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Abstract7

An hydrostatic theory for mountain waves with a boundary layer of constant eddy viscosity is8

presented. It predicts that dissipation impacts the dynamics over an inner layer which depth is9

controlled by the inner layer scale δ of viscous critical level theory. The theory applies when the10

mountain height is smaller or near δ and is validated with a fully nonlinear model. In this case the11

pressure drag and the waves Reynolds stress can be predicted by inviscid theory, if one takes for12

the incident wind its value around the inner layer scale. In contrast with the inviscid theory and13

for small mountains the wave drag is compensated by an acceleration of the flow in the inner layer14

rather than of the solid earth. Still for small mountains and when stability increases, the emitted15

waves have smaller vertical scale and are more dissipated when traveling through the inner layer:16

a fraction of the wave drag is deposited around the top of the inner layer before reaching the outer17

regions. When the mountain height becomes comparable to the inner layer scale non-separated18

upstream blocking and downslope winds develop. Theory and model show that (i) the downslope19

winds penetrate well into the inner layer, (ii) upstream blocking and downslope winds are favored20

when the static stability is strong and (iii) are not associated with upper level wave breaking.21

1Corresponding author: flott@lmd.ens.fr

1



1. Introduction22

The impact of small to medium scale mountains on the atmospheric dynamics has been in-23

tensively studied over the last 50 years by two quite distinct communities. One community is24

studying how mountains modify the turbulent boundary layer (Jackson and Hunt, 1975), an issue25

that is central in the context of wind resource modeling (Ayotte, 2008) or dune formation (Charru26

et al., 2012). The associated theories form the basis of subgrid scale orography parameterizations,27

where the enhancement of turbulence caused by mountains is modeled by increasing the terrain28

roughness length (Wood and Mason, 1993). Wood et al. (2001) used fully nonlinear simulations to29

extend the theory and improve the estimate of the depth over which the mountain drag is deposited.30

These parameterizations are used for mountains with horizontal scales smaller than 5000 m (Bel-31

jaars et al., 2004). At these scales one can expect that the horizontal scale of the mountains, L,32

is such that the advective time scale, L/u0 is smaller than the inverse of the buoyancy frequency33

N−1. This ensures that the flow behaves according to neutral flow dynamics.34

The second community is more focused on mountain dynamical meteorology. It studies the35

onset of downslope winds, foehn, and trapped waves using theories and models where internal36

gravity waves control the dynamics, and where the boundary layer is often neglected. The rele-37

vance of the approach is illustrated by Sheridan et al. (2017) where a near linear mountain wave38

model permits to interpret wind perturbations due to mountain wave events over the UK. The asso-39

ciated theory is extremely vast in itself (Durran, 1990). Among other things, this theory has been40

used to predict realistic partitions between upper level and lower level wave drag and orographic41

blocking, which are concepts that are used in parameterizations of subgrid scale orography with42

horizontal scales L > 5000 m (Lott and Miller, 1997). Note that this type of parameterization is43

still used in atmospheric models, and even in the models with horizontal resolution that resolve44

these scales (Sandu et al., 2015; Pithan et al., 2016). In fact, it is not so clear whether there is a45

critical mountain size (L = 5000 m) below which the flow would only impact the boundary layer46

and above which the flow would only impact the waves. We actually believe that this criteria is47

quite adhoc and should depend on the nature of the flow.48

Because boundary layer dynamics is highly controlled by the inviscid dynamics aloft, and be-49

cause in mountain meteorology the wave forcing is embedded into the boundary layer, it soon50

appeared that the two communities should make some effort to integrate results from the other51

community. It is in this context that Hunt et al. (1988) and Belcher and Wood (1996) included52

stratification and gravity waves in boundary layer theories over mountain. Belcher and Wood53

(1996) showed that when the Froude number F = u0/NL is smaller than 1, the mountain drag is54

due to mountain gravity waves (rather than boundary layer effect) and is well predicted by linear55

gravity mountain wave theory. This result actually depends on the height at which one chooses56
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the reference velocity u0 and reference Brunt Vaisala frequency N. As we shall see, in the absence57

of background wind curvature, the relevant altitude to compute these quantities is that of the inner58

layer, which is the altitude where disturbance advection by the background wind is balanced by59

dissipation. Still in this context but in the mountain meteorology community, studies using nu-60

merical model show that the boundary layer drag reduces downslope windstorms and mountain61

waves (Richard et al., 1989; Olafsson and Bougeault, 1997). More recent observations show that62

the atmospheric boundary layer can absorb downward propagating waves and weaken trapped lee63

waves (Smith et al., 2002; Jiang et al., 2006). These last results have motivated a series of theo-64

retical studies on the interaction between the boundary layer and mountain waves. All so far use65

crude parameterizations of the boundary layer: Smith et al. (2006) uses a bulk boundary layer66

model, Lott (2007) usesd constant eddy viscosity, and Lott (2016) uses linear drags (Newtownian67

cooling and Rayleigh drag).68

Despite these simplifications, these studies reproduce the increase in trapped waves absorption69

when stability increases, insisting on cases where the incident wind is weak near the ground. This70

near surface critical level situation, a situation that was little studied because it poses fundamental71

problems in the inviscid mountain wave theory, was nevertheless found to produce interesting dy-72

namics. Near surface critical level favors downslope windstorms and Foehn (Lott, 2016; Damiens73

et al., 2018) and permits to establish a bridge between trapped lee waves and Kelvin-Helmholtz74

instabilities (Lott, 2016; Soufflet et al., 2019). Interestingly, the critical level mechanism that is a75

priori a dissipative mechanism turned out to be extremely active dynamically.76

To summarize, there are two descriptions of the interaction between boundary layers and moun-77

tain waves: on the one hand boundary layer studies tell that the pressure drag is controlled by78

the mountain wave dynamics outside of the boundary layer, but imposes very simplified dynamics79

outside of it (Belcher and Wood, 1996). And on the other hand, ”mountain wave” studies that give80

great attention to the potential impact of a boundary layer on mountain waves but that use very81

simplified boundary layer representation (Smith et al., 2006). We actually believe that there is still82

room to develop a theory where the boundary layer and the mountain wave field fully interact in83

a comprehensive way. We see at least three reasons for this. The first is that in mountain wave84

theory, the gravity wave (GW) field is controlled by the low level flow amplitude, and it is not85

obvious to tell at which (or over which) altitude it should be measured in the absence of strong86

wind curvatures. Second, we know that the inviscid dynamics potentially produces downslope87

winds in the stratified case and it could be interesting to test if they extend down to the surface and88

well into the inner layer. Last, we know that the pressure drag is controlled by the wave drag in the89

stable case, but we do not know if a fraction of the wave drag could and should be deposited into90
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the inner layer rather than being radiated away. This issue could have important consequences for91

the formulation of parameterizations.92

The purpose of the present paper is to answer these questions in the reference case where the93

boundary layer is parameterized via a constant kinematic eddy viscosity ν . This case has the94

unique merit that, while the Couette profile with constant shear u0z is an exact solution, we can95

handle the interactions with topography using the stratified viscous solutions derived by Hazel96

(1967) and Baldwin and Roberts (1970). However, a consequence of using uniform wind shear is97

that the ”boundary layer depth” of the incident flow is infinite, it is therefore totally distinct from98

the ”inner layer depth” over wich the waves are affected by dissipation and that scales as99

δ =

(
νL

u0z

) 1
3

. (1)

These simplifications of uniform viscosity and background shear were made in the literature of100

the late 50’s by Benjamin (1959) and Smith (1973) in the context of flows over water waves and101

dunes respectively. Since then, we are well aware that such a ”laminar” approach is an extreme102

idealization. A reason is that boundary layer dynamics tends to produce winds with strong shears103

near aloft the surface but that vary much more slowly at higher altitudes (the associated curvatures104

defining the ”boundary layer depth” quite precisely). To defend our choice nevertheless, we can105

recall that in the atmosphere the low level wind shears are not only due to the boundary layer:106

they are also related to the large scale dynamics. This has been shown for instance in experiments107

done by Sheridan et al. (2007) and Doyle et al. (2011), where they observe strong shears over108

few kilometers above the ground. This being said, we will have to keep in mind that models with109

constant eddy viscosity probably overstate the significance of the low level shear stresses on the110

waves and pressure drag (Sykes, 1978).111

The plan of the paper is as follows. In section 2 we derive the theory in the hydrostatic case.112

In section 3 we discuss the pressure drag and wave momentum fluxes it predicts. In section 4113

we analyze the onset of downslope winds. As our theory is linear except for the lower boundary114

condition, our results are checked against fully nonlinear simulations in Section 5. In section 6, we115

discuss further the significance of works on boundary layer using constant eddy viscosity. We also116

discuss in this section how our results could be useful to understand the dynamics in more realistic117

cases. In Appendix A, we detail some aspects of the theory, and in Appendix B we provide details118

on the numerical implementation of the model.119
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2. Theory120

a. Basic equations121

We consider a background flow solution of the viscous equations,122

u0(z) = u0zz; ρ0(z) = ρr +ρ0zz, (2)

where the wind shear u0z and stratification ρ0z are both constant, and that is incident on a Gaussian123

ridge of characteristic length L and maximum height H:124

h(x) = He−x2/(2L2). (3)

Following quite conventional approaches (Beljaars et al., 1987; Belcher and Wood, 1996), we125

consider obstacles of small slope and use linear equations. To characterize the factors that control126

the dynamics we also normalize the response by introducing the ”outer” scaling:127

(x,z) = L(x,z), (u′,w′) = uozL(u,w), (p′,b′) =
(
ρru

2
0zL

2 p,u2
0zLb

)
(4)

where u′ and w′ are the horizontal and vertical wind disturbances whereas b′ is the buoyancy128

disturbance. With this scaling, and making the conventional ”Prandtl” approximation that the129

vertical derivatives dominate the viscous terms, the 2D Boussinesq hydrostatic linear equations130

write:131

z∂xu+w =−∂x p+ν∂ 2
z u, (5a)

132

0 =−∂z p+b (5b)
133

z∂xb+ Jw = P−1ν∂ 2
z b, (5c)

134

∂xu+∂zw = 0. (5d)

with no-slip boundary conditions:135

h(x)+u(x,h) = 0, w(x,h) = 0, and Jh(x)+b(x,h) = 0 at h = Se−x2/2. (6)

In Eqs. (5)-(6),136

J =− gρ0z

ρru
2
0z

, P =
ν

κ
, S =

H

L
, and ν =

ν

uozL2
(7)

are a Richardson number, a Prandtl number, a slope parameter and an inverse Reynolds number137

respectively.138

To help establish where the waves are produced and where they are dissipated we next derive139

from Eqs. 5 a wave-action budget. As this is not often done in mountain waves literature we recall140

that the interest is to define a quantity A that is quadratic (to measure the wave amplitude locally)141

5



and conservative in the adiabatic frictionless case. For action we chose the pseudo-momentum,142

because its vertical flux, Fz is closely related to the mountain wave Reynolds stress2 (see further143

discussions in Durran (1995) and Lott (1998)). Although the exact form of the wave action is144

rigorously derived when starting from Hamiltonian dynamics (Scinocca and Shepherd, 1992), we145

can directly use the the formula for the pseudo-momentum A derived in this paper, and derive a146

budget that includes dissipation by doing the formal operation:147

b

J
∂z (Eq.5a)+

uz

J
(Eq.5c) . (8)

After few integrations by parts one obtains,148

∂

∂x







z
∂zu

J
b

︸︷︷︸

A

+
b

2

2J
+

u2

2







︸ ︷︷ ︸

Fx

+
∂

∂ z
uw
︸︷︷︸

Fz

= ν
b

J
∂ 2

z ∂zu+P−1ν∂zu∂ 2
z b

︸ ︷︷ ︸

Q

, (9)

where Fx and F z the horizontal and vertical components of the pseudo-momentum flux, and where149

Q is the production/destruction of action by dissipative processes. Note that Fx includes the hor-150

izontal advection of action by the background flow zA. As we search inflow solutions that are151

linear, we next express them in terms of Fourier transform,152

w(x,z) =
∫ +∞

−∞
w(k,z)eikxdk, where w(k,z) =

1

2π

∫ +∞

−∞
w(x,z)e−ikxdx, (10)

which transforms Eqs. 5 into:153

ikzu+w =−ikp+ν∂ 2
z u, (11a)

154

ikzb+ Jw = P−1ν∂ 2
z b, (11b)

155

b = ∂zp , iku+∂zw = 0. (11c)

156

b. Solutions157

For high Reynolds number ν ≪ 1, the dynamics is inviscid at leading order. Each harmonics158

satisfy Eqs. 11 with ν = 0, which results in w satisfying,159

wzz +
J

z2
w = 0 . (12)

Such equation has two solutions (Booker and Bretherton, 1967):160

z
1
2±iµ , where µ =

√

J− 1

4
. (13)

2It is actually interesting to recall that the seminal paper on wave mean flow interaction by Eliassen and Palm (1961) was about mountain waves.
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When k > 0 and J > 0.25, only the solution161

wI(k,z) = z1/2+iµ , (14)

corresponds to a gravity wave propagating upward. The cases with k < 0 are treated by com-162

plex conjugation and will not be discussed further. The cases with J < 0.25 are degenerated in163

the hydrostatic approximation because the direction of vertical propagation can not be used to164

distinguish between the two solutions in (13). This difficulty, which forbids to treat the weakly165

stratified cases (i.e., here when J < 1/4), will be resolved in a future non-hydrostatic treatment of166

the inviscid solution.167

To solve the inner layer we introduce the scaling,168

z = δ z̃,(u,w) = (ũ,δkw̃),(p,b) = (δ p̃, b̃) where δ =

(
ν

k

) 1
3

. (15)

At leading order, it transforms the full set of non dimensional Eqs. 5 into the sixth-order set:169

∂ 2
z̃ ũ = iz̃ũ+ w̃+ ip̃, (16a)

170

∂ 2
z̃ b̃ = P

(
iz̃b̃+ Jw̃

)
, (16b)

171

∂z̃w̃ =−iũ, ∂z̃p̃ = b̃. (16c)

This set of Eqs. can be reduced to one single equation for w̃,172

(
∂ 2

z̃ − iPz̃
)(

∂ 2
z̃ − iz̃

)
∂ 2

z̃ w̃ = JPw̃, (17)

that has six independent solutions. Hazel (1967) and Baldwin and Roberts (1970) have found their173

asymptotic form when z̃ → ∞. Two grow exponentially as z̃ → ∞ and cannot be used (Van Duin174

and Kelder, 1986), the four that remain have asymptotic forms:175

w̃1 ≈
z̃→∞

z̃1/2−iµ , w̃2 ≈
z̃→∞

z̃1/2+iµ , w̃3 ≈
z̃→∞

z̃−5/4e−
2
√

i
3 z̃3/2

, w̃4 ≈
z̃→∞

z̃−9/4e−
2
√

iP
3 z̃3/2

. (18)

In Lott (2007), these four solutions are evaluated over the entire domain 0< z̃<∞, i.e. by using the176

asymptotic forms (18) above z̃ = 5 and integrating down Eq. (17) from z̃ = 5 to z̃ = 0 with a Runge177

Kutta algorithm. We will essentially proceed like this here (some serious convergence issues are178

discussed in the appendix). We then notice that the inner function w̃2 matches the upward inviscid179

solution (14) and that w̃3 and w̃4 decay exponentially fast with altitude, which permit to tell that all180

the combinations of w̃2, w̃3 and w̃4 are uniform solutions that can match wI . We therefore search181

a uniform approximation of the vertical velocity under the form,182

w(k,z) = kδ (k)
[

f2(k)w̃2(z/δ (k))+ f3(k)w̃3(z/δ (k))+ f4(k)w̃4(z/δ (k))
]

(19)
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where all fields are expressed using outer variables, and with similar expression for u and b de-183

duced from (11). To evaluate the unknown functions f2, f3 and f4, we write the boundary condi-184

tions:185

w(x,h)≈
∫ +∞

−∞
kδ (k)

(
f2(k)w̃2(h̃)+ f3(k)w̃3(h̃)+ f4(k)w̃4(h̃)

)
eikxdk = 0, (20a)

186

u(x,h)≈
∫ +∞

−∞

(
f2(k)ũ2(h̃)+ f3(k)ũ3(h̃)+ f4(k)ũ4(h̃)

)
eikxdk =−h(x), (20b)

187

b(x,h)≈
∫ +∞

−∞

(
f2(k)b̃2(h̃)+ f3(k)b̃3(h̃)+ f4(k)b̃4(h̃)

)
eikxdk =−Jh(x), (20c)

where h̃(x,k) = h(x)/δ (k). Once discretized in the horizontal and spectral domain, the set of188

equations (20) corresponds to three linear equations for f2(k), f3(k) and f4(k) that can be inverted189

with conventional matrix inversion routines (see appendix for more details on the numerical treat-190

ment).191

3. Mountain wave fields and drags192

We plot in figure 1 the flow response when the inverse Reynolds number ν = 0.001, the slope193

parameter S = 0.01, the Richardson number J = 4, and the Prandtl number Pr = 0.5. This last194

parameter will stay unchanged in the rest of the paper: we have found moderate sensitivity of195

the upper wave fields to this parameter as long as its value stays around 1. In this setup, the196

characteristic inner layer scale is that of the dominant harmonic k = 1, i.e. δ (k = 1) = ν1/3 = 0.1,197

which is also the nondimensional form of the inner layer scale in (1). The inner layer scale is198

therefore much larger than the mountain slope.199

The total wind at low level in Fig. 1a contours well the obstacle and the vertical velocity field200

(Fig. 1b) highlight a system of well defined upward propagating gravity waves. We notice that201

the stream function in Fig. 1c follows well the orography, up to at least the inner layer scale202

δ (1) = 0.1. For each altitudes below and around δ (1) the streamlines are displaced vertically over203

distances that are near the mountain height S, and the vertical velocity when z ≈ δ should scale as204

w ≈ δ (1)
2

S to follow the streamlines. We therefore propose that the wave amplitude corresponds205

to the inviscid case when a uniform flow of amplitude δ (1)/2 (the average of the incident wind206

over the inner layer scale) is incident over a mountain of maximum height S. Far aloft and in the207

sheared case, the vertical velocity should therefore scale as w = 0

(√
zδ (1)
2

S

)

, where the square208

root corresponds to the 1
2

factor in the exponent of the inviscid solution (14). This qualitative209

argument tells that the amplitude of w should be around Sδ (1)/2 = 5.10−4 at z = 1, which is in210

qualitative agreement with what is found in Fig. 1b.211
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We follow this line of qualitative reasoning and propose as predictor of the wave momentum212

flux and mountain pressure drag,213

u w(z) =
∫ +∞

−∞
u(x,z)w(x,z)dx, Dr =−

∫ +∞

−∞
p(x,h)

∂h

∂x
dx, (21)

the inviscid linear hydrostatic pressure drag produced by a uniform wind of intensity δ (1)/2 inci-214

dent on the orography given by h(x) in (6), and which exact value is215

−δ (1)

2

√
JS2 =−DrGW P. (22)

Henceforth, we will refer to DrGW P as the gravity wave drag amplitude predictor. Figure 2 shows216

that this predictor is a good estimate for the drag given by the theoretical model for a very large217

range of J and slope S. We conclude that the pressure drag is well controlled by the inviscid GW218

dynamics outside of the inner layer, the GWs being forced by the ondulations of the inner layer219

produced by the mountain. This picture where the inner layer forces the (inviscid) dynamics aloft,220

and that the pressure drag is ultimately controlled by this inviscid dynamics follows the general221

principle of boundary layer theories that pressure is approximately constant across the inner layer.222

This predictor of the surface pressure drag is nevertheless misleading if we take it as a measure223

of the effect of the mountain on the large-scale flow, as is generally done in mountain meteorology.224

The reason is that, in a steady state, our waves are forced indirectly by the distortion of the inner225

layer produced by the mountain rather than directly by the mountain as in the inviscid case. To226

establish this, we return to Fig. 1d where we plotted the waves pseudomomentum flux vector. Aloft227

the inner layer this flux clearly points down, as expected for mountain GWs propagating upward228

(Durran, 1995; Lott, 1998), but within the inner layer, it points very strongly from the upstream229

sector toward the downstream sector. This is to be contrasted with the inviscid case where this flux230

goes through the surface and produces an exchange of momentum between the fluid and the solid231

ground.232

This result suggests that the acceleration that balances the gravity wave drag is not communi-233

cated to the earth surface but rather to the inner layer. This last statement is confirmed in Fig. 3a234

where we plot the wave stress as a function of altitude. The wave stress is null at the surface,235

increases with altitude before reaching a constant value at altitudes above z > 5δ (1) typically. As236

is often the case for viscous boundary layers, the depth over which dissipation is significant seems237

to be around 5 times the inner layer scale δ (1), so we will systematically make the distinction238

between the inner layer scale (δ (1)) and the inner layer depth (around 5δ (1)). The flux emitted at239

the top of the inner layer (above 5δ (1)) is around half the pressure drag, at least when when J ≈ 1.240

Such value stays comparable to the theoretical drag but suggests that substantial wave dissipation241

occurs when the wave travels vertically through the inner layer (in our scenario where the waves242
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are forced around δ (1)). This erosion of the pressure drag toward the gravity wave stress is even243

more significant when J increases. This is again consistent with a qualitative argument: for large244

values of J, the waves oscillate more rapidly in the vertical according to Eq. (14) and are more245

affected by viscous dissipation. This difficulty in converting the pressure drag into a momentum246

flux as stability increases makes that for J > 4 typically, there is a minimum in u w in the middle247

of the inner layer (between 2δ (1) and 5δ (1)): part of the momentum given to the inner layer near248

the surface is restored back around the top of the inner layer.249

To understand what can replace the Reynolds stress to balance the pressure drag, it is important250

to return to the initial Eliassen and Palm (1961)’s paper where it is shown that the momentum flux251

is related to the pressure force exerted in the horizontal direction on an undulating surface. In the252

linear stationary case, this relation is obtained by multiplying a momentum equation (Eq. 5a in our253

case) by the vertical displacement of streamlines η and after integration by part over x we get254

u w =−p∂xη −ν
(
η ∂ 2

z u
)
, where z∂xη = w. (23)

In the inviscid case the pressure stress equals the Reynolds stress, but this is no longer true in255

the viscous scenario where dissipation plays a non negligible role. To illustrate how dissipation256

becomes significant for small slopes, we plot the two terms on the right hand side and their sum for257

three values of J in Fig. 3b. After verification that the sum in Fig. 3b exactly equals the Reynolds258

stresses in Fig. 3a, we see that Reynolds stress and the pressure drag only coincide well above259

the boundary layer. Near the surface and in the lower part of the inner layer, the pressure drag is260

almost entirely balanced by the viscous drag.261

This erosion of the pressure drag toward the wave Reynolds stress is summarized in Fig. 4a262

where we plot the Reynolds stress emitted in z → ∞ normalized by the predictor DrGW P. As263

already discussed, the emitted flux is half the predicted drag, but this result becomes sensitive to264

the stability J: when J is large, the emitted flux almost vanishes. This erosion of the pressure drag265

toward the Reynolds stress for large J is less pronounced if we consider the minimum values in266

Fig. 4b. These minima are in general located in the middle of the inner layer (i.e. above z = δ (1)267

and below 5δ (1), (see Fig. 3a) such that for large J some GW deceleration should be applied268

directly around the top of the boundary layer (which we locate at 5δ (1)).269

4. Non-separated blocking and downslope winds270

To analyze what occurs in nonlinear situations we next consider cases where the slope S be-271

comes comparable to the boundary layer scale δ (1). As a first example, the simulation in Fig. 5272

corresponds to that in Fig. 1 but with S = 0.15 instead of S = 0.01. We readily notice that the273

total wind (Fig. 5a) presents an downslope/upslope asymmetry that is almost absent in Fig. 1a.274
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The vertical velocity is around 30 times larger than in the small slope case, i.e. 3 times larger275

than what should have been obtained if we applied a linear ratio of the slopes (Figs. 5b and 1b).276

The asymmetry in the winds is also visible in the stream function in Fig. 5c, with a pronounced277

descent on the lee side. Finally, the largest differences are maybe in the pseudo-momentum flux278

vector in Fig. 5d. Now that the obstacle penetrates well into the boundary layer, there is a sub-279

stantial pseudo-momentum flux across the surface. In opposition to the inviscid case (Lott, 1998)280

we did not identify clear relations between this flux and the mountain drag, except that the total281

flux across the surface is of the same order of magnitude as the mountain drag when the slope282

approaches the inner layer scale.283

To appreciate more systematically the changes occuring when the slope parameter increases284

as a function of stability, we plot in Fig. 6 the vertical velocity fields for different valuse of S285

and J. The panels in the top row are for a slope that is small compared to the inner layer scale286

(S = 0.02 < δ (1)) and those in the bottom row for a slope that compares to it (S = 0.15 ≈ δ (1)).287

The contour interval stays the same between all panels with given slope, consistent with the fact288

that the kinematic boundary conditions are independent of J (see Eq. 6). Between the upper and289

lower row where the slope changes, the contour interval changes with a factor proportional to the290

slope ratio, i.e. following a linear relation. For the small slope cases when J increases (Figs. 6a,291

6b, and 6c), one sees that the wave amplitude in the far field decreases with J. If we recall292

that the vertical scale of variations of our solutions is inversely proportional to J, larger values293

of J correspond to cases where the solutions oscillate more in the vertical direction, these plots294

are therefore consistent with the interpretation that with large J the waves are more dissipated295

when they travel through the inner layer. When the slope increases, a second interesting behavior296

is worth noticing. When J = 1 there are little differences between the patterns in Figs. 6a and297

6d, which means that amplitudes varies linearly with S (remember that the contour interval varies298

linearly with S between the upper and lower row). Again, we know since Lott (2016) and Damiens299

et al. (2018) that this is also related to the vertical scale of the waves: strong nonlinear effects enter300

the dynamics via the surface boundary condition and when the vertical wavelength at the top of301

the obstacle compares to the vertical wavenumber, a criteria that corresponds to J > 1. As we see302

in the following panels in Figs. 6e and 6f these nonlinear effects become substantial: for a given303

slope the wave amplitude now increases when J increases. In addition to the enhaced emission due304

to nonlinearities, it is also plausible that the wave dissipation through the inner layer is less intense305

because the level of emission is located at a higher altitude than for smaller slopes. If we return306

to the emitted momentum fluxes in Fig. 4, a consequence of these enhanced emission and reduced307

dissipation when the slope increase and for large J is that the inviscid predictor of the momentum308

flux DrGW P becomes more and more accurate (see the grey dotted line in Figs. 4a and 4b).309
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If we now return to the total winds in Fig. 7 we also see that for large slope and large J, the310

winds along the upslope flank of the mountain become small compared to the downslope winds,311

an asymmetry that increases with both S and J. More specifically, when J = 1 (Fig. 7a) the flow312

contours the obstacle: the flow is upward on the upwind side and downward on the downwind side313

with little asymmetry in amplitudes, a behavior that is little affected by the increase in the slope314

in Fig. 7d. When J increase and still for small slope in Figs. 7b and 7c some upwind/downwind315

asymmetry starts to occur but stays limited: there is still substantial ascent on the upstream side316

of the obstacle. This ascent is actually not confined to the lower layers but extends up to at least317

twice the mountain slope. When the slope is larger (Figs. 7e and 7f), the upwind ascent is much318

smaller than the downwind descent. The downwind descent extends well along the downwind319

slope whereas along the upwind slope the total wind is very small. We call this situation a ”non-320

separated” blocking because it is produced by linear inflow dynamics.321

To quantify the dependence on S and J more systematically in terms of upstream blocking and322

downslope winds, we plot in Fig. 8 the ratio between the wind amplitude along the downwind323

slope and the upwind slope of the ridge defined as324

Max
︸︷︷︸

z< 2h
3 ,0<x<2

√

(z+u)2 +w2

/

Max
︸︷︷︸

z< 2h
3 ,−2<x<0

√

(z+u)2 +w2 . (24)

This ratio emphasizes more the downslope-upslope asymmetry than the criteria used in Lott (2016)325

where only the downslope wind amplitude was measured in relation with the wind at the top of the326

hill. The reason is that here the wind at the top of the hill is null so this measure makes little sense.327

Here the ratio measures the upstream flow blocking as much as the downslope wind intensification328

and we see that it can easily reach values around 4 or 5 for slopes near the boundary layer depth329

δ (1) = 0.1 and when J is sufficiently large. It always stays near 1 for small slopes and essentially330

increases with J and S as expected.331

5. Validation with a fully nonlinear model332

To validate our results we now use the ocean general circulation model developed at MIT (MIT-333

gcm) (Marshall et al., 1997) and which solves the fully nonlinear Boussinesq hydrostatic equations334

on a cartesian mesh with a staggered Arakawa C-grid. We set the shape of the topography to a335

Gaussian (Eq. 3) and take L = 1 km and H = 150 m which yield S = 0.15. Cells near the bottom336

are cut with the partial cells strategy (Adcroft et al., 1997) with hFacmin = 0.1 (if a fraction of337

the cell is less than hFacMin then it is rounded to the nearer of 0 or hFacMin). The total domain338

horizontal size is 60 km with a stretched grid near the topography: the minimum and maximum339

grid size are 60 m and 600 m respectively. We use a sponge layer at the lateral boundaries to relax340
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the dynamic variables (momentum and temperature) to the prescribed upstream profiles (2). The341

relaxation time scale is 100 s in the innermost point of the sponge layer and 10 s in the outermost342

point of the sponge layer. We also use a stretched grid in the vertical with maximum resolution343

of 5.6 m at the topography and 415 m at the top of the domain. The total height of the domain is344

50 km, and we use a sponge layer above 10 km with a relaxation time scale that varies quadrati-345

cally with a minimum time scale of 10 s at the uppermost grid point (and infinite relaxation time346

scale at 10 km). We use a constant wind shear (u0z = 10−3 s−1) and constant vertical temperature347

gradient. The temperature is related to the density via a linear equation of state and we adjust348

the vertical stratification N2 to match the non dimensional values of J: from N2 = 5× 10−7 s−2
349

(J = 0.5) to N2 = 1.6× 10−5 s−2 (J = 16). We use no-slip boundary conditions for momentum350

at the topography and we set the bottom temperature to T = 0o C (we modified the code to get351

a temperature flux at the boundary to ensure that the temperature at the topography is constant).352

The horizontal and vertical viscosities for momentum are set to 1 m2 s−1. The vertical and hori-353

zontal coefficients of diffusivity for temperature are set to 2 m2 s−1. We also added a horizontal354

bi-harmonic damping with a coefficient of 2×103 m4 s−1 for both the temperature and momentum355

in order to damp grid scale noise generated at the topography. The time step is 0.5 s. The model356

is integrated forward in time until we reach a steady state (usually less than one day).357

The results for the vertical velocity field in Figs. 9a, 9b, and 9c, reproduce reasonably well the358

corresponding predictions from the theory in Figs. 6d, Figs. 6e, and 6f respectively. The horizontal359

scale and vertical variations are well reproduced, the amplitudes in the MITgcm are about 10%360

smaller near z = 1 than in the theory, a difference we attribute to numerical dissipation that are not361

easy to control. The results for the winds at low level in Figs. 9d, 9e, and 9f are also consistent362

with those from the theory in Figs. 7d, Figs. 7e, and 7f respectively. The flow in the MITgcm363

presents the upstream/downstream symmetry predicted by theory when J = 1 Fig. 9a, and stronger364

downslope than upslope winds when J = 9 and J = 16. We conclude that there is a good agreement365

between the global indexes defined in the theoretical model and the fully non-linear model (see366

for instance the comparison of the emitted wave fluxes in Figs. 3a and 3b, or of the downslope367

windstorm index in Fig. 8). The only noticeable difference is on the pressure drag in Fig. 2, the368

MITgcm predicts a larger drag than in the theory. We have tried to understand the causes of the369

differences, but find it difficult to correct the error. A reason is that the major differences between370

the theory and the MITgcm are essentially located near the surface (not shown), i.e. at places371

where viscous stress equals the Reynolds stress and where the stepwise treatment of the lower372

boundary can produce grid-scale irregularities on these fields. As such irregularities are likely373

to be damped out by dissipation as we move away from the surface, we can speculate that these374
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low level differences on the velocity shears and pressure are not significant in the context of the375

interactions between the waves and the large scale flow at upper levels.376

6. Conclusion377

In dynamical meteorology and oceanography, solutions with constant viscosity have always been378

a starting points to understand phenomena that involve the interaction between the surface and the379

boundary layer. Examples are numerous, from the Ekman et al. (1905) solutions systematically380

given in textbook, the Prandtl (1952) model for katabatic winds, the inclusion of a boundary381

layer in the Miles theory for the generation of oceanic waves (Benjamin, 1959), or in theories382

of sand ripples and dunes formation (Engelund, 1970) (see also Fowler (2001)). In waves and383

dune theories, the fact that the near surface wind profiles play a crucial role in the dynamics384

was early recognized (Miles, 1957; Benjamin, 1959) , and a first difficulty consisted in solving385

the fourth order Orr-Sommerfield equation and to introduce a corrugated bottom at the surface386

(Fowler, 2001). A difficulty arises if one wishes to introduce stratification: the equation to solve387

becomes of the sixth order (see Eq. 17). This difficulty plus the facts that a constant eddy viscosity388

is a crude approximations of the turbulence in actual boundary layers, are two reasons why the389

viscous problem is not often treated in the stratified case. When it is, the techniques used are390

extremely involved (see for instance the introduction of ”triple decks” in Sykes (1978)), and does391

not permit to derive uniform approximations of the solutions over the entire domain. As this392

last remark also holds for more sophisticated eddy viscosity closure, it is fair to say that theories393

failed so far in predicting the vertical profiles of the waves Reynolds stress, a quantity that is394

central in mountain meteorology. For these reasons but also because more and more papers in395

mountain meteorology call for a better understanding of the interaction between boundary layers396

and mountain waves, we found useful to solve the viscous mountain wave problem theoretically,397

and verify the theory with a fully nonlinear model (here the MITgcm). Note that in the context398

of stratified oceanic boundary layers over corrugate and tilted slopes, a recent paper by Passaggia399

et al. (2014) shares the same concern.400

Once given this context, what are the messages that could be useful in a more realistic context?401

The first is probably that pressure drag and wave Reynolds stress are well predicted by inviscid402

theory and if we take for the incident flow, its value averaged over the inner layer depth. This depth403

has a definition that can be generalized, at least conceptually. For instance, if the boundary layer404

scheme uses first order closure with vertical diffusion coefficients, the coefficients and tendencies405

can be linearized around the large-scale resolved state. If we consider a small perturbation of406

given horizontal scale, the inner layer depth of interest is that where advection by the resolved407

wind equals the disturbance in boundary layer tendency. These predictions of the drag and waves408
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Reynolds stress remain valid until the mountain height equals the inner layer scale. Our theory409

does not go beyond that height. For higher mountains we should probably average the incident410

flow over the mountain height to obtain realistic predictions. Actually, this is what we find with411

our model when imposing free slip boundary condition in z = h, i.e. in an inviscid approximation412

where the boundary layer depth is drastically reduced (not shown).413

For large values of the stratification, we also find that a good fraction of the stress is dissipated414

near the top of the inner layer, simply because the waves have shorter vertical wavelength and are415

more dissipated there. This effect is mitigated when the top of the hill is near the top of the inner416

layer scale again, but suggests that a good fraction of the mountain wave drag should be given417

back to the flow near the top of the inner layer. Another interesting result concerns the source of418

the mountain wave stress. When the mountain is well inside the inner layer, the wave stress is in419

good part extracted from the inner layer itself rather than from the solid earth as in the inviscid420

case. When the mountain slope approaches the inner layer depth this result is less applicable and421

a good part of the pseudo momentum flux is directed toward the surface as in the inviscid case422

(Durran, 1995; Lott, 1998).423

Our results could also be used to provide alternative views concerning the dynamics of upstream424

blocking and downslope winds. They occur through a near surface critical level dynamics and425

without upper level wave breaking (remember that our theory is linear inside the flow) providing426

that the flow is stable J > 1, and that the mountain slope is near the inner layer scale. This confirms427

the results in Lott (2016) and Damiens et al. (2018) who predicted these behaviors using simpler428

theories and using simulations with WRF including more sophisticated boundary layers. Another429

important result concern the structure of the inner layer itself: the downslope winds penetrate well430

into the inner it, as shows for instance Fig. 7 when J = 9 or J = 16.431

Last, for all the results presented here, we have neglected that the mountain gravity waves nec-432

essarily return to the surface in the constant shear case: they are all trapped, and this effect should433

be taken into account to give a more realistic treatment of the constant shear case. To take this into434

account within our theoretical framework we need to reject the hydrostatic approximation and we435

have to treat the inviscid solution in terms of Hankel functions (Keller, 1994), a solution we will436

describe in a future paper. Note that such subsequent development will also allow us to treat the437

non-stratified situation and describe the transition from the neutral to the stratified case. Here we438

wanted to treat the hydrostatic case first because an extremely rich dynamics already occur at low439

level and we do not need to attribute this dynamics to the fact that all the harmonics are trapped.440

In this paper also, the background shear flow is constant, which corresponds to a boundary layer441

flow of infinite depth. Hence, even though we insist on using the terminology that the dynamics442

introduces an ”inner” layer scale, it has to be clearly distinguished from the plausible presence443
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of a ”boundary layer”, where the incident wind present large curvature. Again, we can treat such444

problem with our formalism by imposing background flow with non-zero curvature, a situation445

that can introduced trapped lee waves in the non-hyrostatic case (Soufflet et al., 2019).446

APPENDIX447

A1. Pre-conditioning of the viscous solution448

To evaluate w̃2, w̃3, and w̃4 we proceed as in Lott (2007), take the asymptotic forms in (18) when449

z̃ > 5 and integrate down to z̃ = 0 with a Runge-Kutta algorithm. Nevertheless these solutions are450

ill-conditioned when it comes to the inversion of the boundary condition, essentially because w̃3451

and w̃4 vary exponentially with altitude (see (18)). To circumvent this difficulty, rather than w̃2,452

w̃3, and w̃4 we have used 3 solutions w̃a, w̃b, and w̃c which asymptotic behavior for z̃ → ∞ all453

match the inviscid solution wI when z → 0, but which do not grow exponentially fast when z̃ → 0:454

w̃a(z̃) = w̃2(z̃)+ ã3w̃3(z̃)+ ã4w̃4(z̃) (A1a)

455

w̃b(z̃) = w̃2(z̃)+ b̃3w̃3(z̃)+ b̃4w̃4(z̃) (A1b)
456

w̃c(z̃) = w̃2(z̃)+ c̃3(k)(z̃)+ c̃4w̃4(z̃). (A1c)

The three pairs (ã3, ã4), (b̃3, b̃4), (c̃3, c̃4) are then chosen so that (∂z̃ũa(0),∂z̃b̃a(0)) = (0,0),457

(∂z̃ũb(0), p̃b(0)) = (0,0), and (∂z̃b̃c(0), p̃c(0)) = (0,0) respectively. These three solutions are458

shown in Fig. 10 for J = 1 and Pr = 0.5, they show moderate variations with inner altitude z̃, the459

exponential behavior of w̃3 and w̃4 has clearly been mitigated by adopting finite amplitudes values460

for the variables and their derivatives at the surface. The boundary condition is then satisfied by461

writing,462

w(x,h)≈
∫ +∞

−∞
kδ (k)

(
fa(k)w̃a(h̃)+ fb(k)w̃b(h̃)+ fc(k)w̃c(h̃)

)
eikxdk = 0, (A2a)

463

u(x,h)≈
∫ +∞

−∞

(
fa(k)ũa(h̃)+ fb(k)ũb(h̃)+ fc(k)ũc(h̃)

)
eikxdk =−h(x), (A2b)

464

b(x,h)≈
∫ +∞

−∞

(
fa(k)b̃a(h̃)+ fb(k)b̃b(h̃)+ fc(k)b̃c(h̃)

)
eikxdk =−Jh(x), (A2c)

where h̃(x,k) = h(x/)δ (k). Once discretized in the horizontal and spectral domain, the set of465

equations (20) corresponds to three linear equations involving nine matrices (for instance one of466

the matrix has for components k jδ (k j)w̃a(h̃i j)e
ik jxidk) and three unknown vectors (with compo-467

nents fa(k j), fb(k j), and fc(k j)) that can be inverted with conventional matrix inversion routines.468
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Still in this formalism, the uniform approximation of w in (19) writes,469

w(k,z) = kδ (k)
[

fa(k)w̃a(k,z/δ (k))+ fb(k)w̃b(k,z/δ (k))+ fc(k)w̃c(k,z/δ (k))
]

(A3)

again with similar expression for u and b.470

A2. Numerical resolution471

To solve numerically our problem we always take a domain of length X = 100 spanned by N =472

1024 points, which corresponds to a spectral resolution around dk ≈ 0.01 and a spatial resolution473

around dx ≈ 0.1. In the vertical we take grids of maximum depth Z = 3 and smoothly varying474

vertical resolution. The variable resolution is such that for z > 10S the grid spacing dz ≈ 0.03475

whereas near around and below the mountain top dz ≈ S/10. We will then systematically vary the476

other two non dimensional parameters of the problem S, and J.477

Concerning the variations in slope S, we have to assume that the mountain is well in the boundary478

layer, a condition that needs to be satisfied for each harmonics. Although this pauses a theoretical479

problem since in the infinite Fourier integrals k can become extremely large (and δ (k) very small)480

it can be handled numerically once fixed the horizontal scale of the domain over which Fourier481

series approximate Fourier transform and once fixed the number of horizontal grid points. More482

specifically, if kmax = Nπ/X , the condition that the associated boundary layer depth is larger than483

the mountain top is S

δ (kmax)
≈ 1 or less. Nevertheless, and for moderately large domain length X it484

happens that it is sufficient to satisfy this condition for the dominant wavenumbers, i.e. to satisfy485

S

δ (1)
≯ 1. This guaranties that the dominant harmonics forced by the obstacle are still well viscous486

near the mountain top. In this case, numerical convergence was found up to around S ≈ 0.15.487

Acknowledgement488

This work was supported by the Laboratoire de Recherche Conventionn Yves Rocard, a collab-489

orative unit between CEA and Ecole Normale Supérieure.490

References491

Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved492

cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 2293–2315, doi:10.1175/493

1520-0493(1997)125〈2293:ROTBSC〉2.0.CO;2.494

Ayotte, K., 2008: Computational modelling for wind energy assessment. Journal of Wind Engi-495

neering and Industrial Aerodynamics, 1571–1590, doi:10.1016/j.jweia.2008.02.002.496

Baldwin, P., and P. H. Roberts, 1970: The critical layer in stratified shear flow. Mathematika, 17,497

102–119.498

17



Belcher, S. E., and N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over499

low ridges. Quart. J. Roy. Meteor. Soc., 122, 863–902.500

Beljaars, A., J. Walmsley, and P. Taylor, 1987: A mixed spectral finite-difference model for neu-501

trally stratified boundary-layer flow over roughness changes and topography. Boundary-Layer502

Meteorology, 38 (3), 273–303.503

Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent oro-504

graphic form drag. Quarterly Journal of the Royal Meteorological Society, 130 (599), 1327–505

1347.506

Benjamin, T. B., 1959: Shearing flow over a wavy boundary. Journal of Fluid Mechanics, 6 (2),507

161–205.508

Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear509

flow. J. Fluid Mech., 27, 102–109, doi:http://dx.doi.org/10.1017/S0022112067000515.510

Charru, F., B. Andreotti, and P. Claudin, 2012: Sand ripples and dunes. Annu. Rev. Fluid Mech.,511

45, 469–493, doi:10.1146/annurev-fluid-011212-140806.512

Damiens, F., F. Lott, C. Millet, and R. Plougonven, 2018: An adiabatic foehn effect. Quart. J. Roy.513

Meteor. Soc., 144, 1369–1381, doi:10.1002/qj.3272.514

Doyle, J. D., and Coauthors, 2011: An intercomparison of t-rex mountain-wave simulations and515

implications for mesoscale predictability. Monthly weather review, 139 (9), 2811–2831.516

Durran, D. R., 1990: Mountain waves and downslope winds. AMS Meteorological Monographs,517

23, 59–83.518

Durran, D. R., 1995: Pseudomomentum diagnostics for two-dimensional stratified compressible519

flow. Journal of the atmospheric sciences, 52 (22), 3997–4009.520

Ekman, V. W., and Coauthors, 1905: On the influence of the earth’s rotation on ocean-currents.521

Almqvist & Wiksells boktryckeri, A.-B.,.522

Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys.523

Publ., 22, 1–23.524

Engelund, F., 1970: Instability of erodible beds. Journal of Fluid Mechanics, 42 (2), 225–244.525

Fowler, A., 2001: Dunes and drumlins. Geomorphological fluid mechanics, Springer, 430–454.526

Hazel, P., 1967: The effect of viscosity and heat conduction on internal gravity waves at a critical527

level. Journal of Fluid Mechanics, 30 (4), 775–783.528

18



Hunt, J. C. R., S. Leibovich, and K. J. Richards, 1988: Turbulent shear flows over low hills. Quart.529

J. Roy. Meteor. Soc., 114, 1435–1470.530

Jackson, P. S., and J. C. R. Hunt, 1975: Turbulent wind flow over low hill. Quart. J. Roy. Meteor.531

Soc., 101, 929–955.532

Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary533

layers. J. Atmos. Sci., 63, 617–633, doi:http://dx.doi.org/10.1175/JAS3640.1.534

Keller, T. L., 1994: Implications of the hydrostatic assumption on atmospheric gravity waves.535

Journal of the atmospheric sciences, 51 (13), 1915–1929.536

Lott, F., 1998: Linear mountain drag and averaged pseudo-momentum flux profiles in the presence537

of trapped lee waves. Tellus A: Dynamic Meteorology and Oceanography, 50 (1), 12–25.538

Lott, F., 2007: The reflection of a stationary gravity wave by a viscous boundary layer. J. Atmos.539

Sci., 139, 3363–3371, doi:http://dx.doi.org/10.1175/JAS4020.1.540

Lott, F., 2016: A new theory for downslope windstorms and trapped lee waves. J. Atmos. Sci., 73,541

3585–3597, doi:doi:10.1175/JAS-D-15-0342.1.542

Lott, F., and M. Miller, 1997: A new subgrid scale orographic drag parameterization; its testing in543

the ecmwf model. Quart. J. Roy. Meteor. Soc., 123, 101–127.544

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompress-545

ible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102,546

5753–5766, doi:10.1029/96JC02775.547

Miles, J. W., 1957: On the generation of surface waves by shear flows. Journal of Fluid Mechanics,548

3 (2), 185–204.549

Olafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic550

drag. J. Atmos. Sci., 54, 193–210.551

Passaggia, P.-Y., P. Meunier, and S. Le Dizes, 2014: Response of a stratified boundary layer on a552

tilted wall to surface undulations. Journal of Fluid Mechanics, 751, 663684, doi:10.1017/jfm.553

2014.296.554

Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Missing orographic drag leads to climate555

model biases in jet streams, blocking and storm tracks. Geophysical Research Letters, 43, 7231–556

7240.557

Prandtl, L., 1952: Essentials of fluid dynamics blackie. London-Glasgow, 452p.558

19



Richard, E., P. Mascart, and E. C. Nickerson, 1989: The role of surface friction in downslope559

windstorms. J. Appl. Meteor., 28, 241–251.560

Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. Shepherd, and A. Zadra, 2015: Im-561

pacts of parameterized orographic drag on the northern hemisphere winter circulation, jour-562

nal of advances in modeling earth systems. J. Adv. Model. Earth Syst., 8, 196–211, doi:563

DOI:10.1002/2015MS000564.564

Scinocca, J., and T. Shepherd, 1992: Nonlinear wave-activity conservation laws and hamilto-565

nian structure for the two-dimensional anelastic equations. Journal of the atmospheric sciences,566

49 (1), 5–28.567

Sheridan, P., S. Vosper, and P. Brown, 2017: Mountain waves in high resolution forecast models:568

Automated diagnostics of wave severity and impact on surface winds. Atmosphere, 8 (1), 24.569

Sheridan, P. F., V. Horlacherxi, G. G. Rooney, P. Hignett, S. D. Mobbs, and S. Vosper, 2007:570

Influence of lee waves on the near surface flow downwind of the pennines. Quart. J. Roy. Meteor.571

Soc., 133, 1353–1369, doi:10.100a/2qj.110.572

Smith, F., 1973: Laminar flow over a small hump on a flat plate. Journal of Fluid Mechanics,573

57 (4), 803–824.574

Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by a boundary575

layer. J. Atmos. Sci., 63, 774–781, doi:http://dx.doi.org/10.1175/JAS3631.1.576

Smith, R. B., S. Skubis, J. D. Doyle, A. S. Broad, C. Kiemle, and H. Volkert, 2002: Mountain577

waves over the mont blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59, 2073–578

2092.579

Soufflet, C., F. Lott, and F. Damiens, 2019: Trapped mountain waves with critical level just below580

the surface. Quart. J. Roy. Meteor. Soc., Submitted.581

Sykes, R., 1978: Stratification effects in boundary layer flow over hills. Proceedings of the Royal582

Society of London. A. Mathematical and Physical Sciences, 361 (1705), 225–243.583

Van Duin, C. A., and H. Kelder, 1986: Internal gravity waves in shear flows at large reynolds584

number. Journal of Fluid Mechanics, 169, 293–306.585

Wood, N., A. Brown, and F. Hewer, 2001: Parameterizing the effects of orography on the boundary586

layer: an alternative to effective roughness lengths. Quart. J. Roy. Meteor. Soc., 127, 759–777.587

Wood, N., and P. Mason, 1993: The pressure force induced by neutral, turbulent flow over hills.588

Quart. J. Roy. Meteor. Soc., 119, 1233–1267.589

20



LIST OF FIGURES590
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FIG. 1. Physical fields predicted by the theory in the hydrostatic case and when J = 4, S = 0.01, δ = 0.1. a)

Total wind vector (z+ u,w), b) vertical wind w; c) total stream function ψ defined by: ∂zψ = z+ u; d) Vertical

flux of action F z (contour) and action flux vector (Fx,F z). In 1b) and 1d) the negative values are dashed.
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√

(J)S2, see Eq. 22). Grey dots are from the

MITgcm with S = 0.15.
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FIG. 5. Same as Fig. 1 for S = 0.15.

26



FIG. 6. Vertical velocity for different values of the Richardson number J and of the slope S. Boundary layer

depth δ (1) = 0.1. Contour intervals are shown in each panels.
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FIG. 7. Wind vectors around the hill and for different values of the Richardson number J and of the slope S.

Boundary layer depth δ (1) = 0.1.
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FIG. 9. Vertical velocities from the MITgcm in the upper panels correspond to the theory in Figs. 6d),6e) and

6f). Wind vectors from the MITgcm in the lower panels correspond to the theory in Figs. 7d),7e) and 7f).
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FIG. 10. Uniform solutions used to invert boundary conditions and to evaluate the wave fields over the entire

domain. J = 1, Pr = 0.5. All the solutions are expressed using inner variables.
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