The Reflection of a Stationary Gravity Wave by a Viscous Boundary Layer

François Lott

Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, Paris, France

(Manuscript received 16 October 2006, in final form 19 December 2006)

Journal of the Atmospheric Sciences, Volume 64, Issue 9 (September 2007), pp. 3363–3371, DOI: 10.1175/JAS4020.1



ABSTRACT

The backward reflection of a stationary gravity wave (GW) propagating toward the ground is examined in the linear viscous case and for large Reynolds numbers (Re). In this case, the stationary GW presents a critical level at the ground because the mean wind is null there. When the mean flow Richardson number at the surface (J) is below 0.25, the GW reflection by the viscous boundary layer is total in the inviscid limit Re → ∞. The GW is a little absorbed when Re is finite, and the reflection decreases when both the dissipation and J increase. When J > 0.25, the GW is absorbed for all values of the Reynolds number, with a general tendency for the GW reflection to decrease when J increases. As a large ground reflection favors the downstream development of a trapped lee wave, the fact that it decreases when J increases explains why the more unstable boundary layers favor the onset of mountain lee waves. It is also shown that the GW reflection when J > 0.25 is substantially larger than that predicted by the conventional inviscid critical level theory and larger than that predicted when the dissipations are represented by Rayleigh friction and Newtonian cooling.

The fact that the GW reflection depends strongly on the Richardson number indicates that there is some correspondence between the dynamics of trapped lee waves and the dynamics of Kelvin–Helmholtz instabilities. Accordingly, and in one classical example, it is shown that some among the neutral modes for Kelvin–Helmholtz instabilities that exist in an unbounded flow when J < 0.25 can also be stationary trapped-wave solutions when there is a ground and in the inviscid limit Re → ∞. When Re is finite, these solutions are affected by the dissipation in the boundary layer and decay in the downstream direction. Interestingly, their decay rate increases when both the dissipation and J increase, as does the GW absorption by the viscous boundary layer.