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10

Atmospheric mountain flows produced when the incoming wind is small near the
surface and continuously increases with altitude are evaluated with models of increasing
complexity. All models confirm that foehn can be produced by a mountain gravity
wave critical level mechanism, where the critical level is located below the surface.
This mechanism does not involve humidity, upper level wave breaking, upstream
blocking, downward wave reflections or hydraulic control as often suggested by popular
theories. The first model used is a theoretical model which combines linear gravity wave
dynamics with a nonlinear boundary condition: in this model the wave breaking does
not feedback onto the dynamics by construction. Partial linear waves reflection are also
minimized by using smooth profiles of the incident wind and a uniform stratification
N2 = cte, and can even be suppressed when the incident wind shear is also constant,
Uz = cst. The second model is a numerical mesoscale model (Weather Research and
Forecast), and we show that it predicts mountain wave fields that can be reproduced by
the theoretical model, provided that we specify an adequate boundary layer depth in
the theoretical model.
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1. Introduction13

Foehn flows are characterized by downslope winds that are warm, dry and strong and that generally occur on the lee side of mountains14

(Richner and Hachler 2013). For more than a century they have been studied worldwide (see for three different mountain ranges15

Brinkmann (1974); McGowan et al. (2002); Drobinski and Coauthors (2007)), because they have strong economical impacts, for16

instance through increase in fire danger (Takane and Kusaka 2011; Sharples et al. 2010; Cannon et al. 2017)), pollution (Seibert et al.17

2000) or weather hazards. They can also actively contribute to the climate change through their local impacts on sea ice melting18

(Elvidge et al. 2015).19

One long-standing question about foehn concerns the origin of the warming of the air masses, and it is generally admitted that20

there are two dominant mechanisms that can explain it (Richner and Hachler 2013). The first mechanism is along the line of21

meteorological textbooks (Seibert 2005) when the example of the foehn is used to illustrate the significance of moist processes by using22

thermodynamical diagrams. In this ”diabatic” theory, the warming of the air masses results from the forced condensation that occurs23

upstream of the ridge, the large temperature and dry air result from the flow descent on the lee side. As observational evidence suggests24

that warming has a more adiabatic cause (Seibert 1990), a second mechanism, named ”isentropic drawdown” is often proposed. In this25

mechanism, the foehn air comes from warmer and dryer altitudes upwind of the mountain because there is low level flow blocking.26

These two types of foehn, one diabatic with strong upstream ascent and one adiabatic with upstream flow blocking are sometimes27

referred to as Swiss and Austrian foehn respectively (Wursch and Sprenger 2015). With the progress of Lagrangian analysis, the28

relative amplitude of these two mechanisms is now better established (Smith et al. 2003; Miltenberger et al. 2016) and it seems that the29

adiabatic mechanism is often more efficient that the diabatic one. The Lagrangian analyses also reveal that other irreversible processes30

can play a role, like the vertical mixing occurring when the air passes the mountain summit, and the radiative impact of the upstream31

clouds (Elvidge and Renfrew 2016).32

The fact that dynamics play such a central role in the foehn motivates the present paper. Actually, behind the apparently simple idea33

that upstream blocking elevates the air parcels before they abruptly descent on the lee side are hidden quite subtle nonlinear processes.34

These processes are controlled by the non dimensional mountain height,HN = HN
U∞

, whereH is the maximum mountain height,N the35

buoyancy frequency and U∞ a scale for the incident wind. When HN is large, the vertical wavelength of the mountain waves U∞/N is36
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2 Damiens, Lott, Millet, and Plougonven

small compared to the mountain heightH , the mountain waves break near above the mountain top, and the resulting nonlinear dynamics37

produce strong downslope winds and foehn (see the review by Durran (1990) and recent simulations in Smith and Skyllingstad (2011)).38

The mixing produced by the breaking waves can induce a well mixed stagnant layer, which allows to establish a correspondence with39

the fully nonlinear hydraulic jump theory (Baines (1998); Smith (1985)). The presence of the stagnant layer also permits to argue40

that nonlinear reflections at the self-induced critical level present in the mixed layer can reflect downward the waves and amplify the41

response (Laprise and Peltier 1989; Smith and Skyllingstad 2011). Also, for large HN , part of the low level flow is blocked upstream42

making upstream blocking concomitant to the onset of foehn. All these efforts to interpret dynamically the onset of foehn in terms of43

breaking waves or blocking, hide the simple fact that some foehn can be produced by Long (1953)’s model for hydrostatic linear waves44

forced by a nonlinear boundary condition (Lilly and Klemp 1979; Muraki 2011). Interestingly, using such a model, Lilly and Klemp45

(1979) predict that the wave response is enhanced for mountains with a small windward and large leeward slopes, which is a form of46

”isentropic drawdown” mechanism produced by blocking, if we assume that the blocked air can be represented dynamically by a gentle47

windward slope. Nevertheless, the results using Long (1953)’s type models are not much used to interpret foehn, essentially because48

when they produce foehn, they also predict intense wave breaking aloft which undermines all the linear interpretations of what occur49

downstream of the breaking zone (e.g which includes the foehn zone). As we shall see, low level wind shears can mitigate this upper50

level wave breaking because the mountain waves become less and less unstable with altitude when the wind increases.51

Concerned with the recurrent problem in mountain meteorology theory that the near surface winds are ill defined (Vergeiner (1971);52

Lott (2007)) and can become very small, Lott (2016) (hereinafter L16) adapts the model of Long (1953) to incident shear flow that53

are null in z = 0. L16 shows that this induces a critical level dynamics near below the surface that produces downslope windstorm and54

foehn without upper level wave breaking. L16 also shows that downslope winds and foehn are favored when the surface flow is stable,55

i.e. when the surface Richardson number J = N2/U2
z is large compared to its critical value, J = 0.25. As the model is linear, it also56

suggests that there is no need to interpret the onset of foehn in terms of upstream blocking, nonlinear internal wave reflections, or using57

hydraulic theory, which are all the ingredients that are often mentioned to explain adiabatic foehn.58

The results in L16 have several limitations. The first is that the model in L16 is only adapted to situations when the shear layer depth,59

d, is much larger than the maximum mountain height,H , i.e. as long as the near critical level solutions in Booker and Bretherton (1967)60

can be used to treat the critical level. The second is that L16 does not explain why the results found are so sensitive to J . The third is61

that it does not exclude the possibility that reflections can play a role on foehn, because linear reflections can be present. The fourth is62

that the inflow equations used in Long (1953) are only rigorously valid when the incident flow is uniform. The last is the representation63

of boundary layer absorptive effects: L16 uses Raighleigh drag and Newtownian cooling with a free slip boundary condition. Some64

earlier studies have explored more realistic boundary conditions, e.g. for turbulent flow over hills (Hunt et al. 1988a,b), or with viscous65

solutions Lott (2007). In L16, these simplifications are made to ease the numerical treatment of the problem. They are in part justified66

by the fact that in the atmosphere the low level wind shears are often due to horizontal gradients in temperature, they do not solely67

result from boundary layer dynamics: they can extend well above it, and there the inviscid dynamics can be applied.68

The purpose of the present paper is to fill these gaps by extending the L16’s theory to taller mountains, and by validating it against69

fully nonlinear simulations. For this purpose, section 2 reformulates the results in L16 for a mountain of arbitrary height (not only70

for H << d) but still for small dissipation (when the linear drags correspond to a boundary layer depth zb << d). Section 3 exposes71

the dry foehn mechanism proposed and shows that it is entirely related to the near-surface critical level dynamics. Section 4 presents72

fully nonlinear simulations done with WRF and explains how the value of zb is chosen to enable a comparison of the theory with the73

numerical simulations. Section 5 characterizes systematically the results in terms of foehn intensity, downslope winds amplitude, and74

gravity wave stress. To check if the results remain robust beyond our simplified treatment of the boundary layer, it also presents tests75

where (i) the incident wind is not null at the surface and (ii) where a conventional atmospheric boundary layer scheme is used. Section76

6 concludes and discusses further the relations with observations.77

2. Theoretical model78

To analyze the mountain waves produced by a stably stratified shear flow when the incident wind is null at z = 0, L16 considers the79

background flow profiles80

U(z) = U∞ tanh(z/d), N2(z) = const, (1)

incident on a 2-dimensional mountain, the height of which follows the Witch of Agnesi profile81

h(x) =
H

1 + x2

2L2

. (2)

In (1), U(z) is the background horizontal wind, N(z) the Brunt Vaisala frequency, z the altitude, d is the vertical scale of the shear and82

U∞ the incident wind maximum amplitude. In (2) H is the maximum mountain height, L its characteristic horizontal length, and x83

the horizontal coordinate. When scaling time by N−1 and distances by U∞/N the 2-dimensional non-rotating linear dynamics can be84

expressed in term of a non dimensional vertical velocity, w(x, z) of the form,85

w(x, z) =

∫ +∞

−∞
f(k)ŵc(k, z)e

ikxdk, (3)

where overbars denote dimensionless variables, and ŵc(k, z) is a canonical monochromatic solution of ”unit” amplitude in the far field86

which satisfies the dissipative Taylor Goldstein equation,87

d2ŵc

dz2
+

 1(
U − i zk√

J

)2 − Uzz

U − i zk√
J

− k2

 ŵc = 0. (4)
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Adiabatic Foehn 3

In (3) the amplitude term f(k) is obtained by numerical inversion of the non-linear free-slip boundary condition:88

w(x, h(x)) =
(
U(h) + u(x, h(x))

)
∂xh(x), (5)

where u(x, z) is the horizonatl wind disturbance. In (4)-(5)89

U(z) = tanh

(
z√
J

)
, and h(x) =

HN
1 + x2/2F 2

r
(6)

where90

J =
N2d2

U2∞
, HN =

HN

U∞
, and Fr =

LN

U∞
(7)

are the surface and minimum Richardson number, a non-dimensional mountain height, and a Froude number respectively. Still in (4)91

the dissipative vertical scale for each harmonics,92

zk =
zb
2

(
1

Frk
+ Frk

)
. (8)

has been expressed in terms of a global scale zb, with the first term in parenthesis resulting from Rayleigh drag and Newtonian93

cooling of coefficient zb/Fr ∗
√
J/2 and the second term from a viscous dissipation which acts in the x-direction only of coefficient94

zbFr/
√
J/2 (see also the right hand sides of Eqs.4 in L16). They are introduced to regularize the critical level dynamics for all the95

harmonics, i.e. the longer and the shorter ones respectively. Note that zk is written differently than in L16 to make clear that when the96

formula is applied to the dominant wavenumber Fr−1, zk in (8) compares to the dissipative scale zb∗.97

To construct ŵc, L16 uses for each k an exact solution of the inviscid version of (4), ŵinv(k, z), which is based on hypergeometric98

functions (see Lott et al. (1992) and (34) in L16), and which asymptotic behaviors are99

ŵinv(k, z >> 1) ≈ e−mz/
√
J , (9)

100

ŵinv(k, z << 1) ≈ a1(k)z1/2−iµ + a2(k)z1/2+iµ (10)

where,101

m =
√
J

√
|k2 − 1|, µ =

√
|J − 1

4
|, (11)

and where a1(k) and a2(k) have analytical forms once the ”unit” amplitude condition (9) is satisfied. Also, when k2 < 1, m is changed102

in −isign(k)m, where the sign is to ensure upward group speed. Near the surface, L16 also uses the asymptotic solution of the damped103

Taylor-Goldstein Equation (4) valid when z << 1:104

ŵsrf(k, z) = a1(k)(z − zk)1/2−iµ + a2(k)(z − zk)1/2+iµ, (12)

where a1 and a2 are the same as in (10) to ensure matching. To establish how these aproximate solutions can be combined to provide a105

uniformly valid approximation of ŵc(k, z), Fig. 1 shows ŵinv(k, z) (thin solid), its approximation near z = 0 ((10), thick dashed) and106

ŵsrf(k, z) (thick dashed and dots). For the three values of J selected, J = 0.5, 2, 4, we see that below around z ≈ J/4 the inviscid exact107

solution ŵinv and its inviscid approximation on the right of (10) almost coincide whereas above this altitude the asymptotic damped108

approximation (ŵsrf in (12)) and the asymptotic inviscid solutions (10) are very close. This suggests that we can take the altitude J/4109

to make a transition between the exact inviscid solution and the asymptotic damped solution. In the following, this transition is made110

by patching these two functions using tanh tapers centered at z = J/4 and of depth ∆z = J/5, i.e. by writting,111

ŵc(k, z) =

(
1 + tanh

(
5z
J −

5
4

))
2

ŵinv(k, z) +

(
1− tanh

(
5z
J −

5
4

))
2

ŵsrf(k, z). (13)

The thick gray curves in Figs. 1a, b, c show these new approximations, and illustrate how well they behave for all z, permitting a112

smooth passage from the damped solutions near the ground to the exact inviscid one in the far-field. Compared to L16, we use this113

approximation in the inversion of (5),114

∫ +∞

−∞
f(k)

[
ŵc(k, h)− ûc(k, h)

dh

dx

]
eikxdk = U

dh

dx
(14)

rather than using (12) to express ŵc and ûc in the terms between brackets in (14). This formally permits to consider more elevated115

ridges than in L16.116

∗For consistency, note also that the boundary layer depth zB used in L16 is related to the one here by zB = 5zb.
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4 Damiens, Lott, Millet, and Plougonven

3. A dry foehn mechanism117

As the numerical results obtained with this new formulation of the model are consistent with those in L16 we will only emphasize on118

the descents of warm air that characterize foehn. In the following we take a domain of length 800 spanned by 1024 equally spaced119

points, the Froude number Fr = 5 and the boundary layer scale zb = 0.05. The three panels in the left column of Fig. 2 shows that120

when J increases the foehn effect increases, as expected from the results in L16, where the same behavior was discussed in terms of121

downslope windstorms. The reader is referred to this paper for more complete sensitivity tests to HN and zb, but it is worthwhile to122

note here that when J passes 1 typically, an isentropic surface initially at the altitude of the ridge is not much displaced upward when it123

approaches the ridge but easily reaches the surface along the downslope side of the ridge (lowest dashed line in Fig. 2c). This ”foehn”124

effect becomes extremely pronounced when J = 4 in Fig. 2e: almost all the air located between HN < z < 2HN upstream of the ridge125

descent below the mountain top z < HN in the lee-side. Near the surface downstream, the theory predicts highly distorted isentropes126

and potential temperatures that are below the minimum value upstream: this is not realistic so they are not shown but this indicates127

where the dynamics may trigger breaking.128

If the foehn effect proposed is purely related to the critical level dynamics, then it should be present in a theory that is even simpler129

than the one used to produce the panels on the left in Fig. 2. For this purpose we next derive the theory when the wind shear Uz130

and buoyancy frequency are both constant, in the hydrostatic approximation and when the boundary layer depth is identical for all131

harmonics zk = zb. As we will see in this ”constant shear” case we can also formally eliminate the reflected waves, proving that they132

also play a minor role. To make clear that the dynamics in this case is only controlled by J and zb, the two parameters that control the133

critical level dynamics, we introduce a scaling suited to the constant wind shear configuration by taking for the horizontal and vertical134

scales those of the mountain. We also scale the horizontal velocity disturbance by the background velocity at the mountain top,135

x = Lx̃, z = Hz̃, u = UzHũ,w = UzH
2/Lw̃, p = ρrU

2
zH

2p̃, and b = U2
zHb̃. (15)

In this new set-up and scaling, the Boussinesq dynamics writes136

z̃∂x̃ũ+ w̃ = −∂x̃p̃, ∂z̃ p̃ = b̃, z̃∂x̃b̃+ Jw̃ = 0, (16a)
137

∂x̃ũ+ ∂z̃w̃ = 0, w̃(z̃ = h̃) =
(
h̃+ ũ

) ∂h̃
∂x̃
, (16b)

138

h̃ =
1

1 + x̃2/2
, (16c)

it is only controlled by the Richardson number J . In this setup, we know that for each harmonics the vertical velocity is exactly,139

ŵ = z̃1/2+isign(k̃)µ, (17)

where we have only retain the upward propagating solution (Booker and Bretherton 1967): there is no reflected wave by construction.140

We then incorporate a dissipative scale z̃k = z̃b which we also take constant, a simplification that permits to define a canonical solution141

ŵc(z, k) =
(
z̃ − isign(k̃)z̃b

)1/2+isign(k̃)µ
. (18)

We will next use this solution to evaluate the wave field in (3) and the boundary condition in (5). To ease comparison, the results will142

be shown using the dimensionless variables of the more complete theory,143

x = Frx̃, z = HN z̃, u =
HN√
J
ũ, w =

H2
N

Fr
√
J
w̃. (19)

The results from the simplified theory are shown in the right panels of Fig. 2, the resolutions being identical to those used to build144

the corresponding panels on the left. To have comparable results nevertheless we have taken a boundary layer scale that is smaller than145

that used in Section 2, zb = 0.02, a difference that is only related to our choice to take a constant boundary layer scale (if we adopt146

the formula (8) we need to return to the value zb = 0.05 to obtain the same results). With this scale, the simplified theory gives almost147

exactly the same results as the more complete one, at least at low level. As we emphasized previously, in this simplified theory, there148

is no reflected waves by construction, proving that the onset of foehn can be entirely due to the near surface critical level dynamics i.e.149

a mechanism summarized mathematically by (18), a mechanism that exclude pre-conditionning of a well mixed layer by upper level150

wave breaking, non-linear and now linear wave reflections.151

Finally to understand further why the near-surface critical level dynamics makes the foehn so sensitive to J it is worthwhile to notice152

that for large J , the Booker and Bretherton (1967)’s solution (17) has an interpretation in terms of vertical wavenumber. To make this153

transparent we approximate it near the mountain top by writing z = HN + δz, which yields154

z1/2+iµ = z1/2eiµ ln z ≈ z1/2Hiµ
N e

i µ
HN

δz
. (20)

Near the mountain top, the disturbance has a characteristic wavenumber m ≈ µ/HN . Now, we know that mountain flow dynamics155

becomes nonlinear when the disturbance’s vertical wavelength m−1 becomes smaller than the mountain height HN . The argument156

often given is that in this case the linear theory predicts that vertical velocities change sign before the air parcels reach the mountain157

top. If we apply this condition here, we have that nonlinear effect become large when HN/µ < HN , which approximately simplifies158

to the condition J > 1, which is the condition that favors foehn in the theory here and the downslope winds in L16.159

Another point we make is that foehn is not associated with upper level wave breaking, i.e. that some form of wave breaking can160

occur below the mountain top without occurring aloft. To illustrate this qualitatively we next use the same line of arguments as before.161
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Adiabatic Foehn 5

We compare the wave vertical wavelength mB and the vertical displacement ηB produced by the wave around a ”breaking” altitude162

HB , yet to be found, and by writing z = HB + δz. This yields163

mb ≈ µ/HB and ηB ≈ H
−1/2+iµ
B H

3/2−iµ
N . (21)

respectively. Qualitatively, breaking occurs when |ηB | ≥ m
−1
B , which gives,164

HB ≤ µ2/3HN . (22)

Wave breaking is confined to the lowest layers, and inhibited above the mountain summit HN at least when µ < 1. This is the basic165

reason due to which the foehn mechanism described here is not associated with upper level wave breaking. Of course this effect simply166

translates the fact that in presence of shear, the vertical wavelength increases with altitude.167

The result in (22) also illustrates that the depth of the layer over which breaking occurs increases with J . To a certain extent this168

suggests that the dissipative layer depth should increase with J . As we will see next this is in fact the case when we compare to fully169

nonlinear simulations.170

4. Verification with fully nonlinear model171

To extend the above results beyond the inflow-linear and Boussinesq approximations, we next use the WRF model in the 2D mountain172

flow configuration available on line†(Skamarock et al. 2008). It is configured here for a 100km long and 12km height domain gridded173

by 1000× 1000 points yielding resolutions of 100m and 12m in the horizontal and vertical directions respectively. At the lateral bounds174

the domain is open and below the model top a 6km deep absorbing layer prevents the gravity waves to be reflected downward. These175

quite high resolutions are to ensure that the near surface critical level dynamics is well represented. They require a time step ∆t = 0.5s.176

Note also that all the results from WRF shown next have been verified against simulations where the horizontal and vertical gridspacing177

are divided by two. As the WRF model is fully compressible, it is mandatory to recall that in it the stratification is represented by a178

Brunt Vaisala frequency given by N2 = g
θ0
dθ0
dz , where θ0 is a background potential temperature. To ensure that it is constant and to179

minimize the vertical variations of the background fields that could result in partial reflections, we consider an isothermal atmosphere180

Tr = 290K, yieldingN2 = κg2

RTr
= 3.10−4s−2, where κ,R, and g have their conventional dry air and earth-values. We will then impose181

the background wind (1) and always take U∞ = 10m/s, the minimum Richardson number will then be changed by varying the shear182

layer depth d. Also, the mountain height will be given by (2) with L = 2.8km to ensure Fr = 5.183

Finally, in all the WRF simulations presented the dissipative coefficients are set to 0 and the surface boundary condition is free slip.184

This does not mean that the simulations are inviscid, because irreversible and diabatic processes will necessarily occur if the model185

confirms the onset of convective overturnings like those found in the theoretical model in the previous section. All the experiments186

presented in the next section prove that the WRF dynamical core is stable and dissipative enough to handle these irreversible processes.187

When we return to the theory, it is a priori difficult to say how these irreversible processes can be translated in the theorety. Nevertheless,188

as the theory has a free parameter to represent dissipations, the boundary layer scale zb, we can vary it and try to identify a value189

for which there is a match between the nonlinear simulations and the theory. To sort out this issue we have undertaken a systematic190

comparison between the WRF model and the theoretical one, varying the boundary layer depth in the latter. We found a good agreement191

when we take a boundary layer depth varying like192

zb/
√
J = 0.05. (23)

The 0.05 factor is purely empirical and little sensitive to the resolution in both models, but the
√
J term suggests that between the193

simulations and the theory, the penetration of the boundary layer depth into the shear layer needs to be the same.194

4.1. Fixed mountain height195

To confirm that theory can match the fully nonlinear simulation, we present experiments with a fixed mountain height H = 250m,196

(HN = 0.5), and vary the minimum Richardson number between J = 0.5 and J = 5. Figure (3) shows the horizontal wind disturbances197

from the linear model (left) and the WRF model (right) for 3 different Richardson numbers (J = 0.5, 2, and 4). In each figure the contour198

interval is proportional to the background wind amplitude at the top of the Hill (≈ HN/
√
J), a value representative of the disturbance199

amplitude needed to satisfy the lower boundary condition. The first striking result is that the left hand and right hand panels share200

strong similarities: the wave amplitude and phase line tilts with altitude are comparable. Also, when J increases, the phase line tilts201

with altitude become more and more vertical above the ridge, which means that the characteristic horizontal scale of the wave field202

decreases when J increases: this behavior is consistently reproduced by the theory and by the WRF model. In all panels, we also note203

that the horizontal wind disturbances are substantially larger on the downstream side (x > 0). This upstream/downstream difference204

becomes very pronounced near the ground, contrasting the two flanks of the mountain. It is this difference in horizontal winds that205

explains why low level shears can produce intense downslope winds (L16), and we see here that it is also present in the simulations.206

Returning to the foehn effect, Fig. 4 shows the isentropic surfaces corresponding to the experiments shown in Fig. 3. Again, the207

results between the theory and WRF are quite consistent, some qualitative discrepancies emerge downstream where the simulations208

start to predict potential temperature jumps. These figures also illustrate another feature: the theoretical results shown in Fig. 2 and209

in Fig. 4 differ by the value of zb, which increases with J for the comparison with WRF (see eq. 23). Comparison of figures 2 and 4210

shows that the increase of zb limits the onset of foehn.211

†www2.mmm.ucar.edu/wrf/users/downloads.html
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6 Damiens, Lott, Millet, and Plougonven

4.2. Fixed penetration of the mountain into the shear212

As said before, to match the WRF simulations, we had to keep constant in the theoretical model, the ratio between the shear layer depth213 √
J and the boundary layer scale zb. This limits the amplitude of foehn in the theoretical model, but does not make it disappear. To214

make the Foehn effect more evident in the simulations, we next keep the ”penetration” of the mountain into the shear constant between215

the experiments by keeping HN/
√
J constant. In this case, at the top of the hill, the incident wind is the same in all the experiments,216

and to a certain extent, it is only the stratification that is changed. Note also that in these experiments the ratio between the boundary217

layer depth and the mountain height zb/HN is also constant, which allows cleaner comparisons of results since zb now changes with218 √
J .219

The results are shown in Fig. 5 for (J = 0.5, HN = 0.25) and (J = 4, HN = 0.71), the corresponding plots for (J = 2, HN = 0.5)220

being already in Figs 4c–d. Again, a good match between the theory and WRF is found, which is important since we are now using221

non-dimensional mountain height that are near 1. In both the theoretical model and in WRF, the foehn downstream is now slightly more222

substantial when J = 4 than when J = 0.5, but the difference are more in terms of horizontal distance over which the air descends on223

the lee-side. In the simulation with J = 4 the isentrope which is at the altitude of the mountain summit upstream rapidly descends below224

half the mountain top downstream, before returning to its upstream altitude after the passage through an hydraulic jump. Importantly225

both this behavior and the location of the jump are well predicted by the theory. When J = 0.5 the descent of air in WRF is less abrupt,226

in agreement with theory but the total descent is still about half the mountain height. Another point is worth noticing. In Figs. 5a-d,227

but this is also true in all the other Figures, there is very little uplift of the air parcels in front of the ridge, the most spectacular vertical228

displacements occur after the passage of the summit. This small uplift could suggest that diabatic effects should not much affect the229

results, at least when the atmosphere is not close to water vapor saturation.230

In this paper we try to make the point that upper level wave breaking is not needed for foehn to occur. The basic argument is that the231

theory is linear, yet shows a very good agreement with the fully non linear simulations. Nonetheless, we can go one step further and232

diagnose if upper level wave breaking actually occurs in WRF and in the theory. The answer is simply that it does not,and to illustrate233

this the Figs. 5e-f display the isentropic surfaces over a much larger domain than in Figs. 5c–d. In no place, except in the downstream234

lee side, the isentropes become almost vertical. This is in contrast with what is found with the Long’s model with uniform U (see Fig. 1f235

in L16). In it, downslope winds and foehn always occur in conjunction with upper level wave breaking.236

5. More systematic comparisons and alternative configurations237

5.1. Quantitative indices238

To provide quantitive measures of our results we have built global indices characterizing our problem and conducted 64 pairs (theory239

versus WRF) of experiments, 32 corresponding to the constant height cases described in 4.1. and 32 to the constant penetration of the240

mountain into the shear cases described in 4.2. For the first index, we follow L16 and measure downslope windstorm intensity by,241

A = Max
z<HN/2

0<x<5Fr

(
u(x, z)

U(HN/
√
J)

)
. (24)

The index A indicates to which extent the wind in the flow along the foothills (defined as the region with z < HN/2 and 0 < x < 5Fr)242

exceeds the background wind at the top of the hill (U(H/d)). In terms of foehn it is an important index because when the descent is243

rapid there is less time for diabatic effects to mitigate the warming of the air masses. The results in Fig. 6a somehow reproduce those244

in L16: the downslope wind intensity increases with stability J . However the increases are not as spectacular as in Lott (2016) where245

A much more easily reaches values above 1, but this is consistent with the fact that zb increases with J . This constraint is the price to246

pay for our theory to be consistent with the simulations.247

As our theory reproduces mountain waves quite well (see Fig 3), we have also evaluated the wave stress in z = 2
√
J (that is well248

above the maximum mountain height and the low level shear) and compare it to the linear hydrostatic wave drag produced by the249

mountain in (6) in a uniform flow of intensity U(HN ) = HN√
J

:250

F z = −

∫∞
−∞ uw dx

π
4
H3
N√
J

. (25)

Again, the curves in Fig.6b show that the theory and the nonlinear simulations are in good agreement. Interestingly, when the251

penetration of the mountain into the shear stays constant and J increases, the normalized wave stress F z increases well beyond 1.252

This behavior is reminiscent of the high drag states often found in non linear mountain flow theory (Bacmeister and Pierrehumbert253

1988).254

Finally, to characterize foehn, we identify the highest altitude from which are coming the isentropic surfaces that arrive along the255

downstream foothill, and normalize by the mountain maximum altitude. In our non-dimensional formalism where the background256

potential temperature varies as z exactly, this is conservatively given by,257

Fhn = Max
z<HN/2

0<x<5Fr

(
θ + z

HN

)
. (26)

Interestingly, in our models this factor is always near 1. In other words the dynamics forces isentropic surfaces that are upstream at258

the altitude of the ridge to descend along the foothills downstream. Hereagain simulations and theory compare well. In both, the foehn259

intensity increases with J , but as for the downslope winds intensity, it is less pronounced than when zb is kept small and constant in260

the theory (not shown).261
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5.2. Alternative configurations262

In the real atmosphere the low level shears have at least two causes: the thermal gradients due to the presence of fronts and the effect263

of the boundary layer. The first imposes shears that extend well above the boundary layer, the second forces the winds to vanish at264

the surface. There is no reason, except simplicity, to consider that the shears associated with these two processes have similar values.265

In this sense, we could say that our almost inviscid interpretation of the wave dynamics above the boundary layer is only adapted to266

the shears produced via thermal wind balance, Raighleigh friction and Newtownian cooling being an ad hoc parameterizations of the267

boundary layer absorptive properties, an absorption that becomes very efficient when the incident wind is null at z = 0. To show that268

our results have more generality than this apparently ”ad-hoc” setup, we next propose three experiments. In the first two, we keep the269

same models and setup as in Figs. 5c and 5d but shift vertically the mountain height by HN/10, e.g. by writing,270

h(x) = h =
HN

1 + x2/2F 2
r

+
HN
10

. (27)

Doing so there is no need to rewrite the theory but, from a dynamical point of view there is a major change: the incident wind is271

no longer exactly null at the surface. The results in Figs. 7a and 7b show that in this case the theory and WRF simulations are still272

consistent and that the foehn effects are almost identical to those when when the incident wind is null at z = 0 in Figs. 5c and 5d273

respectively.274

In the third experiment, we return to the exact setup of WRF used in Fig. 5d, but instead of the free slip boundary layer condition275

we adopt a planetary boundary layer scheme that has been extensively used in WRF. The chosen configuration activates the vertical276

diffusion described in Hong and Pan (1996) with the surface conditions evaluated using similarity theory. At the surface we impose a277

constant potential temperature, with value equal to the upstream temperature value at z = 0 and take a roughness length z0 = 10cm.278

The results for the potential temperature and after a non-dimensional time t ≈ 100, are shown in Fig. 7c. Again the results in term of279

foehn compare well with those in Fig. 5d, and this despite the fact that now the low level winds and temperature adapt themselves to280

more conventional surface boundary conditions.281

6. Discussion282

The central result of this paper is the resemblance between Fig.5c and Fig.5d. It shows that isentropic ”drawdown”, a dry mechanism of283

foehn, where air parcels do not ascend significantly on the upstream side of mountains before descending abruptly on the lee side can284

be produced in a model without inflow nonlinear effects. The mechanism at work is related to the near surface critical level dynamics285

that occurs for mountain waves, the critical level being located just below the lower boundary. In this case, the inflow linear dynamics286

anticipate well where the wave breaks as is often the case in gravity wave theory. Not surprisingly, in the presence of low level wind287

shear, mountain wave breaking is favored in regions located below the mountain top rather than above.288

In essence, the results obtained illustrate the significance of low level wind shears and stability on mountain flow dynamics,289

something often noticed in mountain meteorology, at least in the context of trapped lee waves (Reinecke and Durran 2009; Georgelin290

and Lott 2001). In this context it is interesting to note that there are many field experiments where upstream soundings show low level291

shears (Doyle et al. 2011; Sheridan et al. 2007), generally related to advancing fronts (Lothon et al. 2003), when the low level shear is292

associated with thermal wind balance. It is also worth noticing that there are cases where foehn is observed in the absence of upper level293

wave breaking Flamant et al. (2002). Other aspects of the theory also have reasonable behavior. According to Richner and Hachler294

(2013) a forecaster’s rule says that foehn winds rarely descend more than 2000m below the mountain crest. In all figures when the295

foehn is strong (for instance when J ≥ 2 in Figs. 4–5) we note a comparable behavior, the foehn never extend down to z = 0 in the lee296

side in these cases. Also, downstream where the isentropic surface become vertical, there is always near the surface a pool of relatively297

cold air. It is interesting that such a pool has often been viewed as an active part of the foehn dynamics (Lothon et al. 2003), we see298

here that it can be a consequence of it.299

All these remarks are not to say that we want here to replace the existing theories of adiabatic foehn by a completely new one, the300

message is rather to complement them. Actually, our upstream low level shear can be viewed as a form of blocking, since it imposes301

slow incident low level flows. Also, upper level mountain wave breaking tend to decelerate the low level flow, again our background302

profiles with slow low level winds can be viewed as a result of this process. Finally, our results show that linear models forced by303

a nonlinear boundary condition potentially have some skill, which can turn out to be useful since simplified linear models are still304

sometimes used to predict mountain wave operationally at a cheap numerical cost (Vosper 2003; Sheridan et al. 2017). Finally, one305

may note that the equations solved in the numerical simulations and in the linear theory differ in their treatment of boundary layer306

dissipation. For consistency one may wish that the WRF model and the theory be adapted to use the same dissipative processes.307

Nevertheless, we explored in Section 5 the sensitivity of the results to the precise boundary condition at the surface (non-zero surface308

wind or including a boundary layer parameterization) and these tests suggested that the foehn effects are robust to such changes.309
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Figure 1. Vertical profiles of the solutions used to build the canonical solution: inviscid exact solution ŵinv(k, z) (black solid), approximation of ŵinv(k, z) near z = 0

(right of (10), black dashed), damped approximation ŵsurf (12, black dashed and dot), and approximation of ŵc(k, z) (thick gray). In all panels, only the real part of the
complex functions are shown, k = 0.1 and zb = 0.05 for J = 0.5, 2, and 4 in a) b) and c) respectively.

Figure 2. Isentropic surfaces predicted by the linear model when HN = 0.5, Fr = 5 and for different value of J . Tanh incident wind and zb = 0.05: a) J=0.5, c) J=2,
e) J=4. Constant shear and hydrostatic set-up in (16), zb = 0.02: b) J=0.5, d) J=2, e) J=4. In all panels the thick curve represent the incident wind U and the thick dashed
curves the isentropes that initially are at the altitudes z = HN and z = 2HN .
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10 Damiens, Lott, Millet, and Plougonven

Figure 3. Non-dimensional Horizontal wind disturbances (u) predicted by the theory (a, c, e) and WRF (b, d, f), for J = 0.5, 2, and 4, respectively. In all simulations
HN = 0.5 and in the linear model in (a), (c), and (e) the boundary layer scale varies as zb = 0.05

√
J . In each panel the contour interval is proportional to the background

wind at the top of the hill, contours= 0.2 ∗HN/
√
J .

Figure 4. Isentropic surfaces predicted by the theory and WRF, same parameters as in Fig. 3
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Figure 5. Same as Fig. 4 but leaving HN/
√
J =cte: a) and b) J = 0.5, HN = 0.25; c) and d) J = 4, HN = 0.71. e) and f) are enlarged views of c) and d).
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c) Upper level wave Reynolds stress

Figure 6. Global indices measuring a) the downslope wind amplitudes (24), b) the normalised wave stress (25), and c) the foehn intensity (26). The results are from 64
numerical experiments, 32 uses with WRF and 32 the ”inflow linear” theory (LT). Half the simulations are done with constant height HN = 0.71, the other half with
constant penetration of the mountain into the shear HN/

√
J = 0.4.

c© 2017 Royal Meteorological Society

Prepared using qjrms4.cls



12 Damiens, Lott, Millet, and Plougonven

Figure 7. Sensitivity test: a) and b) are as Fig. 5c and 5d with the surface h shifted vertically by HN/10. c) is as Fig. 5d but with a fully parameterized boundary layer.
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