water vapor, CO2 and three cloud layers is con-
sidered. Figure 1 displays a schematic diagram of the model. Crude assumptions are applied :
(i) convection is not explicitly modeled but its effects are taken into account by fixed lapse rates.
This can be justified by Zhang et al. (1994), who showed that variation in lapse rate does not alter
significantly the water vapor feedback ; (ii) the ocean mixed layer depth is fixed; (iii) stratosphere
SW absorption is fixed; (iv) no ventilation influence on evaporation is considered, although Bates
(2003) suggests that it has significant effects; (v) no explicit cloud cover modeling is introduced.
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The atmospheric water vapor content is controlled by evaporation and precipitation. Evapora-
tion depends on surface air and ocean temperatures. Precipitation is modeled as a process driving
the relative humidity toward a target relative humidity, which is supposed to be fixed indepen-
dently of the CO2 concentration. This is justified by Hall and Manabe (2000a), who showed that
the precipitation annual-mean is controlled by the evaporation annual-mean, and by the classical
assumption of constant relative humidity (see IPCC (2001), chp.7 or Hansen et al. (1984)). The
target relative humidity is set to 0.7 at surface level, and the characteristic time of the process is
set to five days, equal to the synoptic characteristic time. In consequence, the absolute humidity
is only controlled by the atmosphere temperature change, with a five-day delay.

The radiative module is a 65-layer column model of the atmosphere, with three cloud lay-
ers and two gases (H2O and CO2). It computes the LW radiative budgets of the troposphere,
stratosphere and ocean, using a Malkmus narrow-band model with a water vapor continuum. The
principles behind this module were explored by Green (1967) and developed later by Cherkaoui
et al. (1996). Radiative modules based on these principles were built by Hartmann et al. (1984)
and Soufiani et al. (1985), who also created the radiation band coefficients tables.

To allow to introduce the dynamic feedback analysis, the model is built according to specific
prescriptions, following the Transfer Evolution Formalism (TEF, described below)

b. The Transfer Evolution Formalism Prescriptions

The TEF is a mathematical tool for system analysis and simulation (see Appendix A for a more
detailed description). The model presented in the previous section is mathematically represented
by a set of equations corresponding to two kinds objects:

1. cells (described in Tab. 1) which are elementary models and correspond to state equations
such as: 




∂ηα

∂t = Gα(ηα, ϕ1, ϕ2, ...)
∂ηβ

∂t = Gβ(ηβ , ϕ1, ϕ2, ...)

...

(4)

ηα is the state variables vector of cell α and the ϕi represent the dependent boundary con-
ditions, i.e. the variables considered as boundary conditions by a cell, depending upon the
complete model state. This dependent boundary conditions are required to make the cells
correspond to well-posed problems.

2. transfers (described in Tab. 2 and 3) which are determined by constraint equations such as:




ϕ1 = f1(ηα, ηβ , ..., ϕ)

ϕ2 = f2(ηα, ηβ , ..., ϕ)

...

(5)

Let also η be the state vector of the complete system and ϕ be the vector of the full dependent
boundary conditions. When initial conditions are given at time t0, the system is a well-posed
problem.

To solve the system, for each time step, the differential of the dynamical system is built around
its current state (η(tn)) by writing η(t) = η(tn) + δη(t) and ϕ(t) = ϕ(tn) + δϕ(t). This leads to
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the Tangent Linear System (TLS) of the model around the current state:




∂δ̊ηα(t)
∂t = Gα|tn + ∂Gα

∂ηα

∣∣∣∣
tn

δ̊ηα(t) + ∂Gα

∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)

δ̊ϕ(t) =
∑

β
∂f
∂ηβ

∣∣∣∣
tn

δ̊ηβ(t) + ∂f
∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)
(6)

It is proved in Appendix A that the Borel transform of this TLS can be written as:
{
B[̊δη](τ) = B[̊δηdec](τ) + F(τ) B[̊δϕ](τ)

B[̊δϕ](τ) =
[
1 + C(τ)

]−1
B[̊δϕins](τ)

(7)

where B[f ](τ) is the Borel transform of f(t); τ is the Borel variable; δ̊η(t) and δ̊ϕ(t) are the
solutions of the TLS; and where the quantities δ̊ηdec, F , C, δ̊ϕins can be calculated from the
elementary Jacobian matrices and vectors at time tn.

All numerical results are obtained with a software developed by the authors and colleagues to
implement models expressed with the TEF. An approximation of the step-by-step evolution of the
complete system is obtained by solving the system (7) thanks to the approximations:

δη ≈ 2B[̊δη]( δt
2 )

δϕ ≈ 2B[̊δϕ]( δt
2 )

(8)

where δη and δϕ are the state and transfer variable variations in the complete model during a
time step δt.

c. Implementation of the model under the TEF

Under the TEF, the system is composed of five sub-systems (5 cells) listed in Tab. 1, together with
their state variables and equations. The connections between these sub-systems are represented
by 8 “transfer” models (14 transfer variables), listed in Tab. 2 and 3. Parameters are set as given
in Tab. 4 and 5. The role of the temperature TWV is detailed in section 4..

All cell equations and most of the transfer equations are linear. In this model radiation trans-
fers are weakly non-linear. True non-linearities occur in water vapor equations (evaporation and
precipitation).

d. Validation of the model

Table 6 shows LW flux exchanged between the different components of the climate system at the
330 ppm equilibrium. The values are close enough to the observed ones (see Salby (1996), p. 43)
to assume that the LW radiative module is able to reproduce realistic budgets. One should mention
that the other exchanged fluxes (not shown) are also close to observed values in complex models,
showing that the important mechanisms are operating within the simple model.

Table 7 shows the instantaneous partial derivatives of each LW flux with respect to the CO2

concentration (with all the other variables unchanged), expressed as equivalent CO2-doubling flux
changes. One main observation is a total increase of the Outgoing Long-wave Radiation (OLR):
more CO2 cools down the atmosphere. More precisely, the stratosphere cools down strongly; the
troposphere and the ocean warm up slightly. This is a classically found behavior, as quoted in
IPCC (2001) (Chp. 2) or Hu and Tung (2002).
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Figure 1: Schematic diagram of the model
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Sub-system State variable Model

Stratosphere Average temperature Capacitance with fixed and uniform lapse rate

(Tstr) (K) Cstr
p ·

dTstr

dt
= φSW,str + φLW,str

Troposphere Average temperature Capacitance with fixed and uniform lapse rate

at 5000m (Ttrp) (K) Ctrp
p ·

dTtrp

dt
= φSW,trp+φLW,trp+φsensible,trp+φlatent,trp

Ocean mixed layer Temperature Capacitance with uniform temperature

(SST ) (K) Coce
p · dSST

dt
= φSW,oce + φLW,oce + φsensible,oce +

φlatent,oce

Water vapor Water vapor Capacitance with fixed relative humidity gradient (γr)

content (Q) (kg·m−2) dQ
dt

= 1
Lve
· (−φlatent,oce − φlatent,trp)

Carbon dioxyde CO2 concentration Fixed

(CO2) (ppmv)

Table 1: Model sub-systems with state variables and model types
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Transfer Transfer Model

variable(s)

Solar flux SW budget of constant solar flux shared between ocean,

troposphere, troposphere, stratosphere and reflected flux to space

stratosphere, φSW,str = 40 W ·m−2

ocean (φSW,trp, φSW,trp = (1− acloud) · C · FSW

φSW,str, φLW,oce) φSW,oce = (1− albedo) · (1− C) · FSW

(W ·m−2) C = 1− (1− αL
SW · LCC) · (1− αM

SW ·MCC)·

(1− αH
SW ·HCC)

LW flux LW budget of Malkmus narrow-band radiative module

troposphere,

stratosphere,

ocean (φLW,trp,

φLW,str, φLW,oce)

(W ·m−2)

Sensible heat flux Surface heat flux Diffusive term proportional to surface temperature

(φsensible,trp) difference

(W ·m−2) φsensible,trp = −φsensible,oce = hcond · (SST − Tsurf )

Tsurf = Ttrp − γtrp ·Hmoy

Table 2: Transfer models, with transfer variables and model types (Part I)
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Transfer Transfer Model

variable(s)

Precipitation Surface Newtonian term nudging tropospheric relative humidity

precipitation and toward target relative humidity

corresponding φlatent,trp = −φlatent,oce + Lve ·
1

τP
· (Q−Q∞(Ttrp))

latent heat flux

(φlatent,trp) Q∞(Ttrp) is the water vapor content corresponding

(W ·m−2) to the target relative humidity.

Evaporation Surface latent Diffusive term proportional to surface humidity difference

heat flux φlatent,oce = kevap · Lve · (Psat(SST )− rH · Psat(Tsurf ))

(φlatent,oce)

(W ·m−2) Psat(T ) is the water vapor saturation pressure.

WV temperature TWV (K) TWV = Ttrp

Cloud cover High, medium fixed:

and low level HCC = HCC0,

cloud cover MCC = MCC0

(HCC, MCC, LCC = LCC0

LCC) (no unit)

Table 3: Transfer models, with transfer variables and model types (Part II)
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Variable Value
Surface relative humidity at equilibrium 0.7

Top of the atmosphere altitude 65,000m
Tropopause altitude 15,000m

Mean troposphere altitude (Hmoy) 5000 m
Troposphere lapse rate (γtrp) −6.5 · 10−3 Km−1

Troposphere heat capacity (C trp
p ) 1. · 107 J ·K−1 ·m−2

Stratosphere lapse rate (γstr) 3.5 · 10−3 Km−1

Stratosphere heat capacity (Cstr
p ) 1.2 · 106 J ·K−1 ·m−2

Cloud albedo (acloud) 0.88
High level cloud cover (HCC0) 0.35

High level cloud altitude 14,000m
High level cloud SW absorption (αH

SW ) 0.3
High level cloud emissivity 1.

Mean level cloud cover (MCC0) 0.25
Mean level cloud altitude 6,000m

Mean level cloud SW absorption (αM
SW ) 1.

Mean level cloud emissivity 1.
Low level cloud cover (LCC0) 0.30

Low level cloud altitude 2,000m
Low level cloud SW absorption (αL

SW ) 1.
Low level cloud emissivity 1.

Table 4: Atmosphere parameter values
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Variable Value

Ocean albedo (albedo) 0.05

Ocean heat capacity (Coce
p ) 2. · 108 J ·K−1 ·m−2

Oceanic mixed layer thickness 50m

Atmosphere-Ocean sensible heat transfer coefficient (hcond) 1.4 W ·m−2 ·K−1

Evaporation coefficient (kevap) 0.7 · 10−2 s ·m−1

Precipitation characteristic time (τp) 5 days

Latent heat of evaporation (Lve) 2.5 · 106 J · kg−1

Incoming solar flux (FSW ) 340 W ·m−2

Table 5: Surface parameter values



d. Validation of the model 12

Absorption ( W ·m−2 )

Emitters LW
Ocean Space Tropo. Strato.

Ocean • 27.3 363.1 0.3

Space 0. • 0. 0.

Troposphere 329.7 131.5 • 19.9

Stratosphere 0.1 48.1 12.9 •

Table 6: LW cloudy sky exchanged fluxes. Each line shows the flux emitted by an object to the others.
Each column shows the flux absorbed by an object. The sum of the ocean column is the total LW flux
absorbed by the ocean. The sum of the Ocean line is the total LW flux emitted by the ocean. The total
OLR is 207 W ·m−2

Another observation is the increase in the LW flux emitted by ocean and absorbed by strato-
sphere: the absorption effect of the larger amount of CO2 in stratosphere is slightly overriding the
additional screening effect of the tropospheric CO2. Figure 2 shows the time evolution of state
variables, in response to a step from 330 ppm to 660 ppm in CO2 concentration. On the strato-
spheric time scale, troposphere and ocean temperatures are almost constant. Consequently, the
stratosphere reaches a quasi-equilibrium corresponding to its new CO2 concentration and to the
tropospheric and oceanic initial temperatures. This corresponds to the standard definition of addi-
tional CO2 radiative forcing. The results from the model (e.g. at the doubled CO2 concentration,
F2X = 3.3 W ·m−2) are fairly close to those of other studies (IPCC (2001), Chp. 6).

On longer time scales, the troposphere and ocean warm up slightly, and the stratosphere,
always at radiative quasi-equilibrium, begins to warm up slowly. Nevertheless, the final effect on
the stratosphere is a strong cooling, since the initial stratosphere cooling is much larger than the
subsequent warming.

Table 8 shows the equilibrium values of the state variables for various CO2 concentrations
(the model never shows instability). The climate sensitivity of the model to doubling CO2 con-
centration is +1.1 K. This is low compared with most of GCM results (see IPCC (2001), Chp.9 or
Kothavala et al. (1999)). It may be mainly explained by (i) the non-dependency of the cloud cover
on the temperature and water vapor content; (ii) the lack of ice, snow, and lapse rate feedbacks.
This underestimation of the warming is not a critical problem since our aim is not to provide
numerical estimates of the variables but to carry out a dynamical analysis of some selected pro-
cesses.
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Absorption derivative(W ·m−2 · 330 ppmv−1 )

Emission LW

Ocean Space Tropo. Strato.

Ocean • -3.2 3.0 0.2

Space 0. • 0. 0.

Troposphere 3.0 -5.1 • 2.6

Stratosphere 0. 13.9 1.6 •

Table 7: Instantaneous derivative of exchanged fluxes with respect to the CO2 concentration (ex-
pressed in equivalent CO2-doubling flux changes).

∆ Equilibrium Temperatures (K)

CO2 (ppmv)

Ocean Surface air Tropopause ∆ water vapor content (kg ·m−2)

110 -1.1 -1.3 +0.9 -2.3 (-9 %)

330 0.0 0.0 0.0 0.0

660 +0.9 +1.1 -5.0 +2.0 (+7 %)

1320 +2.1 +2.5 -9.5 +4.8 (+18 %)

2640 +3.6 +4.4 -13.6 +8.9 (+33 %)

Table 8: Equilibrium state variables values from different CO2 concentrations



d. Validation of the model 14

0 2 4 6 8
Time (years)

286

287

288

289

290

291

292

T
em

pe
ra

tu
re

 (
K

)

Sea Surface Temperature

0 2 4 6 8
Time (years)

254

255

256

257

258

259

260

T
em

pe
ra

tu
re

 (
K

)

Troposphere Temperature

0 2 4 6 8
Time (years)

181

182

183

184

185

186

187

T
em

pe
ra

tu
re

 (
K

)

Tropopause Temperature

0 2 4 6 8
Time (years)

27

28

29

W
at

er
 v

ap
or

  c
on

te
nt

 (
kg

 / 
m

^2
 )

Water vapor  content
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4. Methodology for feedback study

a. Feedback definition and static characterization

Within the TEF, a feedback loop is defined as a set of processes interfaced by transfer variables
{δϕi,i=1,..,n} in which the evolution of each variable δϕj depends only on δϕj−1 (and the evolu-
tion of δϕ1 depends only on δϕn).

This definition is coherent with the terminology recalled in section 2. for static gain. Because
the trajectory from one equilibrium to another is a key issue to understand the mechanisms un-
derlying a feedback and its interaction with other processes, a feedback characterization which
describes the whole dynamics of the response is needed. The TEF implementation of models
allows to take into account the involved dynamics.

b. Feedback loop dynamics

In order to analyze the dynamics of feedback loops, the model TLS is analyzed. Since the sys-
tem is non-linear, the TLS evolves with time. We will thus illustrate the concept using a stable
equilibrium state of the system where the TLS allows to implicitly analyze perturbed trajecto-
ries. This means we leave aside the important problem of dealing with non linear systems out of
equilibrium.

As far as concerning perturbations of the model at stable equilibrium state, the TLS is valid
without time limit and is able to describe the complete model response dynamics to small pertur-
bations.

Once a model described within the TEF, the method to extract a specific feedback loop from
the system is straightforward: it consists in eliminating all variables except one, say δ̊ϕ1, in the
algebraic system (7). The remaining scalar equation reads :

(1− g1(τ)) · B[̊δϕ1](τ) = B[̊δϕ1
′

ins](τ) (9)

It is shown in Appendix A that δ̊ϕ′
1,ins is the ϕ1 variation when the rest of the system (all of

the eliminated variables) is insensitive to a change in ϕ1 (in other terms: when the open loop
is obtained by a cut just after the ϕ1 path in Fig. 3). We define g1(τ) as the dynamic gain of
the feedback because it represents the effect of closing the feedback loop: perturbation on ϕ1 →

perturbation impacts on the rest of the system→ further perturbation on ϕ1.
Note that the function g1(τ) generalizes the concept of feedback gain, since at the infinite

limit:
lim

t→+∞
B−1[g1(τ)](t) = lim

τ→+∞
[g1(τ)] = g (static gain)

(10)

Where the feedback static gain gives only the response corresponding to an asymptotic behavior
(the new equilibrium value), the feedback dynamic gain describes the whole response dynamics
of δ̊ϕ1, and hence the whole dynamics of the feedback, through the inverse Borel transform of
Eq. (9) rewritten as:

δ̊ϕ1(t) = B−1

[
1

1− g1(τ)

]
∗

d

dt
δ̊ϕ1ins(t) (11)

This equation shows that B−1[1/(1 − g1(τ))] links the model dynamics when the loop is open
(̊δϕ1ins(t)) to the model dynamics when the loop is closed (̊δϕ1(t)).
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Figure 3: Scheme of a feedback (left) and illustration of the open-loop model (right).

5. Application to the water vapor feedback

a. Definition of the water vapor feedback

Our simple model is designed to focus on the Water Vapor (WV) feedback. The model is built
in order to implement one among the possible definitions of the water vapor feedback. The loop
in the model is the following: a troposphere temperature increase occurs; the relative humidity
is decreased (as a consequence of the Clausius-Clapeyron relation); precipitation, modeled to
maintain a constant relative humidity, decreases (on the constant relative humidity hypothesis,
see Salathé and Hartmann (1997) or Del Genio et al. (1994)); the relative humidity goes back
to its initial level, corresponding to a larger total water content; the radiative budget is modified
(troposphere and ocean warm up); as a consequence, the troposphere temperature increase is
amplified.

However, the troposphere temperature is involved in several feedback loops so that the feed-
back gain associated to the T variable results from the interplay of many processes. The same
type of problem occurs in GCM feedback analysis and explains why it is very difficult to carry
out rigorous feedback analysis in GCM (see Schneider et al. (1999)). In particular, cutting the
water vapor feedback by replacing, during a CO2 increase simulation, the humidity by humidity
fields calculated in a control simulation raises several problems: in particular, the short-term and
low scale consistency between cloud cover and humidity is lost.

In order to have loops involving mechanisms that can be separated, we shall introduce one
extra variable: TWV . TWV is supposed to be the temperature which is pertinent to the mechanisms
driving the the water vapor. TWV may be for instance the temperature at a given atmosphere
level or a temperature modified by some processes. In the model, TWV is taken equal to the
atmospheric temperature T . In other terms, TWV is equal to T but does not represent the same
thing: it is not the atmosphere temperature, it is the temperature pertinent to water vapor process.
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Closed loop (Feedback) Open loop (No feedback)

Model

Atmosphere 
Temperature

T WV
WATER VAPOR
FEEDBACK

Model

Atmosphere 
Temperature

T WV
WATER VAPOR
FEEDBACK

NO

Figure 4: Scheme of the water vapor feedback (left), involving a new temperature variable used by
all water vapor processes, when the other processes keep using the initial temperature variable; and
illustration of the open-loop model (right).

The introduction of this variable modifies the model equations the following way:





T = f(η, Q)

Q = F (η, T )

η = G(T, Q)

−→





T = f(η, Q)

TWV = T

Q = F (η, TWV )

η = G(T, Q)

(12)

where T, Q are the sub-models mean troposphere temperature and humidity, and η are all the other
variables. Although the two models have the same solution, the feedback loops are different. In
the new form of the model, there is a loop going through TWV that is distinct from all other loops
going through T . The water vapor loop is now rigorously defined: the water vapor temperature
TWV may be perturbed (say by a slight change in altitude if TWV is defined as the temperature
at a pertinent level), and may now deviate from the troposphere temperature T . The obtained
water vapor feedback loop is shown in Fig. 4. When the loop is open, one may perturb the model
and read the response of the system without feedback in TWV . The water vapor feedback gain
describes the difference in the response of T to such a perturbation in the open loop and in the
closed loop cases. This methodology, akin to the methodology used by Hall and Manabe (2000b)
in their GCM feedback analysis, enables us to suppress the water vapor feedback without loosing
the water conservation and the model consistency.
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b. Characterization of the water vapor feedback

Choosing TWV as the only retained variable in the algebraic elimination process, Eq. (11) be-
comes:

δ̊TWV (t) = B−1

[
1

1− gWV (τ)

]
∗

d

dt
δ̊TWV,ins(t) (13)

where δ̊TWV (t) and δ̊TWV,ins(t) are the variation obtained in the closed loop case and the open
loop case respectively (see Fig. 4), and gWV (τ) is the dynamic gain of the ”water vapor feedback”.

The expression (B−1[(1− gWV (τ))−1](t) ·∆T0) may be interpreted as the complete change
in δ̊TWV after an initial step ∆T0 is applied, corresponding to the following modification in the
equations of (12): TWV = T if t ≤ 0; and TWV = T + ∆T0 if t > 0). This response includes
the perturbing step, i.e. δ̊TWV (t) is not continuous at t = 0.

In order to keep only the real feedback effect, the feedback function is defined as:

δ̊FTWV
(t) =

(
B−1

[
1

1− gWV (τ)

]
− 1

)
· (1 K) (14)

which is the TWV feedback function corresponding to the water vapor feedback, i.e. the additional
troposphere temperature increase due to the water vapor feedback after perturbing the TWV model
by a 1 K step.

In the simple model, the water vapor feedback function reads:

δ̊FTWV
(t) = −0.56 · (1− e

−
t

τ1 ) + 1.17 · (1− e
−

t
τ2 ) (15)

with τ1 = 7 days and τ2 = 7.7 years. The corresponding response function is shown in Fig. 5.

c. Feedback function Interpretation

We find that the slow and fast poles are linked with the following mechanisms: the fast pole cor-
responds mainly to the lowering of latent heat flux due to the rainfall decrease, which comes from
the rising temperature (i.e. corresponding to a decrease in relative humidity). This mechanism is
one path of the water vapor feedback: any transient trajectory with an increase in the atmospheric
absolute humidity results in an unbalance between precipitation and evaporation and hence neces-
sitates an increase in the atmospheric latent energy content compared with the equilibrium state.
In consequence, the water vapor feedback process involves a rapid atmospheric cooling, as as-
sessed by our model, with a time response of about a few days. This negative feedback can be
illustrated by considering a doubling-CO2-experiment which leads to a 3 K surface temperature
increase. If relative humidity is constant, the absolute humidity approximately doubles. This cor-
responds roughly to an addition of 30 kg · m−2 of water vapor in the atmosphere, i.e. a latent
energy loss of−8 ·107 J ·m−2. Because the involved flux changes are about 3 W ·m−2, 9 months
are necessary to reach that energy.

The slow pole corresponds to the true water vapor feedback, i.e. the process by which the
atmosphere warms up when an increase in water vapor concentration modifies the LW radiative
balance. Equation (15) gives an estimate of 8 years as the characteristic time of that slow pole.
This very long characteristic time can be explained by the fact that the water vapor feedback is
composed of several non-zero characteristic time processes: an initial temperature perturbation
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Figure 5: ∆T feedback function of the water vapor feedback. When the temperature is perturbed by a
1 K step at t=0, this function shows the temperature change added to the perturbation, due to the water
vapor feedback. We may distinguish two main processes: the cooling due to the temporary decrease
in precipitation and the warming due to the definitive increase in absolute humidity.
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leads to a progressive increase of the absolute humidity, which causes a progressive temperature
increase through the greenhouse effect. This step-by-step process leads to a final temperature in-
crease, and may involve long characteristic times and complex behavior, hidden in the equilibrium
approach of static feedback analyzes.

Applying Eq. (10) to Eq. (15) yields the WV feedback static gain gWV = 38 %. This value is
close to the results from GCMs (see Lindzen (1993) and Schneider et al. (1999)). Nevertheless,
the elicitation of the fast and negative part of the feedback shows the interest of the methodology:
the water vapor feedback is not a continuous and regular process only responsible for enhancing
the temperature increase, but is rather a complex dynamic process responsible for a temporal
pathway of the temperature change. One consequence of this understanding of the water feedback
is discussed now.

d. Influence of a feedback on variability

Since the feedback is now dynamically characterized, it may be interesting to focus on the influ-
ence of one feedback on the complete model dynamics. This can be made explicit by considering
a feedback and a sinusoidal perturbation starting at t = 0, such that the temperature variation is
given by Eq. (16) if the feedback is made inoperative.

t > 0 =⇒ δ̊TWV,ins(t) = A0 · sin(ωt) (16)

As shown by Eq. (13), the temperature variations due to this perturbation, now taking into account
the feedback, becomes:

δ̊TWV (t) = (1 + δ̊FTWV
(t)) ∗

d

dt
δ̊TWV,ins(t) (17)

Assuming that all poles are real, negative and simple, the feedback function δ̊FTWV
(t) reads:

δ̊FTWV
(t) =

n∑

i=1

λi · (1− e
−

t
τi ) (18)

Elementary calculations lead to:

δ̊TWV (t) = A0




(1)︷ ︸︸ ︷
sin(ωt) +

n∑

i=1

(2)︷ ︸︸ ︷
λi

1 + (τiω)2
(sin(ωt)− ωτicos(ωt))−

(3)︷ ︸︸ ︷
ωτiλi

1 + (τiω)2
e
−

t
τi


 (19)

where (1) is the perturbation; (2) is the permanent influence of the pole; (3) is the transient influ-
ence of the pole. This shows that, for each feedback pole i:

1. if ω−1 << τi, i.e. if the perturbation time scale is much shorter than the feedback pole
characteristic time, the pole has no influence on the temperature variation;

2. if ω−1 >> τi, i.e. if the perturbation time scale is much longer than the feedback pole
characteristic time, the pole does have an influence on the temperature variation. In that
case, the influence of the ith pole leads to the following permanent temperature evolution:

δ̊T i
WV (t) = A0(1 + λi)sin(ωt) (20)
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Hence, if such a feedback pole corresponds to a positive feedback, it enhances the oscillation
amplitude, thus enhancing the variability. Conversely, a negative feedback pole reduces the
variability.

3. Between these extremes, when the feedback pole characteristic time is close to the pertur-
bation time scale, the influence of the feedback pole decreases when the perturbation time
scale decreases.

In the case of the water vapor feedback, as assessed in this study, one pole has a 7-days
characteristic time and corresponds to a negative feedback; one pole has an 8-year characteristic
time and corresponds to a positive feedback. Then, the water vapor feedback should reduce the
variability on short time scales, for which the pole corresponding to a negative feedback only may
influence the system. The same mechanism also enhances the variability on longer time scales,
for which both poles influence the system.

More generally, the dynamics of feedbacks is needed when forcing conditions are varying. In
the case of long time scale perturbation, as is the case for the current CO2 concentration increase,
rapid responses are indeed observed and responsible for changes in the transient pathway followed
by the climate system.

e. Consequences on the behavior of forced and coupled models

Barsugli and Battisti (1998), in their Fig. 10, found a higher atmosphere temperature variability
in coupled GCM than in forced GCM for long-term perturbation (i.e. longer than one year). But
conversely, ? found that the atmospheric temperature short term variability is higher in a forced
GCM than in a coupled GCM.

These results may be linked to the WV feedback: it is generally accepted that, over the short
term, atmosphere is driving the ocean mixed layer. In consequence, running an AGCM forced
by SST extracted from a coupled simulation means cutting the short-term and low scale con-
sistency between atmospheric surface temperature and SST. Any short scale feedback involving
atmosphere and sea surface is broken in the forced model.

Hence the fast and negative pole of the WV feedback is probably non-operative in a forced
AGCM simulation leading to a higher natural variability on the short term than in coupled simu-
lations.

6. Concluding discussion

The analysis presented here uses the Tangent Linear System of the model to study feedback dy-
namic features. We have shown that the set up of feedbacks is a transient process, and we have
introduced a feedback gain function of time (more precisely depending on the Borel variable τ ).
With this function, important characteristic time of the climate mechanisms can be exhibited. The
water vapor feedback, which is found to have a positive static feedback gain of 38%, has a compo-
nent with a characteristic time close to 8 years. Nevertheless, the Water Vapor feedback is found
to be negative for time scales shorter than a few years and to become positive on longer time
scales only. This effect, due to the latent flux released by a return to equilibrium of the relative
humidity, suggests that the natural variability differences between coupled and forced GCM are
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related to the considered time scale. As discussed in section 5.d., this effect finds a confirmation
in the observation of Barsugli and Battisti (1998) and ?, i.e. an increased short term atmospheric
variability of forced GCMs compared to coupled GCMs, and conversely a reduced variability on
time scales longer than a few years. This particularity of the response function also stresses that
several years delay may be needed before being able to diagnose an effect on climate of a slow
CO2 increase.

This work emphasizes that complex interactions between processes - even if limited here since
concerning a simple model - lead to a dynamical complexity of the climate response. While we
could associate the slowest characteristic time with the ocean, it is in general difficult to link each
elementary process with a time constant. It is also far from trivial to separate the feedback loops
in a strict manner. This separation is essential to justify the classical method used for instance by
Schneider et al. (1999). The methodology presented here allows to define rigorously the feedback,
but it requires to modify the original model.

Our analysis is entirely based on the TLS at equilibrium. There is no evident way to extend the
method to non-linear system out of equilibrium, for which the TLS system is non-autonomous.
An interesting direction of research is given by Aires and Rossow (2003), which characterize the
non-linear system following the non-autonomous TLS as it evolves along a full model trajectory.
In that case, the non-linear system is described as histograms of the different TLS coefficients
sampled along the trajectory. It is, in theory, possible to extend their method with a dynamical
characterization of each TLS coefficient in the histograms, but to obtain a compound propagator
of the system, one has to consider the combination of possibly rotating singular vectors of ele-
mentary TLS matrices. This leads to severe difficulty and there is still a long way to go before a
comprehensive treatment of the climate system.

Another result may justify the TLS approach in a more hypothetical way. Goodman and
Marshall (2003) compared the singular elements of the TLS of their MM93 model with the EOFs
of the non-linear simulation. They found close analogy between the slowest singular modes and
the leading EOFs. This suggest that the slowest response structures to perturbations respond
linearly to the quickest (non-linear) synoptic perturbations. If this is correct, the linear slowest
response reproduce a realistic long term climate behavior, as long as no bifurcation occurs. This
would emphasize the interest of the dynamical characterization of the TLS. These results meet
some parallel with ours: we found that a change in the quickest time response of our simple
model (5 days for precipitation adjustment) does not significantly modify the values of the slowest
modes. It thus appears that the slowest modes are robust, even when the fastest ones are uncertain,
suggesting that the inert part of the TLS is autonomous.

7. Acknowledgments

The authors wish to acknowledge METEO-FRANCE for financial support. They thank Olivier
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A Appendix: the Transfer Evolution Formalism

a. Tangent Linear System Analysis

As explained in the article, the model is mathematically represented by a set of equations of two
kinds:

1. cells:
∂ηα

∂t = Gα(ηα, ϕ1, ϕ2, ...)
∂ηβ

∂t = Gβ(ηβ , ϕ1, ϕ2, ...)

...

(A-1)

2. transfers:
ϕ1 = f1(ηα, ηβ , ..., ϕ)

ϕ2 = f2(ηα, ηβ , ..., ϕ)

...

(A-2)

Let η be the state vector of the complete system and ϕ be the vector of the dependent boundary
conditions. With initial conditions at time t0, the system is a well-posed problem.

The method consists in building the first order development of the dynamical system around
its current state (η(tn)). For each cell α, it reads:

∂(ηα(tn)+δηα(t))
∂t = Gα(ηα(tn), ϕ(tn)) + (∂Gα

∂ηα
)(ηα(tn), ϕ(tn)) · δηα(t)

+(∂Gα

∂ϕ )(ηα(tn), ϕ(tn)) · δϕ(t) +O((t− tn)2)
(A-3)

where δηα(t) = ηα(t)− ηα(tn), and δϕ(t) = ϕ(t)−ϕ(tn).
The Tangent Linear System (TLS) corresponding to system (A-3) is, for each cell α:





∂δ̊ηα(t)
∂t = Gα|tn + ∂Gα

∂ηα

∣∣∣∣
tn

δ̊ηα(t) + ∂Gα

∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)

δ̊ϕ(t) =
∑

β
∂f
∂ηβ

∣∣∣∣
tn

δ̊ηβ(t) + ∂f
∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)
(A-4)

where the suffix β sweeps the list of sub-domains.
We approximate the true time evolution of the model (δηα(t) and δϕ(t)) by δ̊ηα(t) and

δ̊ϕ(t), the TLS solutions, since they differ only by O((t− tn)2).
In formulation (A-4), the Jacobian matrices contain critical information for the analysis of

the interaction between variables. The TLS can be solved by various methods, including Laplace
transforms. Rather than Laplace transformation, we shall use the more convenient Borel transfor-
mation defined by:

f(t)
B
→ B[f ](τ) =

1

τ

∫
∞

0
e−t/τf(t)dt =

1

τ
f̃(

1

τ
) (A-5)

where f̃(p) stands for the Laplace transform of f(t). Contrary to the Laplace variable, the
Borel variable τ is real and homogeneous to time.

Because B[∂f/∂t](τ) = (1/τ)B[f ](τ), the Borel transform of Eq. (A-4) reads:
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B[̊δηα](τ) =

B[̊δηα,dec](τ)
︷ ︸︸ ︷
1− τ

∂Gα

∂ηα

∣∣∣∣∣
tn



−1

τ Gα|tn +

F(τ)
︷ ︸︸ ︷

τ


1− τ

∂Gα

∂ηα

∣∣∣∣∣
tn



−1

∂Gα

∂ϕ

∣∣∣∣∣
tn

B[̊δϕ]

B[̊δϕ] =
∑

β
∂f
∂ηβ

∣∣∣∣
tn

B[̊δηβ ] + ∂f
∂ϕ

∣∣∣∣
tn

B[̊δϕ]

(A-6)

If the cell variables δ̊η are eliminated from the second equation, the complete system of
equations (which includes cells) becomes:

{
B[̊δη] = B[̊δηdec] + F B[̊δϕ][

1 + C
]
B[̊δϕ] = B[̊δϕins]

(A-7)

where the quantities B[̊δηdec], F , C, B[̊δϕins] depend on τ and can be calculated from the ele-
mentary Jacobian matrices and vectors at time tn.

The first equation of (A-7) describes the evolution of the state variables. The state variables
evolve because: (i) of their internal inertial evolutions δ̊ηdec (which would be obtained if transfer
models were changed to constant transfer model with δ̊ϕ = 0) ; (ii) of the evolution of their
boundary conditions (̊δϕ 6= 0). The matrix F describes the influence of transfer variables on
state variables, and independently of the type of model used for these transfers (F is independent
of the model of δ̊ϕ).

In the second equation, δ̊ϕins represents the variation of transfer variables if δ̊η = δ̊ηdec (i.e.
if the cell models were changed to decoupled models with F = 0). Consequently, C represents
the effect of cell and transfer coupling.

The developed expression of the matrix C shows how the partial derivatives defined at the cell
and transfer level combine. The coefficients of the coupling matrix are rational fractions of the
variable τ . This is the way the full dynamic of the system bounds the remaining variables after an
algebraic elimination process.

b. Numerical solution of the Transfer Evolution Formalism

For large systems, the above matrices are huge and sparse, and exhibit an internal structure that de-
pends upon the connections between cells and transfers. The full algorithm of the ZOOM1 solver
follows a technique called “relaxed super-nodes hyper multi-frontal method” (cf. Liu (1992)). We
focus here on the principles of the resolution that explain how the system dynamics is described
by the coupling coefficients.

Equivalence between Borel transform and the Crank-Nicolson scheme
It is easily shown that the Crank-Nicolson resolution of the system (A-4) with a time step δt,

is identical to its Borel transform (A-7), with the correspondence τ ←→ δt
2 .

To demonstrate this equivalence, let δ̂X be the time evolution of variable X approximated by
a Crank-Nicolson scheme, and consider the linear system:

1ZOOM is a TEF dedicated solver developed by the authors and colleagues.
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∂η(t)

∂t
= A · η(t) (A-8)

If η(t) = η0 + δη(t), with δη(0) = 0, it may be rewritten as:

∂(η0 + δη(t))

∂t
= A · (η0 + δη(t)) (A-9)

If a Crank-Nicolson scheme is applied to the system (A-9), with a time step δt, the discretized
equation reads:

δ̂η(δt)

δt
= A

1

2
(2η0 + δ̂η(δt)) (A-10)

which gives the time evolution of η, since δ̂η(δt) ≈ δη(δt) for small δt.
For any t > 0, δ̂η(t) is given by:

δ̂η(t) =

(
1−

t

2
A

)−1

Aη0 · t (A-11)

Now, the Borel transform of the system (A-9) reads:

B

(
∂δη

∂t

)
(τ) =

1

τ
B(δη)(τ) = B(A · (η0 + δη(t))) = AB(η0) + AB(δη)(τ) (A-12)

which can be rewritten (because B(k) = k for a constant function k) as:

B(δη)(τ) = (1− τA)−1Aη0τ (A-13)

Equations (A-11) and (A-13) show that the Crank-Nicolson integration of a linear system is
equivalent to the Borel transform of the system, through the relationship:

δ̂η(t) = 2 · B(δη)(
t

2
) (A-14)

Time evolution of the model
For each time step, the ZOOM solver solves the second matrix equation of (A-7) for B[δ̊ϕ].

The first equation is then solved for B[̊δη]. Thanks to the property (A-14), this gives an approxi-
mation of the temporal evolution of the model variables between tn and tn + δt.
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TLS Analysis
As is well known, poles of Laplace transform of TLS solutions are eigenmodes of the system.

The same holds for Borel transform: determining the poles of the Borel transform yields the
complete dynamic of the system.

ZOOM is able to compute numerically the Borel transform of the TLS solution (B[̊δη](τ)

and B[̊δϕ](τ)) on the real axis τ > 0. The problem of describing the dynamics of a system is
thus reduced to that of determining the poles of the Borel transform of the TLS solution from its
numerical values on the positive real axis.

In particular, in Eq. (A-7), the poles of B[̊δϕ](τ) are (i) the poles of B[̊δϕins], i.e. the poles
of the model without taking into account the interactions between sub-systems; (ii) the poles of
(1+C)−1, i.e. the poles corresponding to the sub-system interaction. The inverse Borel transform
of Eq. (A-7), obtained by an identification of simple elements, provides the full dynamics of the
model. The methodology consists here in fitting the Borel transform with a linear combination of
sigmoid and bump functions, which are the only possible Borel transforms of linear differential
equation solutions. From the characteristic times of the corresponding poles and their residue, the
original function can easily be reconstructed without inverse Borel transform.
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