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A two-dimensional numerical model is vsed to investigate the nonlinear dissipative interaction between
a disturbance and an unbounded stratified shear Aow. The disturbances considered are Kelvin-Helmholtz
instabilities and forced geavity waves. The nonlinear stabilizatton {destabilization} of Kelvin-Helmboltz
instabilities at Prandtl number, Pr< ! (Pr> 1), found by Brown er al. (1981} is recovered. The model
confirms that it is mostly due 10 a stabilization {destabilization} of the mean flow by the wave. The
nonlinear evolution of instabikitics existing when thermal dissipation is large and when the Richardson
number is everywhere larger than $.25 is also investigated. kt is shown that such a mode stops growing
when the nonlinear distortion of the mean Aow becomes significant.

For {orced gravity waves, and when the iméial minimun Richardson number, J=0.25, it is found that
mean flow stabilization {destabilization} also occurs at the critical level for Pr< 1 {Fr> 1), More generally,
the value of Br ubove (below) which critical level destabilization {stabilization} ocours increasss édecreases)
when J increases {decreases). The nonlinear reflection and transmission of a wave are partly refated to
those stability changes. They are alse related to the mean flow distortions, located helow the critical level,
and whers the incident wave can be strongly reflected.

In the present study, the critical kevel interaction is weakly nonlinear, quasi-steady and dissipative. The
amplitude of the fundamental mode is such that the nonlinear effects are significant while secondary modes
remain small and convective overturning does not occur.

KEY WORDS: Gravity waves, Kelvin-Helmholz instabilities, nonlinesr critical layer, dissipation,
Prandtl number.

INTRODUCTION

The interaction between a disturbance and the mean flow at a critical level is known
to have important consequences in the dynamics of the atmosphere and the ocean.
For unbounded stratified shear flows, these disturbances are either spontaneously
gm&erated al the shear layer or forced outside of it. We shall name the former
“Histabilities, and the fater gravity waves even if, in some cases, the differences are
no!sharp. Linear inviscid theory for such disturbances has shown that their behaviour
depends on the Richardson number at the critical level. If the Richardson number
is larger than (.25 everywhere in the flow, unstable modes cannot exist {Miles, 1961;
Howard, 196!); they can arise for minimum Richardson number smaller than 0.25
(Drazin, 1958). Gravity waves are absorbed at 1he critical kevel if the Richardson
number there is larger than 0.25 (Booker and Bretherton, 1967), otherwise they can
be over-reflected (Jones, 1968}, The fact that the behaviour of both instabilities and
gravity waves is indicated by the Richardson number suggests that these perturbations
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are somewhat connected. Lindzen and Rosenthal (1983) have shown that Kelvin-
Heimholtz instabilities resuit in physical processes which are similar {0 those involved
in the wave over-reflection. A Kelvin-Helmholtz instability can be interpreted as the
superposition of over-reflected vorticity waves trapped at the shear layer {Lindzen
and Rosenthal, 1983). On the other hand, an over-reflected gravity wave can become
an unstable mode if it is reflected back towards the shear layer by a rigid wall (or
by a turning height beyond which it is evanescent} (Rosenthal and Lindzen, 1983}
Such a mechanistic picture fails for the Kelvin-Helmholtz instability occurring when
the Richardson number at the critical level is larger than 0.25 and goes to zero outside
the shear layer (Smyth and Peltier, 19891, 1t also fails for gravity waves spoatanecusly
radiating away from the eritical level, which are unstable modes oceurring when the
stratification vanishes at the critical level {Lott and Teitelbaum, 1990). Both kinds
of instabilities are out of the scope of the present study since we consider a constant
stratification in the whole unbounded domain.

Nevertheless, it must be pointed out that the linear inviscid approximation is only
valid in the limit of very small amplitude disturbances. More precisely, the regime
of the critical level depends on the relative size of three scales: the viscous scale, /,,
the unsteady scale, /,, and the nonlingar scale, 1, (Churilov and Shokhman, 1987)
defined as:

Ivm{k Re)™ ”33 I,Ea‘-&fkﬁ, Iﬁzgp,

Here p varies from } to 4, when J varies from 0 to 0.25 and p=% for J>>0.25 (see
Appendix A for details). We also introduce a thermal diffusion scale 1,

ly=(k PrRe)" V3.

In 1his study, all the quantities used are normalized by the characieristic parameters
of the shear layer (the maximum velocity amplitude, U, the shear layer depth, 4,
and the constant Brunt Viisild frequency, N,), & is the horizontal wave number of
the disturbance and & characterizes its amplitude; Re i3 the Reynolds number and
Pr is the Prandt! number measuring the ratio between the viscosity and the thermal
conduction. The lengths 1, (1.}, {, and [, characterize the normalized depths of the
layers, surrounding the critical level, where the viscosity (the thermal conduction),
the unsteadiness or the non-linearities are important. For Kelvin-Helmholtz
instabilities, the unsteady scale is related to the linear growth rate of the unstable mode:

¥ = @ &/E.

For a gravity wave, the unsteady scale is associated to the temporal variations of
the amplitude, §, of the wave source;

l,=8,S|/kiS.

For continuousty stratified shear flow, the linear unsteady critical level has been
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examined by Howard {1963), who calculated the growih rates of unstable modes in
the vicinity of neutral stability curves. Viscosity and thermal conduction have been
introduced by Masiowe and Thomson {1971} for lincar Kelvin-Helmholtz instabilitics.
They have shown that for large values of the Reynolds number the dominant parameter
concerning the stability of the mean flow remains the Richardson number, Similar
results have been obtained by Hazel {1967} and Van Duin and Kelder (1986} for the
reflection and transmission of a gravity wave incident upon a shear layer in presence
of dissipation. With large dissipation, the linear approach gives results which
significantly depend on the value of Re and Pr. For Prz1 the growth rates of
instabilities and the reflection and transmission coefficients of a gravity wave are
lower than in the inviscid case. Opposite effects can occur at low Prandtl number
(Miller and Gage, 1972; Miller and Lindzen, 1988) or very low Prandil nwmber
(Jones, 1977; Lott and Teitelbaum, 1990), This destabilization has been partly
interpreted by Jones (1977); “if the stratification is thermal in origin, radiative diffusion
will weaken the stabilizing effect of the stratification; and may allow instability to
ocour”. In this case, unstable modes can occur even if the Richardson number is
evervwhere larger than 0.25.

The noplinear evolution of an inviscid disturbance at a critical level has been
extensively studied for unstable modes as well as for gravity-wave modes [see
Stewartson (1981) and Maslowe (1986) for a detailed revicw of critieal leve] processes].
When the flow is marginally unstable, Brown and Stewartson {I978) have shown
that a neutral mode can generate a mode which grows algebraically with time. When
the flow is unstabie, Churilov and Shukhman {1988} have shown that the amplitude
of the most unstable mode nonlinearly grows as (t,—1)~ 7. Klassen and Peltier
{19852, b), using a numerical model, considered the full development of Kelvin-
Helmholtz billows in a strongly unstable flow with weak dissipation. They found
that the overturning of the wave occurs earlier when the Prandtl number is larger
{Klassen and Peltier, 1985b). Collins and Maslowe (1988}, reported a strong instability
mechanism involving harmonic resonance of two unstable modes. Nonlinear gravity
waves in an inviscid flow were studied analytically by Brown and Stewartson {1980,
19823, 1982b}. They showed that reflection {transmission) of nonlinear gravity waves
imcident upon a shear laver is larger (smaller} than that of the linear case.

Maslowe {1977) studied the nonlinear dissipative evolution of ihe Holmbode mixed
laver profile at Pr=0.72 and found that subcritical instabilitics can oceur. More
recently, Brown et al. (1981) have shown that the critical layer is supercritically stabie
{unstable} when Pr <1 (FPr>1). They have shown thai it is mostly due to stabilization
{destabilization} of the mean flow by the wave. These results were confirmed by
Churitov and Shukhman {1987) who extended the study to include terms overfooked
by Brown et al. (1981). The nonlinear dissipative regime of gravity waves has been
studied numerically by Clark and Peltier (1984), They showed that large amplitude
waves are stroagly refiected at the critical level even when the inittal flow is stable.
Fritts {1978, 1982) reported on the formation of a thin {urbulent shear layer associated
with unstable regions which appear during gravity wave-critical level interaction. He
also discussed the relative importance of viscosity and unsicadiness on the local
destabilization of the total flow near the critical level.
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In the present study, we consider the problem of weakly nonlinear development
of ingtahilities, as well as the problem of weakly nonlinear reflection and transnssion
of gravity waves propagating through a critical-level when dissipation dominates
unsteadiness [l.e. Mindl,,L)> 1. We restrict our aftention 1o relatively smaill
disturbance amplitudes, so that convective overturning doesn’t oceur. Nevertheless,
the amplitudes remain large enough to make the nonlinear scale, /,, of the same order
of magnitude as the smallest dissipative scale ¢/, or I,}. Furthermore, the range of
parameters used 3s such that the nonlinear evolulion proceeds faster than the viscous
spreading of the initial flow,; viscous spreading is thercfore neglected. However, the
diffusion of noalinear mean flow distortion is taken into account because its small
spatial scale makes it sensitive to dissipation (Brown et al, 1981, Churiov and
Shukhman, 1987},

The aim of the present study is Lo describe the mechanisms governing the nonlinear
exchanges between a disturbance and the mean flow and to determine the feedback
effects of the mean flow changes on the behaviour of the disturbance itself. Such a
“quasi linear” description of the critical fayer is found to be valid in the range of
parameters we consider, For Kelvin-Helmholtz instabilities, the first motivation is
to recover the result of Brown et al, {1941), using a fully nonlinear finite difference
two dimensional time-dependant model. The spatial resolution of our model allows.
us to examine the details of the nonlinear evolution of the system. The nonlinear
stabilization of unstable modes observed at Pr<1 leads us naturally to reconsider
the evolution of unstable modes which appear in the linear approximation when
J=>0.25 and when there is large thermal dissipation. The analysis of the development
of Kelvin-Helmholtz instabilities also leads us to investigate the problem of the gravity
wave critical layer interaction since some similarities exist in the physical processes
governing both phenomena. Furthermore, gravity waves and Kelvin-Helmhoitz
instabilities can coexist simultanecusly at a shear layer. Therefore, the induced
nonlinear reflection and transmission of a gravity wave is studied uvsing the same
fully nonkinear model, In the present study, the Prandil number values used do not
necessarily correspond 1o values existing in real fluids. Nevertheless, it must be
emphasized that the Prandtl number for geophysical and astrophysical fluids varies
widely. The solar atmosphere is a good example of {very) smail Pr, because, the
dynamie viscosity is determined by the small molecular mean free path whereas the
thermal conduction is determined by the large radiation (photon) mean free path.
The ocean is an example of large Pr, because Pr=6.73 in water, and the influence
of salinity can lead to larger values. In laboratory experiments, when the density
variation is provided by variations of salinity, the relevant Pr can be very large
{Pr=300). The atmospheric value of Pr is 0.73. Unfortunately, since the vertical
numerical gridspacing has to be smaller than I, and 1, sufficient resolution can only
be obtained by restricting maximum and minimum values of Pr, Thus, for the purpose
of this study, we restrict consideration to disturbances with Prandt] number varying
from 0.1 10 10. Nevertheless, note that the results obtained here when Pr=1, appiy
within a very good approximation to the atmosphere while those obtained for Frx 10,
gualitatively apply to the ocean.

The structure of the paper is as follows, In Section 1, the numerical model used
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in our simulations is presented. Section 2 is devoted to the nonlinear dissipative
evolution of a Kelvin-Helmhboitz instability. In Section 2.a, we inferpret theoretically
the nonlinear interaction using simplified dissipation {t.e. Newtownian cooling and
Raykeigh friction). These results are qualitatively extended to the case of realistic
dissipation and Pr#1 in Section 3.b. Numerical resuits are presented in Section 2.¢.
In Section 2.4, we extend the analysis to modes existing when thermal dissipation is
large and when the Richardson number is larger than (.25, Section 3 concerns the
nonlinear dissipative reflection and transmission of a gravity wave propagating toward
a critical level for various minimum Richardson numbers. Following the preceding
analysis, Section 3.a deals with the action of the wave on the mean flow using simplified
dissipation. The results obtained are qualitatively extended to realistic dissipation
and Prs£ 1 in Section 3.b. Numerical results are presented in Section 3.¢.

1. THE MODEL

We consider the nonlinear evolution of a disturbance in a stratified shear laver with
the vertical profiles ¢hereafter named as the Dirazin profile):

U@)=Uytanh /),  N*(Z)=N}=constant.

The horizontal phase velocity of the disturbance is 0 so that a critical level exists at
the inflection point of the mean flow (3=0). Introducing d, U, 4/U,; and Nid as
units of length, speed, time and buoyancy force, the system of eguations is written
in dimensionless form. Using the Boussinesq approximation, we introduce a stream
function ¥ associated with the disturbance and defined as

oy Sy
—— =y, - W,
Oz Ox
The buoyancy force is
¢ =g(0/0,),

where # is the modification of the potential temperature induced by the disturbance
and 8 is the initial potential temperature. Then, the system of cquations of motion
is writien in the stream function vorticity form

Ay — { 3 ;_+ &J,.{.__”W_mm{ij; Al (L1}

(1.2)
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where

g oh 8y Ok
(g ny=3C. 9%

Pz dx éxaz

S is a heating source,

L/{(z)=tanh (z) is the normalized initial horizontal mean wind,

J=N2d%/U2 is the minimum Richardson number of the flow located at z=0,
Re=dU /v is the Reynolds number and v is the coefficient of dynamic viscosity,
Pr=v/x is the Prandtl number, and x is the coefficient of thermal conduction,

a and b are the normalized Rayleigh friction and Newtownian cooling coefficients
respectively. In the numerical model, g and b are used to introduce sponge layers at
the top and at the bottom of the field. These sponge layers prevent reflections there
and allow the introduction of simple boundary conditions

$r=0 al z=2pZ.
in the horizontal direction, we apply periodic boundary conditions. The heating

source, §, is introduced 1o force an incident gravity wave below the shear layer. It .
is expressed as a function of z and ¢ as

(z_zs}z

Az}

S{t,zy=f1{t) exp[— ]exp{ikx}, (1.3)

where z,<0,]z)»1, Az = O(1}. Here f{t) is a slowly varying function growing from
zero at t=0 and reaching a constant value after a time o~ O[{kl,}) '] which is long
enough to limit the amplitude of transient effects. When unstable modes are studied,
we set §=0 and some noise is introduced in the field at the initial time. During the
temporal evolution, it is natural to separate the disturbance between the mean flow
deviation and the wave as

o=z, t}+¢'(z,x, 1},

where

+ @

= E (2, Dyexpiitkx).

R L

When gravity waves are studied, k is the horizontal wave number imposed by the
wave source. When instabilities are studied, k is the horizontal wave number of the
most unsable mode appearing in the flow. The spatial derivatives in x and z directions
are calculated with centred finite differences. In the horizontal direction, & 32-point
grid is used for the instabilities studies. We have verified that this resolution is
adequate for our purposes. For gravity waves, a higher resolution is necessary, since
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Figure 1| Vertical profile of the horizonial velocity u,, induced by the {undamental mode of a4 gravity
wave &1 a given xf ) and at x,+n/2k i~ -}

small scale unstable modes as well as long scale forced gravity waves can be present
simuitancously, For these simulations, we verified that a 128-point grid is sufficiently
accurate, Since particnlarly fine vertical resolution is required near the critical lovel,
we use a stretched grid in the vertical direction. At the critical layer, the step length
is 0.62 normalized units, it is smaller than the smallest viscous scale (4, or k). Qur
aumerical experiments reveal that this vertical resolution was sufficient for
convergence of the solution. However, the use of a stretched grid introduces numerical
complications and requires caution. Specifically, far from the eritical layer, as the
grid spacing becomes large, we are not able to resolve modes due to viscosity and
thermal conduction. Furthermore, changes in grid spacing can induce numerical
reflections and waves can be trapped in the high resolution zone (i.e. the critical
layer). Nevertheless, comparison of results obtained when a stretched grid was used,
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with those obtained when the grid spacing was small and constant in the whole field,
shows sitmilar time evolution of the flow.

The temporal integrations of Ay and ¢ are performed with a predictor corrector
algorithm used by Lindzen and Barker {1985). The vertical integration of the stream
function is calculated by a Gaussian elimination technigue. Figure | illustrates the
propagation of a gravity wave in the field described above. The wave induced
horizontal velocity u,(x, z,t} is displayed on the figure at a given time #; and at two
different ltocations x, and x;+ 7/2k. In order to characlerize the importance of the
nonfinear terms in the propagation of the disturbance, we employ two versions of
the model: the fuily nonlinear version (equations 1.1 and 1.2} and a linear version
wherein the terms {if, A} and {if, 9} are neglected. Results of the linear calculations
are also used to quantify the action of the wave on the mean flow belore significant
nonlinear distortion occurs.

2. INFLUENCE OF DISSIPATION ON INSTABILITY NONLINEAR
EVOLUTION

In their study of the nonlinear evelution of a Kelvin-Helmholtz instability, Brown
et al. (1981) calculated the first nonlinear coefficient, o, of the Landau equation when
the critical layer is controlled by dissipation

A
............. = A+J€:4A2.
=Y 4

Here ¢ is the linear growth rate of the most unstable mode existing in the flow and
A iz its amplitude (it is related to the parameter ¢ through £=14|}. They showed that
the value of o strongly depends upon the Prandtl number. Specificaily, when Pr>1,
¥ is positive and the growth of the instability increases nonlinearly. When Pr«1, the
opposite is observed. Brown er al. (1981) also reported that a is mostly sensitive to
the nonlinear meodification of the mean flow stability. They found that the influence
of the secondary modes is weak. These results were confirmed by Churilov and
Shukhman {1987) who corrected the treatment of mean flow distortion by Brown
ef al, {19813

2.a Rayleigh friction and Newtownian cooling (Pr=1)

To first gain physical insight into the modification of the mean flow stability induced
by the wave, we consider a Kelvin-Helmholtz mode in a weakly unstable flow where

p=025-J«],

and dissipation represented by Rayleigh friction and Newtownian cooling, When the
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Prandt] number, Pr=>»/a=1, the equations which drive the mean flow are

dii dlu'w 1d
§+aﬁm——%zw§5£[ﬂe{wi"ul)} (2.1}
3 _ dig'w) 1d

............ =M e — - " IRe(w* i 2.0
5 +a = 2dz[ e(wio,)] (2.2}

The forcing terms in these equations are calculated from the structure of the most
unstable mode existing in the flow, Assuming that the horizontal wave number of
the disturbance is k, when the nonlinear changes are small, this mode satisfies the
linear equations

l
(?+a+ikU)&t}tl+2ikU{EwUllm-{-(z —p,)ik(ai=0, 2.3)
{y+a+iklUye, —ikf, =0, .4

and the boundary condition ¥ilz—>+o0)-0.

Using these equations, it is straightforward te deduce the growth rate, y, of the
damped mode from the inviscid growth rate, y,,,. by y=y,,—4. Howard {1963}
showed that the growth rate of the most unsiable mode in the Drazin profile is
Yy = kit, and its horizontal wavenumber satisfies k2=0.5. Under these conditions,
the growth rate of the damped mode is y=ku—a.

Far from the critical level, z>>u {the outer region), the structure of the sclution
can be approximated to first order in u expanding the solution as a series:

bi=yYitpdbit o, pi=eitueie e,

and neglecting the terms of order 4 in (2.3} and (2.4). Then, ¢! is given by the Taylor
Goldstein equation

Ltwi}ww%{ﬁ?ﬁ+2(1—U*3]w§m0,

with boundary conditions: ! -0 for iz|— + o0,
The scolution (Drazin, 1958) is

sinh!/2}z]

g
Wi=A20) cosh(z) ’

{2.5)

and Ar(ty=AF exp[(kp—a)t].
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The ratio A*/47 is determined by connecting the upper and the lower half plane
through the critical level.

For zxQ4{u), the preceding development is invalid since the advection terms in
{(2.3) and {2.4) are balanced by the damping terms. It is necessary to solve these
equations in the inner layer. In the inner layer, the unstable mode satisfies at the
first order in u the equations

M%O, (P{: S— ‘ ............ ( 2.6)

=0 4 uly—1)

o1 ¥
oy

where z==puy. A solution of (2.6) is
=AD"

Expanding this solution for y-» + oc and expanding the outer solution {2.5} for z—0
both recover if
A£“9.5A+ =fﬂe'5f1_‘
Thus, an uniformly valid approximation of the most unstable mode is obtained.
The forcing terms in (2.1) and (2.2}, at the order we consider, are zero away from the

inner layer, since the vertical structure of the outer solution (2.5) corresponds to that
of a steady undamped mode. In the inner fayer, the action of the wave on the mean

flow is
_gedttud g [ (W*“‘"‘)} ol
2 2 4t (3P +1p"

* I 2z
_ERBMWLM[&{WW )] kAo
2 dz 2;13 Zﬂ {y +])3;2

These forcing terms are displayed as a function of z in Figure 2 for £=|Al=1 and
pu=002. Integrating the mean flow equations {2.1) and (2.2} leads to

k :A(f)l y

The wave takes horizontal momentum and potential temperature from the mean
flow above the critical level and restores them below. Consequently, the eritical level
doesn’t move and both the mean stratification and velocity shear decrease at the
critical level. The associated nonlinear mean flow stability changes around the critical
jevel are given by

dp _di
ORI o 0.
( I)z [+ (dz dZ)z o
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Figwre2 Action ofthe most unstable Kelvin-Helmholtz mode on the mean flow: J =023, 8* =0.5and g= 1.

On one hand, the wave has a destabilizing influence on the mean flow because i
decreases the stratification. On the other hand it has a stabilizing influence because
it decreases the mean velocity shear. When Pr=1 (or when an unstable mode grows
withoul dissipation}, both effects compensate one another: the Richardson number
at the critical level is unchanged through weakly nonlinear dynamics. Furthermore,
in the inner layer, the transfers of energy due to these processes are (see Appendix B
for a complete presentation of the energetic balance):

o 2
C(P,K)= < —;sz?-?m;‘i‘;> ~ < Sk ARy,
dz Bu (¥ +1p2

, e AW} ko JA{)? _ . .
C(K,K }=<uf 7 >z<@myb(y)>>0, since U(y)&0 for y20.

in order fo grow and to compensate for the wave energy loss due to damping, the
wave takes kinetic energy from the mean fow through the downward transport of
horizontal momentum. This resuits in the mean wind shear decrease aforementioned.
Part of this kinetic energy returns to the mean flow as potential energy through the
downward transport of potential temperature by the wave. This results in the mean
stratification decrease aforementioned.

These features are alse found when Pr#1. However, in this case, the depths of
the dissipative layers in which thermal and dynamic exchanges can occur are different.
The decrease of the mean flow stratification no ionger balances the decréase of the
mean velocity shear at the critical fevel and Ri must change. The same behaviour is
also obtained from numerical calculation when the dissipative parameters are
viscosity and thermal conduction.
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2.6 Viscosity and thermal conduction {Pr# 1

In presence of viscosity and thermal conduction, the equations governing the mean
flow changes induced by the wave are

d 1 4 dlu'w’) 14
.............................. = i — — R .
3t Red:? dz 2 dzE wil
8¢ 1 4@ dlew) 1 d
............................................... - e D — — R * .
ft  PrRe dz? de 2 dzE elerwi)]
+1 i f f f T
z ) L Pe=-0.2
L. i 4/ )
e T __‘:__,,_....-f’) o
0.0 . @M—-m% —
. (:—:.,‘..-—: R A
) “ ]
1 b i J I 1 i i
07 » i
i T T T H T
z - Pr—1 .
O A
] ] 1 ] ¢ [ i
b ) +1.6
oy T 1 T T T T
z '“ = 5 'l
oo [T T P‘% — = =
H [ 1 i 1 3 i 1
33 L} FEX!
L4 fReatlui) ¢ } - L dtReailowil{-- -)

Figure 3 Action of the most unstable Kelvin-Helmnoliz mode on the mean flow in presence of dissipation
and for varivas Prandt] number: J=20.23, k2205, J,=={kRe) 1 =008 and g,
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The forcing terms of these equations are calculated numerically using the linear
version of the model presented in Section 1. They are shown in Figure 3 when the
amplitude of the wave far away the shear laver is 1 {e=4]=1). The parameters are

J=0.23; k*=0.5; [, =008, Pr=02, 1 and 5; y,, =0.013 ({, = 1. k = 0.018).

The linear growth rate, ... of the unstable mode is the same for the three values of
the Prand¢l nember, since the dissipation is smal. FThe vertical Aux convergences are
close to those obtained analytically when Rayleigh friction and Newtownian cooling
are used (see Figure 2}. Figure 3 shows that the depth of the layers in which thermal
and dynamic forcing occur are approximately 51, and 5i,, respectively. In these
numerical experiments, thermal diffusion varies while viscosity remains consiant.
Then, when the thermal diffusion decreases, the effect of the wave on the mean flow
stratification increases because it depends on the vertical second derivative of the
thermal flux. Numerical results show that

o <)) () (e
> 1 dz? 2 Y - dz2 2 ax 0

This is also evident by inspection of Figure 3. In this preliminary analysis, we do
not consider the diffusion of the mean flow changes. Nevertheless, it can be easily
understood that it acts to reinforce the above results, In fact, an increase in a dissipative
parameter increases the {negative) slope of the mean flow changes by increasing the
depth of the forcing fayer and by increasing its diffusion. Consequently, as we shail
show:

dip dﬁ) { >0 mean flow stabilization
0]

1 .
For Prl ", (Rilmnond{ = 2% ranor
>1 dz dz < mean flow destabilization

2.c Nonlinear evolution of the instabiliry

Figure 4 displays the temporal varigtion of the amplitude, &, of a Kelvin-Helmholiz
instability for three different values of the Praadt] number as compared to the one
obtained from a linear simulation. The time is represented in units of Doppler shifted
periods (i.e. one period: T=21/k) of the wave. The amplitude, ¢, 15 determined
through a spectral decomposition of (he sirearm lunction ¢ of the solution at
23 Max{l,, [}, where it is verified that the vertical structure of the fundamental mode
is approximately given by (2.5}, In the nonlinear cases and for very small amplitudes
fi.e. < (0] corresponding to [, <0.04), the nonlinear evolutions are similar to the
linear one. Thereafter, the amplitudes in the simulations for which Pr#1 stast to
differ from the linear one. As could be predicted by our previous analysis and in
agreement with the results of Brown et al. {1981} the amplitude ¢ becomes larger
than the linear one for Pr=15 and smaller for Pr—0.2. At £=0.02 (i.e. [, x],=008),
the three nonlincar temporal evolutions differ significantly. Figure S represents the
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Figare 4 Fvolution of the amplitude of the most unstable Kelvin-Helmhaltz mode for various Prandtl

nuertbers. The parameters are those of the Figure 3, \
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|
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Figere 5 Noalinear deformation of the stability of the mean Bow a3 a function of z for /4/=0.01. Same
); nonlinesy: Pr=021{ <} Pre=l =) Pre=5 { =)

parameters as Figure 3: linear {
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modified vertical profile of the Richardson number when £=0.01 as compared to the
initial one. It is clear that changes in the development of the fundamental mode are
due to the mean fow stability modifications. The associated mean shear changes
illustrated in Figure 6 show that;

=02 ) J:» )
For  Pri=1, (d«p) 2 2(du)

_s sz0l<

it recovers the results presented on Figure 4 in Churilov and Shukhman (1987).
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The above interpretation of nonlinear evolution concerns the interaction between
an unstable mode and the mean flow. Since it does not evoke the presence of secondary
modes, it is a quasi-linear interpre{ation of the phenomena. Brown et al. (1981) found
that secondary modes change the Landau constant « by less than 20% in a weakly
noanlinear regime. In our calculations, as long as the nonlinear scale and the viscous
scale have the same order of magnitude, the effects of secondary modes on the
nonlinear evolution are negligible. The sccondary modes become important just
before the occurrence of overturning (i.e. approximately when [, 321 ). At Pr=0.2,
singe the mean flow is nonlinearly stabilized the wave amplitude remains small, and
convective overturning does not occur. This last result is characteristic of the
digsipative regime: such a nonlinear limitation of the wave amplitnde does not exist
in the nearly inviscid case (Churilov and Shukhman, 1988). The preceding noniinear
results can also be conveniently represented by the parameter 4 proposed by Maslowe
{1977y which quantifies the relative imporiance of nonlinear effects and viscous effects:

Am{k Reg*y ' =(1/).

In our simulations, we observed that when £ is of order 1 or less than 1, nonlinear
concepts are relevant.

2.d Highly damped modes

The above results deal with the iafluence of dissipation on nonlinear instabilities at
large Reynolds number. In this case, the condition [« is very restriclive (at least
in the troposphere and the stratosphere} and concerns only weakly unstable flow.
Nevertheless when considering molecular dissipation such as it exists in the upper
mesosphere, the critical level inderaction can remain dissipative for minimum
Richardson namber sipnificantly lower than 0.25. In this case, we find that the initial
nonlinear steps of the temporal evolution of the instability are also stabilized for
Pr<1 and destabilized lor Pr> 1. We verified this for

J=02, Re= 125, for Pr=0Q.2,1 and 5.

Another phenomenon for which the critical level is dissipative is the development of
unstable modes in flows with J20.25. In the Drazin profile, such modes only oceur
when the thermal dissipation is very large as compared to the dynamic dissipation.
We discuss the nonlinear evolution of such a mode when we use Newtownian cooling
as thermal dissipation and zero Rayleigh friction. The paramelers of the experiment are

J=025; a=0; b=k/3; k*=05;, v,n=9%4x10"7°

Figure 7 displays the action of this mode on the mean flow. As was true for Kelvin-
Helmholtz instabilities, the mode carries mean horizontal momentum downward
through the critical level and takes kinetic energy from the mean flow. Tt tends to
decrease the shear dii/dz there and to stabilize the mean flow. Part of the kinetic
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Figure 7 Action on the mean flow of an unsiable mode in presence of large Newtownian cooling: J =0.25,
ka5, Re=25000, Pr=1,a=0, b=k/3.

energy taken by the wave is restored to the mean flow as potential energy through
a global downward transfer of potential temperature. This behaviour is close to that
already discussed. Nevertheless, an important difference occurs in a thin layer at the
critical level. The thermal flux locally reverses (it takes potential temperature from
the mean flow just below the critical level and deposits it just above) and tends to
increase the mean stratification, d®/dz, there. This stabilizing effect adds to the
preceding one even when very large Newtownian coeling tends to smear it out,
Figure 8§ displays the nonlinear evolution of the amplitude of this mode as a function
of time. At the beginning, the ampilitude grows exponentially in time as predicted by
the lincar theory (periods O to 35} When the first nonlinear exchanges become
significant (periods 35 to 70}, that growth weakens. At T=75, the wave amplitude
starts to decrease. Thereafter, it continues to change but it remains small and tends
toward a constant value: the horizontal velocity induced by the instability is of order
1073 at the end of the simulation. Figure 9 shows that the unstable mode stabilizes
the mean flow by reducing the gradient of the mean velocity. This mode does not
lead to the onset of a turbulent mixed shear layer. The flow is supercritically stable.
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3. INFLUENCE OF DISSIPATION ON NONLINEAR GRAVITY WAVE
CRITICAL LEVEL INTERACTION

As mentioned in the introduction, the reflection and transmission of a gravity wave
strongly depends upon the value of the Richardson number at the critical level. In
turn, the wave induced mean flow stability change at this level is an important feature
of the noalinear dynamics.

3.2 Rayleigh friction and Newtownian cooling (Pr= I}

To gain physical insight into the nonlinear modification of the mean flow, let us
initially consider a gravity wave interacting with a shear layer when dissipation is
represented by Rayleigh friction and Newtownian cooling. In this case, the assumption
that the critical level is controlled by dissipation rather than by the unsteadiness
implies that |« a’=ua/k. When the Prandtl number Pr=g/b=1, the equations which
drive the mean flow changes induced by the wave are

o 1d |
au — 3 ‘E{Re(“’?“i}l (3.1)

» 14
agx —~ —[Refwie}). \ (3.2)
2 dz

For small disturbances, the forcing terms in these equations can be estimated using
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the Hnear siructure of the wave. The governing equations are
(a+ ikUNAY |+ 20 (1 — U2 np + Jikp, =0, (3.3)

Far from the critical level, z2>>a' (the outer region}, the solution can be approximated
to first order in o’ expanding the solution as a series

Yi=¢itayi+ g gy=gi+deli+ -,

and negleeting the terms of order & in (3.3} and (3.4). Then, 1 is given by the Taylor
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(oldstein equation

wnwﬁ[ J +zu-u2>]w:=o.

UZ

Van Duin and Kelder (1982) obtained solutions lo this equation for k> <J (e,
propagating gravity waves). They reported that the selution on each side of the
critical fevel can be written in terms of hypergeometric functions. Approaching the
critical leved (i.e. z-+0), this outer solution is

iy AL %04 B 2PP R, where o=,/J—-025 for J>0.25

Pilzdm A%iz®5 T 4+ BE)2%57,  where o'=.,/025-J for J>025,

where the values of the ratios A%7/4~ and BT/B~ are determined connecting the
upper and the lower half plane through the critical layer.

For 22 Qfa'), the advection terms in (3.3) and (3.4) are balanced by the damping
terms making the preceding development invalid. The equations have to be soived |
in theinner layer. To first order in &', the unstable mode satisfies the inner equations

. 02 I 1 l,l:fl
(y—iy? ¢;1 I =0; @h = - L (3.5)
dy o y—i
where z=a'y.
The solution of (3.5} is
Y= A(y—i)°** T+ B(y i) for J=0.25, (3.6}
T=A{y—N**" £ B(y—)* 7 for J<0.25. 3.7}

Expanding this solution for y-» + o0, it recovers the outer splution expanded for 2 -G if
Am=g93toqr BegOSTigt AT jexplon)dT, B = —iexp(—em)B?,
for J>0.25, and
A=g®3*t gt B=g®5"¥B* A" = —iexplic'n)d*, B = —iexp(—icn)B,

for J< (.25 These last relations are similar to those oblained when an analytic
continnation of the solution is performed through the critical level (Miles, 1961} in
the inviscid case. Then, the outer solution, corresponds to the nviscid solution
determined analytically by Van Duin and Kelder (1982): A and B™ are known and
can he expressed in ierm of T-functions. The forcing terms in (3.1) and (3.2) at the
order considered herein, are zero away from the inner layer since the outer solution
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is steady and undamped. Consequently, these forcing terms are mostly important
within the inner Iayer. They can be calculated analytically from expressions (3.6) and
(3.7) because

£ 101 I
— 1 Re d(wlul) [ — 1 ........ Rel}k d( {* dﬁbi)]‘
2 dy

= 2a"?

* !
- 1 Re d(W;(Pl} o — 1 ....... Rel:;_k d( ‘;* d'&l)],
2 dz 2a’? dy dy

They are shown in the Figure 10 for
J=02305and 2.5, & —a/k=0.1, k=01 and g=1.

The mean flow distortion induced by these forcing terms can be described as folows;
For all values of J, the wave does not give horizontal momentum €0 the mean flow
at the eritical level

#z=01=90,

so the gritical level does not move. For small J{J=0.23 Figure 19a), the linear
reflection and transmission of the wave are of order 0.5 and the action of the wave
on the mean Aow is important on both sides of the critical fevel. The wave mostly
tends to take horizontal momentum and potential temperature from the mean flow
above the critical level and to deposit them below. Consequently, both the mean
stratification and velocity shear decrease at the critical level. As is true for
Kelvin-Helmholtz instabilities, the wave has two opposite effects on the mean flow
stability. As long as J <0.25, the destabilization at the critical level dominates. For
J>025 (Figure 10b, J=0.5), the mean flow is stabilized at the critical level. These
results can be summarized as follows:

>0.25

For J{
<0.25

dp dﬁ) {:»{I mean flow stabilization
dZ z

, (5Ri)wo==f(——2— e
dz «<{) mean flow destabilization.

For larger J (Figure 10c¢, J==2.5), the wave absorption is large at the critical level
and the wave mean flow interaction eonly occurs below H. The wave absorption
essentially induces an horizontal momentum flux convergence which is very large as
compared with the thermal forcing, In this case, the changes occurring at the eritical
level are negligible when compared with those occurring below.

Furthermore, we found that the wave takes kinetic energy from the mean flow
whatever the value of J is

CK,K)>0.
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Figure 10 Action of a gravily wave on the mean flow as a function of the height. The unchanged
parameters are: k=01, a=h=0.1, g==1, and for various J.

As is true for Kelvin-Heimholtz instabilities, part of this energy is returned to the
mean flow as potential energy

C(P, K"} <0.

For low Richardson number, this is done through the downward transfer of horizontal
momentum and potential temperature which decreases the mean wind shear and
stratification at the critical level. These behaviours are similar to those of the unstable
Kelvin Helmholz modes. This suggests that for the disturbances we consider, the
mechanisins which drive the Kelvin-Helmmholtz instabilities are similar to those driving
the gravity wave critical level interaction at low Richardson number, This gualitatively
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fits in with the mechanistic descriptions of these modes given by Lindzen (1988) and
Lindzen and Rosenthal £1983}.

In the remainder of this section, we consider viscosity and thermal conduction as
dissipative parameters. In this case, we find that most of the results concerning the
action of the wave on the mean How are similar to those obtained with Newtownian
cooling and Rayleigh friction. However, we find that the wave gives momentum to
the mean flow at the critical level and moves it downward. This effect is small
compared to the other effects described above for small J. For large J, this
displacement of the critical level becomes a significant feature. Furthermore, when
diffusion processes are considered, the distortion of the mean flow does not exactly
correspond to the action of the wave on the flow. Nevertheless, for Pr=1, the wave
induced mean velocity shear and mean stratification diffuse similarly and remain
balanced as described above.

2.b Viscosity and thermal conduction Pr#1

in Figore 11, the action of the wave on the mean flow is displayed as a function of
height for J=0.25, k=01, /,=0.1 and Pr=0.2,1,5 We find that the action of the
wave on the mean flow is close 10 the one previously discussed. As illustraied on the
figure, thermal and dynamic exchanges cccur on layers with half depths of
approximately 5/, and 5l,. Further, near the critical level, a decrease in the amplitude
of one dissipation coefficient decreases the negative slope of the associated forcing.
Conseqguently, at J=0.25, we find

2 & 2 *
e S {0 -GS
>1 dz* 2 Y dz? 2 %0

The diffusion of the induced mean flow changes may further reinforce these effects,
since a decrease in the ampiitude of one dissipation coefficient decreases the diffusion
of the associated mean flow modification. As for Kelvin-Helmholtz instabilities, we
assume that the mean flow stability change at the critical level for J = 0.25is given by

For Pr{< 1’ {5“)2%0%}(@ —Zﬁ) {>0 mean flow stabiii:c?&ftio? .

>1 dz  dz/,.o (<0 mean flow destabilization
For other values of the minimum Richardson number J, such a sensitivily to the
Prandtl number is also observed. Nevertheless, the Prand{l number at which the
thermal and the momentum forcing compensates (regarding the mean flow stability
change at the critical level), increases when J increases. This relation is shown on
Figure 12,

J.c Nonlinear simulations

The former analysis indicates that the nonkinear evolution of the interaction between
a gravity wave and a critical level strongly depends on the values of J and Pr. Now
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Figore 1  Action of the wave on the mean flow as a function of the height. The unchanged parameters

we shall present the temporal evolution of the system calculated using the nonlinear
time dependani model. Ia all the following experiments, the horizontal wavenumber
and the viscous scale remain unchanged:

k=01, [ =(kRe) 1P¥=0l].

The function f{t) which drives the amplitude of the wave source {1.3} is given hy

Tt
sinl for r< 107,
fly= f"m(z IOT) orf=
o for > 10T,
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where T=2n/k is the Doppler shifted period of the wave far away the shear iayer and

fo allows the tuning of the amplitude, &, of the incideni wave. For the duration of
the transient part of the forcing, we verify that i, =0.03 « I: the critical layer is always
controlied by dissipation. Note, a faster transience does not change the results
significantly (at least at large 1}, Tndeed, after a long time, the amplitude of the wave
source is constant and the temporal variation of the fundamental mode remains slow
enough so that the interaction is controlled by digsipation. In subsequent paragraphs,
we are going to present results for three particular values of J: 0.23, 0.5 and 2.5.
This allows a qualitatively complete description of the phenomena observed in many
simulations with various J. In all the cases studied, the nonlinear effects are significant
when the nonlinear scale is of the order of magnitude of the smaliest viscous scale

LaMin(l,, L),

This relation is satisfied in all the simulations to come (unless the wave amplitude
is explicitly given}. Furthermore, we find that the critical level interaction is
convectively unstable when [, >2 Min(l,, [,).
In the numerical model, the amplitude of the incident wave, ¢, the reflection and
transmission coefficients iR}, and | T are deduced from 1he structure of the fundamental
- mode. Far away the shear laver, this mode is not affected by dissipation and can be
written as

Wixe(@™ 4+ Re™ ™)
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betow the critical level, and as
lweT e ™

above it (here, m2=J—k*>0).

3.¢e.d) Low initial minimum Richardson number: J=0.23; Pr=0213

Figure 13 displays the temporal evolution of the reflection and t{ransmission
coefficients of the gravity wave in comparison with linear model results. Note first
that at T =20, these coefficients increase when the Prandtl number increases. To a
certain extent, these features can be related to the mean flow changes illustrated in
Figure 14 at T =20, In all cases, the critical level does not move down significantly
and we can consider that it remains located a z=10. At the critical kevel, in agreement
with the aforementioned calculations, the mean flow is stabilized when Pr=0.2,
weakly destabilized when Pr—1 and destabilized when Pr= 5. However, the nonlinear
values of |R| and | T} are also due to modifications of the background flow occurring
below the critical level, For instance, at Pr==1, the nonlinear reflection cocflicient is
significantly larger (25%) than the linear one while the nonlinear transmission -
coefficient is smaber. None of these results can be related 1o the very small change
of the mean flow stability at the critical level. In fact, as noled previously, the mean
flow distortions are also important below the critical level. For Pr=1, Figure 14
shows that at T=20, the minimwn value of the Richardson number is 0.2 and is

/RS & [T/
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0.75+ S e
S el A A
[ T e —— :
0‘50 i 7
..... /‘1‘/" Pr=0.2
0.25
D-OO | i . \
0 125 25
Periods

Figore 13 Temporal evolution of the reflection and transmission coefficients of 2 gravity wave propagating
towsard 2 oritical Jevelfor various Prandil rumbers. The unchanged parameters are; J =0.23, k=0.1,1,=0.1.
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located below the critical level. This destabilization is related to the wind shear
decrease occurring below the maximum of horizontal momentum flux convergence.
This distortion induces partial reflection of the incident wave before it reaches its
eritical level. Thus, the reflection coefficient is larger than that of the linear model.
The \ransmission coefficient is lower because less wave energy reaches the critical
level, At small Prandt]l number {Pr=0.2}, the stabilization of the mean flow oceurring
at the critical level renders the reflection and transmission coefficients smaller than
at Pr—1. At large Prandt] number {Pr=3), mean flow destabilization at the critical
level s larpe enough to make both the reflection and the transmission of the wave
greater than was true for the Hnear case. Furthermore, in this case, the mean flow
medifications occurring below the critical level are less important than at Pr=1 and
0.2. Indeed, to maintain the condition that I, = Min{l,, 1}, it is neecessary to decrease
the amplitude, &, of the wave. Thus, there is less mormentum deposition below the
critical fevel and partial reflection is smatler than it was for Pr< 1. Also for Pr=35,
the reflection and transmission coefficients are quantitatively similar and we presume
that they are largely associated with the value of the mean Richardson number at
the critical level.

In these experiments, the wave is forced by a source but unstabile modes can also
grow in the flow. The growth rate of the most unstable mode is of order 4=025-J.
Thus, the tiine scale characterizing the growth of this mode, 1/u4 50 is close to one
period of the forced wave: 2p/k 263, Furthermore, the amplitude of the wave source
varies slowly as compared with one period of the wave (1, <« 1). Consequently, unstable
modes increase very rapidly. Nevertheless, the importance of these modes is also
determined by their amplitudes at the initial time, In the experiments presented herein,
the unstable modes are controlied by the amplitude of the wave through nonlinear
interaction. At Pr=0.2, since the wave stabilizes the mean How at the shear laver,
the growth of the unstable modes is stopped before they reach significant values. The
forced wave is the main disturbance present at the critical level as long as it is imposed
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by the wave source. At Pr=1, the disturbance is dominated by the forced wave
during more than 20 periods. Thereafter, unstable modes dominate the gravity wave
and lead to convective overturning. For Pr =5, the wave destabilizes the mean flow,
and the unstable modes grow more rapidly than at Pr=1. At t=20T, the unstable
modes dominate the forced wave at the shear layer. Thereafter, since these modes
also destabilize the fow, (as found in the Section 2), they continue to grow and lead
to convective overturning. In that case, the presence of the gravity wave accelerates
the onset of turbulence in the shear layer.

Other experiments, conducted with smaller J, give similar results. We verified that
the value of the Prandtl number, for which the mean flow stability at the critical
level doesn’t change, decreases when J decreases, Furthermore, the induced nonlinear
modification of the reflection and transmission of the wave follows the stability
modifications as described above. However, at very small J (2.g., J=0.1) the unstable
modes grow so rapidly that they dominate the disturbance after few periods of the
forced wave. Then, the critical layer is unsteady and rapidly becomes unstable.

3.¢.2) Inttial minimum Richardson number: J=0.5; Pr=1H)

The results obtained with J=0.5 are close to those obtained at J=0.23 except that .
at Pr=1, the mean flow is stabilized at the critical level (Figure 16}. The induced
nonlinear reflection coefficient of the incident wave is larger than the linear one
(Figure 13). The transmission coefficient is smaller. These features are related to
the partial reflection occurring below the critical level. Note that, as discussed in
(3.¢.3), it increases when the wave amplitude increases. It is necessary to increase the
Prandt] number up to Pr=10 to find mean flow destabilization. Then, as observed
on Figure 16, both the reflection and transmission of the wave are larger thana they
were in the linear case and are comparable. At larger /,, these effects are more
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Figere 15 Temporal evohution of the reffection and transmission coefficients of a gravity wave propagating
toward s eritical level for various Prandtt numbers and wave amplitudes. The unchanged parameters are:
J=0.5 k=0.1,/,=0.1.
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pronounced. For instance, at {, &2 Min(l,, ;) and Pr=1.0, the mean Richardson
number at the critical level decreases to (.25 In this case, the reflection and
transmission coefficients are comparable and exceed 0.5, This means that the quantity
|R| 4| T is larger than one. This feature corresponds to the onset of over-reflection
when the transmitted wave is not allowed to propagate far above the shear layer
{Lindzen and Barker, 1985}, In the linear case, such a sitnation only occurs for
unstable flows {i.e. for J<(0.25). in initially stable flow, the occurrence of large
nonlinear reflection and small nonlinear transmission when Pr=1, does not
characterize the nonlinear dissipative regime. It was carly found by Brown and
Stewartson (1982)a, b) in the nonlinear inviscid case. Nevertheless, the oceurrence of
large transmission and |R|+4|7)>1 at large Prandtl number is a new resuit.
Furthermore, in these simulations, the secondary modes, which can be local
instabilities of the flow (Fritis, 1978) remain small. They become important {or larger
wave amplitude, In that case, they precede convective overturning.

3.0 .3} Mnitial minimum Richardson number J=2.5; Pr= 1

For large Richardson number and Pr=1, the wave does not interact with the mean
flow above the critical level. Furthermore, the modification of the mean flow
stratification by the wave is small as compared to the modification of the mean shear.
This renders a discussion of the sensitivity to the Prandtl aumber beyond the scope
of this study: mean flow destabilization only occurs at very large Praadtl number.
At Pr=1, the partial reflection occurring below the critical level is the most important
nonkinear eflect. Consequently, the total nonlinear reflection of the incident wave can
be large while the transmission always remains very small. On one hand, this is the
direct opposite of the result of Breeding (1971), who claimed that at large Richardson
number the nonlinear critical level remains the wave absorber predicted by the linear
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theory. We presume that the numerical resolution used by this author near the critical
leve] was not sufficiently accurate to resolve the interaction correctly. On the other
hand, it carries over into the dissipative regime, the nonlinear inviscid results of
Brown and Stewartson {1982a, b) aforementioned. The nonlinear effects become more
and more important when the wave amplitude is increased. At the above limit when
the secondary modes become important and coavective overturning occurs
(approximately when [ x2l), the total reflection is large. Furthermore, when
mairntaining the ratio I/ =32, but decreasing the viscous scale, I, toward 0, the
nonlinear reflection approaches | (the value |R|=0.75 has been actuaily reached).
This increase in the nonlinear reflection is simply due to the fact that at small [, the
mean flow changes are more abrupt below the critical level making partial reflections
there more and more important.

CONCLUSIONS

The present analysis of the nonlinear interaction between a disturbance and its critical
level have revealed several interesting results concerning the weakly nonlinear dissipa-
tive regime. This regime was defined numerically by the relation: {, = Min{l,, [, }>» 1,
for gravity waves and by I, =1, >, for Keivin-Helmholtz instabilities. The impact of -
secondary modes on the disturbance is small for these scale ranges as compared to
the nonlinear mean flow distortion. For smaller values of i, Lott and Teitelbaum
{1990} show that the linear approximation is valid. For larger §, [ie. I,> 2 Min(l, )],
secondary modes are large in the shear layer and the system can become convectively
unstable. These scale relations roughly represent what was observed experimentally
in the simulations presented.

We show that weakly unstable Kelvin-Helmboltz waves grow and compensate
their energy loss due to dissipation removing kinetic energy from the mean flow.
Furthermore, part of this energy is restored to the mean flow through potential
energy. These exchanges induce a decrease of the mean wind shear and the mean
stratification at the critical level. As a consequence, they determine the changes in
the stability conditions. When dissipation controls the interaction, the nonlinear
stabilization of the mean flow at low Prandtl number (Pr< 1) induces a stabilization
of the wave whereas at large Prandtl number {Pr > 1) the opposite is true. We examined
these effects in detail. Thermal dissipation plays a destabilizing role, since induced
thermal exchanges decrease the mean flow stratification around the critical level.
Conversely, viscosity plays a stabilizing role by decreasing the mean wind shear.
Thus, if is surprising that destabilization occurs for Pr>1. In fact, when the thermal
conduction is smail, the thermal exchanges cccur in a thin layer. This induces a sharp
and negative slope of mean potential temperature modification which is only weakiy
damped because thermal conduction is small. The inverse of this analysis is also valid
for viscosity. Then, the stability of the mean flow is controlied by the Prandtl number
through the lengths [, and /, associated to thermal coaduction and viscosity.

For small Prandtl number, non-lincarities stabilize the flow, contrary to the linear
cuse where unstable modes can occur even for J>0.25. Tn this case, since instabilities
are due to dissipation, the latter necessarily dominate the unsteadiness during the
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interaction. It is found that the growth of such a mode is rapidly limited by nonlinear
effects: it is supercritically stable.

Simiar properties are found when the disturbance is a gravity wave foreed by a
source located far below the critical layer. The condition for which the interaction
is dissipative rather than unsteady is linked 1o the lemporal variation of the wave
source. Furthermore, in all the cases studied, the interaction necessarily becomes
dissipative afler the wave source has reached a constant value (when no unstable
mode is simultaneously present). For stable as well as unstabie flow, a decrease of
the Prandtl number has a nonlinear stabilizing effect on the mean flow and on the
disturbange. The value of the Prandt]l number for which destabilization of the mean
flow at the critical level (through a decrease of the mean stratification) compensates
its stabilization (through a decrease of the mean wind shear) increases when the
minimum Richardson number J increases. For J=0.25, this “critical value” of the
Prandt]l number is Pra=1.

For weakly unstable flow (J=0.23), the critical value of the Prandt] number is
close to one. Then, as is truc for Kelvin-Helmholtz instabilities, a gravity wave can
stabilize (destabilize} the mean flow at the critical level when Pr<1({Pr>1). When
the mean flow is stabilized, the unstable modes which initially grow are damped and
the forced wave remains the dominant disturbance at the critical level. In this case,
the noniinear reflecotion of the wave is larger than in the linear case and its transmission
is smaller, These features are due to the combination of partial reflection occurring
betow the critical level and of mean flow stabilization occurring at the critical level,
When the wave destabilizes the mean flow, the unstable modes grow faster than in
the linear case and rapidly dominate the forced wave at the critical layer. Nevertheless,
during the first step of the evolution, both the nonlinear reflection and transmission
of the wave are comparable to one other and are larger than in the linear case. At
J={.5, the mean fow distortion has similar effects on the reflection and transmission
of the wave. At Pr= |, the mean flow is stabilized at the critical level and the nonlinear
refiection of the wave is larger than in the linear case, its transmission is smaller than
in the linear case. At Prs== 0, the mean flow s destabilized at the critical Jevel, both
the reflection and transmission of the wave are comparable and larger than in the
linear case. Then, for large amplitude waves [1i.e. such that [ = 2 Min{/,, {;], a situation
for which [RI4+|T)> | was reached because the mean Richardson number becomes
smalier than 0.25 at the critical level. For large minimum Richardson number (J =2.5)
and Pr=1, thc wave mean flow exchanges mostly occur below the critical level. This
renders the discussion concerning the sensitivity of the critical level interaction to
the Prandil number beyond the scope of this study: mean flow destabilization oceurs
at very large Prandtl namber. For Pr=1_ the induced partial reflection of the incident
wave can be large. Tt is found that the nonlinear reflection coefficient can approach §
for “large™ amplitude waves (i.e. such that {,=2/), when dissipation approaches 0
{i.e. {,~ >0). The transmission remains very small,
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APPENDIX A

The nont linear scale charactenzes the distance to the crifical level at which the non
linear terms balance the linear ones. Considering the disturbance as a2 normal mode
iy (zYexp{ikx), near the critical level we have (see for instance Booker and Bretherton,
1967):

gr—

drln i 4705 oy gtg05-ie where o=./J—0.25 for J>0.25,

P2y AT L B0 where o'=/0.25—J  for J<0.25,

where ¥ is a stream function. Roughly comparing the ampiitude of the linear
advection term U{ikAY,} to that of the non linear one &, {kAY,) at 1, leads to

kil kil

........ 11 . m?; = [yl
for J>0.25, |~ Max(I4¥], BT, = [ mMax(]47|,|B*1)*?,
for J<0.25, [y =B I = [ | BFPHERT,

For given k and J, A" and B™ varies linearly with the amplitude, ¢, of the wave,

for J:>>0.25, 1, varies as 8%/,
for J=<025, 1, varies as ¢#/G*3)
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APPENDIX B: ENERGETIC BUDGET FOR TWG-DIMENSIONAL
DISTURBANCES

In the Boussinessy approximation, the equations (1.1) and ¢1.2} satisfy an energy
closure close to that presented by Klassen and Peltier (1983a). It involves the following
ENergy reservoirs:

K =4<u;*>, the mean kinetic energy; t;=U+4,
K’ =1{u'?+w'?), the wave kinetic energy,

FP=_J{zp), the mean potential energy,

Here, the integral operators are

2nk 8

{Y=k/2n j { Wdx and (D= | ()dz with |« H < —z;.

) B -]

These energy reservoirs represent the average energy per unit horizontal area
contained in a fluid column of height 2H. Assuming that the eddy interaction terms
are sufficiently small, third order nonlincar terms can be neglected and the energetic
balances can be written as

K _ (R, K- DR),
dt

dK'
dt

=+ C(K, K+ C(P, K"}~ [Fwllg—DK"),

P B k)P,
dr

where, C(K, K'Y= -{ﬁ} 8{u’w’)>‘
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2 -
D(P}m ——.{ ----- <Z E‘:%—ip> me(Z(‘b>,

PrRe\ dz?
R B R o S wic: 1 1 2w ow 1t
DK)=— + o+ T+ T N pairw e awi |
Re\ éx dz dx éz Re z 9z {.y

Here, the notation Clx, ff) denotes the conversion of energy from reservoir z to
reservoir f, while positive D{x) represents a loss of energy from reservoir a due {o
diffusion,

is the flux of total energy carried by the wave, p'w’ represents the total mean work
in the system due to the wave, upu'w’ and — Jzw'e’ are the vertical Muxes of kinetic
and potential energy carried by the wave. For Kelvin-Heimholtz instabilities, F, is
cloge to zero (for sufficiently large H)} since the wave is evanescent away from the
shear layer. For gravity waves interacting with a shear layer, this {erm is also close
to zero when dissipation is small and when the system is nearly stationary.



