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ABSTRACT 

Churrlov and Shukhman /l/ have investigated the nonlinear development of Kelvin Helmholtz 
instabilities in a weakly supercritical stratified shear flow when the interaction is 
viscous In that case, the role of the Prandtl number is predominant. This last result is 
Investigated again through nonlinear numerical simulations in which the dissipations are 
represented by Newtownian cooling and Rayleigh friction. 

INTRODUCTION 

The study of the nonlinear evolution of weakly unstable small amplitude disturbances in a 
non-rotating stratified unbounded shear flow was analytically initiated in /2/ and continued 
in /l/ An important role in the development of the disturbances is played by the critical 
level, where the wave horizontal phase velocity coincides with the horizontal mean flow 
velocity Then, the regime of the,/c;itical layer depends on the lar est of the unsteady scale 

Lt--l* the viscous scale Lv-(kRe) and the nonlinear scale Lo-A 2/k . Here, k stands for the 
horizontal wave number of the most unstable mode, 7 is its growth rate and A its amplitude 
Re is a Reynolds number For It'max(L,,,Lt), the interaction is viscous and the nonlinear 
effects are controlled by the Prandtl number Pr-v/n (v is the viscosity and n is the thermal 
conduction) For Pr>l, the growth rate of the unstable mode becomes larger than the linear 
one the disturbance is destabilized through nonlinear interactions. That result is mostly 
linked to a feedback influence of the modification of the stability of the mean flow due to 
the action of the wave For Pr<l, opposite effects are observed. 

The purpose of this study is to determine if that property also exists when dissipations are 
represented by Newtownian cooling and Rayleigh friction To do this, we determine the fully 
nonllnear evolution of Kelvin Helmholtz instabilities with the help of the numerical model 
presented in /3/ for different values of the Prandtl number Pr-a/b Here a is the Rayleigh 
frlctron and b is the Newtownian cooling 

THE MODEL 

We consider the nonlinear development of a Kelvin Helmholtz instability in a Drazin profile 
U(&)=U,tanh(&/d), N'(g) = Ni, where * indicates dimensional variables 
d/U0 and Nid as units of length, speed, time and buoyancy, 

Introducing d, U,,, 
the system of equations in the 

Boussrnesq approximation is written in dimensionless form: 

(a, + U a,) A$ - d'U/dz' aX$ + J aX'p + a A$ - +($,A$) (1) 

(a, + U ax) cp - a,+ + b 9 - +($, 9) (2) 

Where a, stands for partial derivative whith respect to the variable i, A stands for the 
Laplacian A$ - axX+ + arrti $ and cp are the stream function (8,$-u , 8,+-w) and the 
buoyancy force associated to the disturbance, (f,g) - a,f arg - 8 f a g is used to express 
the nonlinear terms, U is the normalized initial mean wind andrJ 1s the initial minimum 
Richardson number J- Ngd2 / Ug The initial flow is weakly unstable* p - (0 25-J) 4 1 
The boundary conditions are 4 + 0 for z -+ ti They are numerically simulated by introducing 
sponge layers at the top and at the bottom of the field In the horizontal direction, the 
system is periodic 

To describe the instability, the disturbance is decomposed as the sum of a disturbance of the 
horizontal mean field and a disturbance for which the horizontal mean is zero 

- 
rp(x,z,t) - 9(z,+) + 1% (p((z,7) ei'k(x-ct' 

-al 
Here r-pit is a long time Scale 

one (k'-0 5, c-0, /4/), and 
The fundamental mode (l-l) of the system is the most unstable 

it reaches a critical level at z-0. The distortion of the mean 
flow and the secondary modes (l-2,3, .) are nonlinearly generated by this fundamental 
mode Note that the onset of such unstable modes has often been observed in realistic 
atmosphereS(see for instance /5/) 
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Here we shall consider the nonlinear evolution of the most unstable mode in a flow for which 
J-O 22, a/k-O 02 and for three different values of the Newtownian cooling b/k-O 01 , 0 02 , 
0 04 

To initialize the system, a disturbance with horizontal wavenumber k is introduced later, 
the most unstable mode associated with that wavenumber begins to dominate the solution. When 
transrent effects associated with the initialization have disappeared, the growth rate of the 
rnstabllity is constant if the amplitude of the mode is small enough to make the nonlinear 
terms negligible This is the starting point of the results we shall present Thereafter, 
since the unstable mode continues to grow, nonlinear effects begin to be significant 

LINEAR RESULTS 

As long as the amplitude of the mode is small, its growth rate T is the linear one In that 
case, it is observed that in the three different experiments, 
increases when the Prantl number decreases 

the value of r,,e slightly 
This effect has already been noticed in /3/. It 

is small for small dissipation rates and we have found that r,,,/k = 0.0083 in all three 
experiments to a good approximation. Note that we verify rli,<max(a,b), so that the 
dissipation mechanisms control the critical layer interaction. 

Prom the structure of the fundamental mode obtained from those simulations, and as long as 
the situation remains linear, it is possible to analyze the action of the fundamental mode of 
the wave on the mean flow: 

8,u + a c = (21 + a) u 01 - 1 Real(d(w; u,)/dx) (4) 

8,; + b (p = (27 + b) 5 - - l Real(d(w; q)/dz) (5) 

Furthermore, the modification of the stability of the mean flow through the action of the 
wave in the vicinity of the critical level is given by : 

(6Ri) = J (&/dz - 2 di/dx) for x=0 (6) 

to.2 . v 
z PI=2 

-iReal(d(w;u,)/dz) (-_) 

-iReal(d(w;q)/dz) (- -) 

Figure 1: Action of the fundamental 
mode of the instability on the 
horizontal mean wind and the 
horizontal mean stratification as a 
function of x for various Prandtl 
number The unchanged parameters of 
the simulations are J-0.22, k2-0 5, 
c-0 and a/k - 0 02 
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Figure 1 displays the vertical structure of these forcing terms as a function of z and for 
different values of the Prandtl number In the three experiments, it is observed that the 
wave tends to take horizontal momentum and buoyancy from the mean flow above the critical 
level (z-0) and to restore the same quantity below. Thus, it tends to decrease both dc/dz 
and &/dz in the vicinity of the critical level 
critical level, the wave stabilizes the mean flow 
same time, the wave destabflizes 1t by decreasing 
For Pr-1 (Figure lb), comparing the shears of the 
velocity and on the mean buoyancy, it is observed 

-Real(d'(w;u,)/dz') = -1 Real(d'(w;p,)/dz') 

Furthermore, since b-a, the associated changes in 
can presume that: 

According to (6), it appears that near the 
by decreasing the mean shear, whilst at the 
the mean stratification. 
action of the wave on the mean horizontal 
that 

< 0 for 210 (7) 

G/dz and dc/dz are similarly damped and we 

(6Ri) = J (&/dz - 2 dc/dz) = 0 for z==Cl. 

For b>a (Pr<l) ( figure lc) the thermal exchanges - 

(8) 

occur on a thicker layer than the exchanges 
of momentum Thus, the associated shear of the action of the wave on the mean buoyancy is 
larger than in the preceeding case and it is found that 

-Real(d2(w;u,)/dz2) < -i Real(d2(wf~,)/dz2) < 0 for z=O (9) 

Furthermore, since b>a, the associated changes in G/dz 
This effect adds to the preceding one 

are more damped than those of dii/dz. 
and it is presumed that the mean flow will be 

stabilized in the vicinity of the critical level 

(6Ri) = J (d$dz - 2 d$dz) > 0 for z=O. 

For, b<a (figure la) opposite effects occur. 

(10) 

NONLINEAR RESULTS 

Figure 2 displays the temporal evolution of the nonlinear growth rate of the mode under study 
as compared to the linear one for various Prandtl numbers We find again that the disturbance 

is more stable in the nonlinear case than in the linear one if Pr<l For Pr>l, it is more 

unstable, while for Pr-1, as compared to the two other experiments,it is observed that the 

nonlinear growth rate remains closer to the linear On that figure, choosing characteristic 

scales of the mean flow representative of those existing in the real atmosphere, the 
evolution of the unstable mode is also represented using dimensional variables 

growth rates 

0.014 (6 1o-4 s-l) 

0.0 
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lution of the growth rate of the instability for various Prandtl 

marameters of the simulations are. J-O 22, k2-0 5, c-0 and a/k * 0 02 
.d N2-4 10‘4s-2 
&_6O10-5 s-1 ’ 

the dimenslonal parameters of that simulation are' 

Figure 3 represents the changes in Zdc/dz and d$dz after 20 periods (t-178) of the 
calculations. Confirming the preceding analysis, it is observed that the stabilization of the 
unstable mode for Pr<l is linked to a stabilisation of the mean flow in the vicinity of-the 
critical level (figure 3c) since Zdc/dz < &/dz there 
and &/dz are close to each other 

For Pr-1, both modifications of 2du/dz 
(figure 3b) while for Pr>l, the mean flow is destabilised 

near the critical level since Zdi$dz > &/dz there (figure 3~) 
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Pr=Z 

Pr=l 
Zd;/dz (-) &/dz (- -) 

Figure 3: Nonlinear modification of 
the mean wind shear and the mean 
stratification at t-178 The 
unchanged parameters of the 
simulations are J-O 22, k'-0 5, c-0 
and a/k - 0 02 

05 

to.2 
Z Pr=0.5 

The analysis presented here does not involve the incidence of secondary modes (9, 4, ) on 
the nonlinear evolution Nevertheless, comparing fully nonlinear simulations to quasilinear 
ones (i e , simulations for which those secondary modes are filtered away) it has been 
observed that their influence is weak compared to that of the modification of the stability 
of the mean flow (as long as 
obtained in /l/, although in 
conduction 

the interaction is weakly nonlinear) Similar results have been 
that case the dissipation mechanisms were viscosity and thermal 

CONCLUSION 

The influence of Newtownian cooling and Rayleigh friction on the development of a Kelvin- 
Helmholtz instability in a stratified shear layer strongly depends on the amplitude of the 
disturbance As long as it is small enough to be linear, a decrease in the Prandtl number a/b 
weakly destabilizes the flow (it increases the growth rate of the most unstable mode) When 
the nonlinear effects become significant, and when the damping dominates the unsteadiness of 
the unstable mode, a decrease in the Prandtl number nonlinearly stabilizes the evolution of 
that mode 

Note that these nonlinear properties have to be considered in the discussions concerning the 
onset of (linear) instabilities when the Richardson number is everywhere larger than 0 25 and 
when there is dissipation /6/ and /7/ In reality, these modes generally exist at small 
Prandtl number. In fact, for at least some of those instabilities, it has been observed that 
their amplitude remains very small because of the nonlinearities 
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