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ABSTRACT

The airplane data collected between 4 and 12 km above the Pyrénées during the intensive observation period
(IOP) 3 of the Pyrénées Experiment (PYREX) are analyzed again. A spectral analysis of the velocity and potential
temperature series shows that the mountain waves are dominated by two oscillations with well-defined horizontal
wavenumbers. At nearly all altitudes, at least one among these two oscillations can be extracted: the short
oscillation dominates the signal below 6 km and the long one above. These two oscillations contribute to the
Reynolds stress below 5 km and not above.

Linear steady nondissipative simulations show that the short oscillation is a trapped resonant mode and the
long one a leaking, or partially leaking, resonant mode of the background flow. Pseudo-momentum flux budgets
show that the short resonant mode only contributes to the Reynolds stress at low level (here below 3 to 4 km
typically) while the long one contributes to the Reynolds stress at all levels. At low level, (below 4 to 6 km
typically), the long mode can induce a decay of the Reynolds stress amplitude, when it partially leaks toward
the stratosphere. Various tests, changing the incident flow profiles within limits provided by the different sound-
ings available this day, reveal, on the one hand, that the above findings are quite robust. On the other hand,
they reveal that the resonant modes response is very sensitive to the background flow and orography specifications.

In some of the steady linear simulations, the long resonant oscillation has a Reynolds stress that is constant
with altitude. In all of them the downwind extent of the lee waves is overestimated and the waves amplitude
is too large. To explain these mismatches with the observations, we present simulations that last 3 h only, so
the resonant modes patterns are everywhere unsteady. They show that during their build-up phase, all the leaking
modes can make the Reynolds stress amplitude decays with altitude at low level (here below 4 to 6 km, typically).
At this time, the downstream extent of the waves is also correctly predicted. These linear unsteady simulations
also give realistic waves amplitude and Reynolds stress profiles if the mountain is cut off to parameterize
nonlinear low-level flow splitting.

By using a nonlinear model, the simulated waves are matched to that observed through an adjustment of the
parameters of the turbulent diffusion parameterization scheme: with enough dissipation, the model response can
become quite realistic. In these nonlinear simulations, the background flow is chosen so that there is only one
resonant mode and this mode does not contribute much to the Reynolds stress in the inviscid case. When
increasing the mountain height and the dissipation, the overall structure of that mode stays unchanged, and it
never contributes much to the Reynolds stress. This indicates that the dissipative and nonlinear processes alone
are not likely to produce the observed low-level stress variations associated with the resonant modes.

1. Introduction

During the past three decades, considerable research-
es have been done on the dynamics of atmospheric flow
around and over mountains with scales varying between
a few kilometers and a few hundred kilometers. They
follow early studies by Queney (1947) and Scorer
(1949), which show that mountains can generate gravity
waves that transfer momentum from the ground to the
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atmosphere (Eliassen and Palm 1961). Following these
studies, more recent works focused on the nonlinear
aspect of 2D mountain flow (Long 1953; Smith 1985;
Durran 1986; Laprise and Peltier 1989) to explain lee-
ward foehns and downslope windstorms. Others focused
on the structure of 3D mountain waves (Phillips 1984),
on the dynamics of nonlinear 3D mountain flow (Mi-
randa and James 1992; Schär and Smith 1993; Schär
and Durran 1997) and on the related low-level flow
splitting.

Among the different practical motivations for these
studies, one concern is the parameterization of mountain
gravity wave drag in weather forecasting and climate
models (Boer et al. 1984; Palmer et al. 1986). In most
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parameterization schemes, it is assumed that the wave
Reynolds stress is constant with altitude when the back-
ground mean wind U(z) has a constant sign, and in the
absence of breaking (Eliassen and Palm 1961). Nev-
ertheless, it is now well established that this kind of
parameterization is only half supported by observations.
The mountain gravity wave drag predicts well the drag
measured at ground level (Bessemoulin et al. 1993) but
overstates, by nearly an order of magnitude, the Reyn-
olds stress measured by airplanes aloft. In the mesoscale
context (i.e., neglecting the Coriolis force), this dis-
crepancy between the measured mountain drag and the
measured stresses has essentially five origins:

1) the wave dissipation in the boundary layer (Geor-
gelin et al. 1994) or the breaking of the waves at
low level (Miranda and James 1992);

2) the unsteady nature of the waves due to the time
variations of the incident flow (Bell 1975; Lott and
Teitelbaum 1993);

3) the downstream transfer of momentum by trapped
waves (Bretherton 1969; Durran 1995; Lott 1998),
or simply the fact that the Reynolds stress is mea-
sured over a finite distance so even nontrapped waves
can induce nonzero momentum fluxes through the
domain downwind lateral boundary (Keller 1994);

4) the momentum flux leakage that occurs through the
domain lateral boundary when the waves are three-
dimensional (Smith 1980); although in the three-di-
mensional case, Satomura (1996) has shown that the
evaluation of the Reynolds stress along a line, rather
than over a plane, can explain its variation with al-
titude in the steady inviscid case; and

5) the fact that for real and high mountains, the low-
level flow goes around the mountain rather than over
it, and a large part of the drag is related to low-level
flow deceleration (Schär and Durran 1997) rather
than to wave emission.

Recent parameterization schemes of subgrid-scale
orography in large-scale models account for the last
effect (Lott and Miller 1997), this being probably the
most important deficit of the preceding schemes, iden-
tified using field data. Nevertheless, in this parameter-
ization scheme, the ‘‘wave’’ part is still built assuming
the hydrostatic approximation and the trapped waves
are not considered. In other works (Miller et al. 1989;
Lott 1999; Gregory et al. 1998), trapped waves are rep-
resented but still in a rather simple way.

To a certain extent, such a simplicity in the treatment
of trapped waves in large-scale models hides that the
correspondence between the mountain drag and the
Reynolds stress is not obvious when they are resonant
waves (as noticed Eliassen and Palm 1961, in their sem-
inal paper). Although these waves are evanescent in the
vertical direction and above their lowest turning height,
they can be an important source of orographic drag
(Durran 1995). If these resonant waves are entirely
trapped, they carry a significant fraction of the drag in

the horizontal direction only (Bretherton 1969; Lott
1998). If these resonant waves have more than one turn-
ing height, they can leak into the stratosphere (Brown
1983) and transport momentum in both horizontal and
vertical directions.

To quantify the resonant waves contribution to the
momentum balance in a realistic environment, the few
airplane data collected during field experiments are
helpful because they often reveal trapped waves and
allow for the evaluation of the vertical profiles of mo-
mentum flux (Bougeault et al. 1993; Hoinka and Clark
1991). A remarkable result is that the general structure
of the observed waves, that is, their horizontal wave
number and their amplitude variation with altitude, is
well predicted by linear steady theory (Vergeiner 1971;
Brown 1983; Tannhauser and Attié 1995). Nevertheless,
these studies often contradict one with the other when
they address the role of the resonant modes in the mo-
mentum budget. For instance, Tannhauser and Attié
(1995) found that the resonant waves during PYREX
do not transfer momentum vertically. Brown (1983),
treating the same issue for the British Islands, found
that the resonant waves contribute to the Reynolds stress
if they leak into the stratosphere and do not contribute
to the Reynolds stress if they are trapped.

Following the relative success of the early 2D-linear
studies in explaining the airplane data, nonlinear high-
resolution nonhydrostatic simulations often reproduce
these waves with some realism. Such simulations have
been made for various mountain ranges during the last
two decades and for different models configurations
(linear, nonlinear, 2D, 3D. . . ). Among these numerical
studies, the most advanced are the 3D high-resolution
nonhydrostatic model simulations of real case studies,
following the pioneering example of Clark and Gall
(1982). For the PYREX experiment, nonlinear 2D sim-
ulations have been performed by Elkhalfi and Carris-
simo (1993) and Satomura and Bougeault (1994) among
others, and nonlinear 3D simulation by Broad (1996),
for instance. Again, it is noteworthy that all these sim-
ulations give quite realistic trapped waves but often fail
in simulating the momentum fluxes.

Without referring to complex nonlinear 3D processes,
the fact that models and observed momentum fluxes
often differ can have two origins. On the one hand, it
can come from the analyses of the airplane data them-
selves, in the sense that the momentum fluxes they pro-
vide may not be as representative as they are usually
considered. As an example, in Bougeault et al. (1993),
the momentum fluxes’ vertical profiles, evaluated with
the detrended airplane data, are provided without error
bars. Their significance is thus questionable; all the
Reynolds stress values given being rather small. On the
other hand, it can come from the model studies them-
selves, and because the resonant modes of the flow and
the associated momentum flux vertical profiles are ex-
tremely sensitive to small changes in the upstream flow
and orography profiles. As an example, if we consider
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FIG. 1. Smoothed terrain elevation and PYREX data used. Here,
1 denotes the location of the high-resolution soundings. The two
thick lines indicate the airplane paths during the IOP 3. The light-
and dark-shaded areas denote terrain elevation above 1000 m and
1500 m, respectively.

two slightly different mean flows, the first one can have
a resonant mode that is entirely trapped into the low
troposphere, while the second one can have a resonant
mode that leaks or partially leaks toward the strato-
sphere. When considering a momentum budget inte-
grated over the troposphere depth, in the steady case,
only the first of these two flows has a mode that carries
momentum in the horizontal direction only.

The purpose of the present paper is to examine the
contribution of lee waves to the momentum budget in
a realistic context. For this purpose, we analyze again
the airplane data collected during the Pyrénées Exper-
iment (PYREX) and interpret them using linear wave
theory. The analysis has much in common with that of
Tannhauser and Attié (1995), but, as we shall see, it
completes it by discussing modes they did not find and
by drawing conclusions rather different from theirs, con-
cerning the contribution of the resonant modes to the
momentum budget. In this analysis, we make a spectral
and a cross-spectral analysis of the data that has much
in common with that of Brown (1983) for the British
Isles, but our conclusions differ regarding the contri-
bution of the fully trapped waves to the momentum
budget. To gain dynamical realism we then make a lim-
ited number of nonlinear dissipative simulations keep-
ing the 2D constraint, and attempt to reproduce the ob-
served waves as well as possible. These simulations
indicate that dissipative and nonlinear effects alone can-
not explain that a trapped mode can transport momen-
tum if it does not in the linear inviscid case.

Although we suggest that there are some benefits in
making again 2D analyses of observed waves, it is im-
portant to recall that this approach is not much justified
for many flow and orography configurations. Low-level
flow splitting for instance (Schär and Durran 1997) is
a major difficulty for 2D studies, but the absence of a
large-scale pressure gradient and Coriolis force is an-
other one (Bougeault 1994). When there can exist res-
onant modes, the fact that the mean wind veers with
altitude makes that their horizontal wavenumber can be
oriented in a direction that differs a lot from that of the
low-level flow (Sharman and Wurtele 1983). Because
of these processes, the simulations presented here have
systematic errors that are discussed with some details.
We try to correct some of them by making explicit
changes in the models specification. For instance, in the
linear model, the simulated waves only resemble the
measured one if they are forced by the upper part of
the Pyrénées (i.e., forced by what is referred to as its
cutoff profile). It is a way to parameterize the impact
of low-level flow splitting on the mountain waves’ forc-
ing. As another example, we only consider a date where
the incident wind does not veer a lot with altitude, so
the resonant modes have good chances to be oriented
into the dominant direction of the flow.

Section 2 presents a spectral analysis of the airplane
data collected above the Pyrénées main transect during
the intensive observation period (IOP) 3 of PYREX

(Bougeault et al. 1993). In this analysis, the detection
of resonant modes and their contribution to the observed
Reynolds stress profile is addressed. Section 3 presents
linear simulations of mountain waves in configurations
(incident flow, mountain profile) that correspond to the
PYREX IOP 3. These simulations allow us to give a
simple interpretation of the observed lee-waves struc-
ture and to quantify the fraction of momentum they
transport in the horizontal direction only. In this section,
extensive sensitivity tests are made. In these tests, the
background flow specifications are changed within re-
alistic bounds, the build-up phase of the resonant modes
is analyzed, and the mountain profile is modified to
parameterize nonlinear low-level flow splitting. Section
4 presents fully nonlinear 2D simulations. Section 5
summarizes the results and discusses the implications
for the parameterization of gravity waves in large-scale
models.

2. Data analysis

a. Description

Among the data collected during the PYREX field
experiment (Bougeault et al. 1990), we will use the high-
resolution vertical soundings launched from Zaragosa,
Pamplona, Pau, and Toulouse. These four stations are
located 150 km upstream of the Pyrénées at their up-
stream foot; and 150 km downstream, at their down-
stream foot, respectively (Fig. 1). Pamplona and Pau
are slightly to the west of the main PYREX transect,
Zaragosa and Toulouse are nearly along the transect.
These soundings thus provide four relevant high-reso-
lution samples of the background flow. We will also use
the airplane data collected above the PYREX main tran-
sect extensively.
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FIG. 2. Observed vertical velocities from different aircraft legs,
from 15 Oct 1990 around 0600 UTC. Thick lower curve represents
the Pyrénées; the thin curve at the Z 5 4 km and Z 5 10 km are
red-noise surrogates with characteristics adapted to the measured ver-
tical velocity at that level.

All along the paper, attention will be focused on the
PYREX IOP 3 (1800 UTC, 14 October 1990–1200
UTC, 15 October 1990), when a trough over eastern
Atlantic directed south to southeast winds, approxi-
mately perpendicular to the Pyrénées ridge. The vertical
profiles of the horizontal wind deduced from the sound-
ings, show that the wind direction varies by less 258
between Z 5 3 km and Z 5 15 km at 0600 UTC. This
is the fundamental reason why 2D studies are more
adapted for this date than for the three other PYREX
cases during which comparable cross-ridge airplanes’
measurements were made. Indeed, when the wind veers
with altitude, the vertical profile of the Scorer parameter
vary with the angle considered, so that the resonant
modes structure can vary with this angle as well (Shar-
man and Wurtele 1983). During this IOP 3 low-level
lee vortices, upper-level and trapped waves have been
observed by a large variety of instruments (Benech et
al. 1994; Attié et al. 1997). As a signature of these
characteristic processes, the pressure drag is large dur-
ing this period (Bessemoulin et al. 1993).

b. Analysis

The purpose of this analysis is to extract from the
airplane data, the dominant oscillations in which wave-
lengths are above 1 km, typically. To do so, we first
detrend the series of vertical velocity, w, horizontal ve-
locity along the transect, u, and potential temperature,
u. We next interpolate them linearly onto a uniform grid
of 70 m horizontal resolution. Then, to increase the
signal–noise ratio, we filter out the fluctuations with
wavelength below 350 m smoothing the data by a 5-
point nonrecursive filter for which weights are 1/8 for
the two extrema and 1/4 for the three central points.
The resulting data are then sampled every 5 points (i.e.,
every 350 m), in the following, they will be referred to
as w9, u9, and u9, respectively. We verified that this
smoothing does affect the spectra at wavelengths above
1 km, and that it does not affect the Reynolds stress.
Figure 2 shows the resulting vertical velocity w9 for the
10 transects made at different altitudes on 15 October
1990, around 0600 UTC. The lower curve shows the
mountain height profile viewed from the airplanes. Fig-
ure 2 clearly shows several lee wave trains in the tro-
posphere. The maximum vertical wind amplitude (crest
to crest) is about 10 m s21 and is found in the range
3500–5000 m; it is smaller above.

To extract resonant modes from these series, we next
evaluate the power spectra of the vertical and horizontal
velocity fields w9 and u9 and of the potential temperature
field u9, when the latter is available (for the four lowest
flights). The technique used is a conventional Black-
man–Tukey correlogram of the series tapered by a 180-
km-long Tukey window. To provide error bars on the
spectral estimate as well as on the Reynolds stress we
model the cumulative effects of measurements errors
and of naturally random nonoscillatory fluctuations by

a red noise. This technique is conventional when one
wishes to extract oscillations from geophysical series
but was not used in the studies of the mountain waves
during PYREX. This is rather surprising since it allows
us to provide the error bars needed to describe precisely
what information can be extracted from the data.

The choice of red noises to test the series is motivated
by the fact that the null hypothesis for red-noise tests
is that the series does not differ from a 1-order auto-
regressive process (AR 1), which does not contain os-
cillations. It also follows that all the power spectra we
compute have a median shape that looks like that of a
red noise, in the wavelength domain we investigate. For
this last purpose, the prefiltering described before is
essential. It allows a reduction of the wavelength domain
size by a factor of 5: it is easier to approach the median
shape of a spectrum by a simple red-noise spectrum
when the wavelength domain is short.

To perform the tests, we associate the 24 series of
interest (u9, w9 at the 10 levels, u9 at the far lowest
levels) with 24 ensemble of independent AR-1 series
whose variance and lag-1 cross-correlation match those
of the measured series. These AR-1 series are of the
form Yx1dx 5 aYx 1 Zx, where Zx is a white noise. Two
examples of such a series are shown in Fig. 2 at Z 5
4 km and 10 km, where they are superimposed to the
measured vertical velocity. These stochastic series show
purely random fluctuations dominated by rather long
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FIG. 3. Power spectra of the vertical velocity fields (heavy solid),
median level (light-dashed), and 99% confidence level (light solid).
Spectral resolution is 5.3 1023 cycles km21.

waves, which is a classical behavior of red noises. The
fact that such series can look like waves does not dis-
prove the hypothesis that the measured wind contains
oscillations, it provides a null hypothesis for what is
seen. To test the robustness of the results presented next,
we adopt a Monte Carlo procedure, in which all analyses
(spectra, cross-spectra, and Reynolds stresses) are com-
pared to analyses done with ensembles of 1000 AR-1
surrogates build as described before. The results are
significant if they exceed, in 99% of cases, the values
obtained with the surrogates.

The power spectra of the vertical velocity (Fig. 3) at
the four lowest levels, show that below Z 5 6 km the
signal is dominated by oscillations with wavelengths
ranging from lx 5 8 km to 17 km. More precisely, for
the two lowest flights, at Z 5 4 km and Z 5 4.3 km,
the most significant peak is centered at lx ø 8.5 km.
At Z 5 4.9 km it is around lx ø 10 km and at Z 5 5.8
km it is around lx ø 15.5 km. The fact that at the
intermediate level, Z 5 4.9 km, the wavelength of the
most significant peak is in between the values detected
above and below follow that the spectral analysis does
not allow to separate at this level, the two different
oscillations detected at the two adjacent altitudes. That
there are two distinct oscillations is further indicated by

the fact that a peak at lx ø 15.5 km is also significant
at Z 5 4.3 km, and that a peak at lx ø 8.5 km is
significant at Z 5 5.8 km. For these four flights, the
spectra of potential temperature u9 (not shown) give
exactly the same results. The cross-spectra between w9
and u9 (not shown) shows that both quantities are in
quadrature at nearly all wavelengths.

The characteristics of the w9-spectra at the six highest
levels change significantly (Fig. 3). At these altitudes
the spectra are much redder, which means that the signal
is dominated by a continuum of long waves rather than
by oscillations with well-defined wavelength: the max-
ima in the power spectra are nearly always above lx 5
50 km, and are never significant. Still, in four of the
six upper-level flights, the oscillation with lx ø 15.5
km is significant. Furthermore, all these six spectra are
dominated by a peak around 66–100 km. The fact that
these long oscillations hardly pass the 99% test is nat-
ural. Indeed, the test is designed to distinguish oscil-
lations above a background noise. Nevertheless, in the
theory of mountain waves, the long waves form a con-
tinuum of freely propagating modes that are not much
amplified or attenuated by the background flow. They
thus essentially reflect the spectra of the mountain forc-
ing at wave numbers below the minimum of [S(z)]1/2,
where S(z) is the Scorer parameter. Since the mountain
forcing has a near red spectra at long wavelength (not
shown), we can expect the nonresonant response to be
red as well. When these long waves dominate the signal,
they dominate the design of the test, and it is natural
that they do not show up as significant, the test-rejecting
signals looking like red noise.

The spectra of the horizontal velocity fields (not
shown) are much redder than those of w9 at all altitudes
reflecting the fact that the u9 series has much more power
at long wavelengths than at short ones: at all altitudes,
the largest peak is always around 66–100 km. Still, mar-
ginally significant peaks are found in the four lowest
flights at the wavelengths indicated in both the w9 and
u9 spectra.

To evaluate the contribution of the oscillations to the
wave Reynolds stress,

Xmax

Re 5 ru9w9 dxE
Xmin

1`

5 (X 2 X ) rû ŵ*, (1)Omax min k k
k52`

we next make a cross-spectral analysis of u9 and w9. In
Eq. (1) the hats identify the coefficients of the Fourier
transforms of the series, and Xmax 2 Xmin is the series
length. The mean density is considered to be consis-r
tent with the anelastic form of the Reynolds stress used
in the next sections, but we verified that the density
disturbances are small enough that they can be neglected
in the Reynolds stress evaluation.

Figures 4 and 5 show the amplitude and phase of the
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FIG. 4. Coherence of the cross-spectra between the horizontal and
vertical velocity fields (thick solid), median (thin-dashed), and 99%
confidence level (thin solid). Spectral resolution is 5.3 3 1023 cycles
km21.

FIG. 5. Phase of the cross-spectra between the horizontal and ver-
tical velocity fields. Phase (filled square). Spectral resolution is 5.3
3 1023 cycles km21.

cross-spectra, respectively. As found in the vertical ve-
locity spectra, the trapped waves are the only ones for
which contribution to the cross-correlation can be ex-
tracted significantly. The phase of the cross-spectra
show that at Z 5 4 km and Z 5 4.3 km the vertical and
horizontal velocity fluctuations associated with the os-
cillations, with wavelength around 10 km, are out of
phase (they are of opposite sign) and give a negative
Reynolds stress. At higher levels (Z 5 4.9 km and Z 5
5.8 km), the coherence is still significant for distur-
bances with wavelength around lx ø 10 km (Fig. 4)
but the horizontal velocity fluctuations are more in quad-
rature, the trapped waves contribute less to the Reynolds
stress than below. The explanation for this is that the
7–15-km waves become evanescent in the vertical di-
rection as the altitude increases, because the Scorer pa-
rameter decreases with altitude. To interpret the coher-
ence and phase spectra at a small horizontal wave-
number is more problematic, since significant contri-
butions are hardly found. Still, at the five highest levels,
the cross-spectra have marginally significant peaks
above 50 km wavelength, indicating that the u9 and w9
fields vary with more coherence than two independent
random series. At all levels, the vertical and horizontal
velocity fluctuations at small horizontal wavenumbers
are essentially out of phase, thus giving a negative con-

tribution to the Reynolds stress. Furthermore, above 6
km, the largest contribution to the cross-spectra comes
from the long waves.

Figure 6a shows the vertical profile of the integrated
Reynolds stress (1), together with 99% confidence in-
tervals evaluated by a Monte Carlo procedure using the
AR-1 surrogates of both the u9 and w9 series. Since the
u9 and w9 surrogates are build independently from one
another, their theoretical cross-correlation is zero. The
size of the confidence interval illustrates well the limit
of using finite length series to compute the stress: the
spreading of the surrogate stresses is such that there is
no altitude where the stress computed with the measured
data is significant. Nevertheless, this test is extremely
conservative, because the AR 1 series fit the complete
series, while according to the spectral and cross spectral
analysis shown before, part of the measured signals can
be attributed to well-defined oscillations.

To evaluate the contribution of these oscillations to
the Reynolds stress and to exclude them from the design
of the statistical test, we next filter the observed series
using two low-pass filters with a Kayser window (Ham-
ming 1983) whose parameters are adjusted to avoid
Gibbs effects (for a more complete description of the
filter see Scavuzzo et al. 1998). The first filter suppresses
the disturbances with horizontal wavelength lower than
5 km the second one suppresses wavelengths lower than
25 km. The choice of the 5-km and 25-km cutoffs is
based on the fact that the oscillations detected previ-
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FIG. 6. (a) Reynolds stresses: raw data (solid and circle), 5–25 km
bandpass (thick solid), lx , 5 km (thick-dashed), lx . 25 km (thick
long-dashed), 99% confidence (light-shaded), and 99% confidence
with 5–25 km waves excluded from the test (dark-shaded). All values
are in pascals; that is, Re in Eq. (1) is divided by the length L 5
110 km—typical of the pathlength along which the mountain drag is
measured. (b) Transfer function associated to the 5–25-km bandpass
filter. (c) Comparison between bandpassed (thick) and raw (thin) ver-
tical velocities at Z 5 4 km.

ously in the series have wavelengths in between these
values. The choice of the 25-km cutoff is also motivated
by the fact that waves with wavelengths larger than 25
km, essentially propagate freely toward the low strato-
sphere.

In the following we will use the difference between
the complete series and the 5-km low-pass series to
evaluate the contribution of the disturbances with wave-
length smaller than 5 km to the Reynolds stress. We
will use the 25-km low-pass series to evaluate the con-
tribution of the ‘‘long’’ freely propagating waves to the
stress. The 5–25-km series, build as the difference be-
tween the 5-km low-pass series and the 25-km low-pass
series will be used to evaluate the contribution of the
resonant modes to the stress. The transfer function as-
sociated with this bandpass procedure is displayed on
Fig. 6b, and a comparison between the full signal and
the 5–25-km signal is shown on Fig. 6c. Figure 6c shows
that the bandpass vertical velocity oscillations compare
well with those observed in the raw series: the 5–25-
km series contains the resonant modes.

Since the oscillations that dominate the 5–25-km se-
ries have been detected without ambiguity in the spectral
analysis, we can assume that the 5–25-km waves are
not part of the noise. We thus build new series of sur-
rogate AR-1 series that matches the measured signal
minus the 5–25-km signal and deduce the 99% signif-
icance levels accordingly (dark-shaded in Fig. 6a). Ac-
cording to these new confidence intervals the Reynolds
stress values can be considered different from zero at
the three lowest levels and at Z 5 8.2 km, 11.2 km, and
11.8 km (solid and circles, Fig. 6a). According to these
new confidence levels, in the lower part of the Reynolds
stress profile (below 6 km) the contribution of the
trapped waves is essential (thick solid in Fig. 6a): they
are associated to a stress of less than 20.7 Pa at the
lowest level, which corresponds to a little less than half
the total Reynolds stress value. As altitude increases,
the stress due to the trapped waves drops sharply, con-
sistent with that the w9 and u9 field becomes more in
quadrature as altitude increases (Fig. 5). The thick-
dashed line in Fig. 6a also shows that the disturbances
with wavelength shorter than 5 km do not participate
to the Reynolds stress. The thick long-dashed line in
Fig. 6a shows that the disturbances with wavelength
longer than 25 km contribute to the stress at nearly all
levels. At ground level, the long wave contribution is
close to that of the trapped modes and stay near Re 5
21 Pa up to 5 km. If one excludes from the discussion
the altitude Z 5 5.8 km, at the six highest levels, the
Reynolds stress due to the long waves is not much dif-
ferent from that. Indeed, it is again near Re 5 21 Pa
at Z 5 10.6 km, 11.3 km, and 11.8 km. It is larger than
that but does not goes above Re 5 20.3 Pa at Z 5 8.2
km, 9.4 km, and 10 km. Since the confidence interval
in Fig. 6a is 1-Pa large, it is statistically correct to say
that, except at level 1, the values of the stress due the



3570 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 7. Flow profiles the 0600 UTC 15 Oct 1990 measured by high-
resolution soundings, airplanes, and background profiles used in the
linear model simulations: (a) potential temperature and (b) horizontal
wind.

long waves at all levels is nearly that due to the resonant
modes at the lowest level.

Extensive sensitivity tests to the bandpass filter win-
dow have also been made. They show that the results
above are not very sensitive to the window definition,
providing it includes the 8–20-km band, that is, that the
bandpass signal contains the two oscillations detected
in the above spectral analysis. We also computed the
Reynolds stresses related to wavelengths between 8 km
and 13 km on the one hand, and between 13 and 20 km
on the other. Although the values become too small to
be significant, we found that each of these two bands
have nonzero momentum fluxes of comparable ampli-
tude at the two lowest levels.

3. The linear nature of the trapped waves

a. Model description

All of the following results have been obtained using
the anelastic approximation (Lipps and Hemler 1982;
Scinocca and Shepherd 1992). In this approximation,
freely propagating gravity waves and trapped mountain
waves coexist and the equations of motion form an
Hamiltonian system in the isentropic nonviscous context
(i.e., a system from which wave activity conservation
laws can be deduced). The 2D linear equations that re-
sult from the anelastic approximation are (see for in-
stance Lott 1998):

V dp0(] 1 U] )v9 2 ] c9 2 c ] u9 5 0, and (2)t x x p x1 2r dz0 z

2N u0(] 1 U] )u9 2 ] c9 5 0; (3)t x xgr 0

and the linear lower boundary condition is,

c9(0) 5 2r (0)U h(x) at Z 5 0.0 0 (4)

Here, U, V, r0, p0, and u0 are the background state
(uniform in the horizontal direction) horizontal wind,
vorticity, density, Exner pressure, and potential tem-
perature respectively, and h is the terrain elevation.
Also, v9, c9, and u9 are the disturbance vorticity, stream-
function, and potential temperature associated with the
perturbation respectively. In Eq. 4,

hmax1
U 5 U(z) dz0 Ehmax 0

characterizes the incident wind intensity that hints the
ridge, hmax being the maximum terrain elevation.

The linear wave field is evaluated using a time-de-
pendent numerical model that is close to the one used
by Wurtele et al. (1987) or by Lott and Teitelbaum
(1993). It solves Eqs. (2) and (3) in spectral space in
the horizontal direction and in finite-differences in the
vertical direction. In all the linear simulations, the total
domain height is 30 km, its length is 600 km, and the

lateral boundary conditions makes the wave field pe-
riodic. Furthermore, linear dampings are introduced
(Rayleigh friction and Newtonian cooling) on the right-
hand side of Eqs. (2) and (3) to define sponge layers at
the leeward and upward boundaries of the model do-
main. The length of the leeward sponge layer is equal
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FIG. 8. Steady linear simulation. Here, [S(Z )]1/2 (S is the Scorer
parameter) for the smoothed-incident flow profile 2 (thick solid), and
contribution of each harmonic to the Reynolds stress at at Z 5 1, 2,
3, 4, 5, 7, 9, 11, 13, and 15 km (thin solid). Resolution is 8 3 1023

cycles km21.

to 50 km, and the depth of the upward sponge layer is
10 km. The amplitude of the dampings was adjusted to
minimize backward wave reflections and to maximize
absorption. In the cases presented, the model resolution
is dz 5 dx 5 0.5 km, and for this resolution, model
convergence was verified comparing the results to those
obtained with dz 5 0.25 km 5 dx/2 on the one hand,
and to those obtained when increasing the domain length
to 800 km leaving dx unchanged (i.e., this increases the
spectral resolution) on the other. Each simulation begins
with a spinup of 1 h, during which the mountain height
increases toward its final shape and lasts 72 h to ensure
that a steady state is achieved.

The design of the linear model implies that the in-
cident flow profiles U and u0 need to be specified to-
gether with their derivatives, Uz, Uzz, and u0z. In the
linear model this is done by building the profiles of U(z)
and u0(z) using few piecewise linear profiles, smoothly
linked by hyperbolic tangent functions. They are dis-
played in Figs. 7a,b, together with the profiles issued
from the four high-resolution soundings and with the
profiles built by averaging the raw series of u and u
measured by the airplanes. Figure 7 shows that the an-
alytical profiles match quite well those measured.

For the wind, three analytical profiles were tested and
compared (Fig. 7b). They differ only below 5 km, in
that each smoothly matches three different values of the
wind at the ground, U(0) 5 2 m s21, 5 m s21, and 8 m
s21 respectively. These profiles are used to test the sen-
sitivity of the wave response to the background flow
specification, when we stay within realistic bounds.
Many other configurations have been tested, like chang-

ing the maximum wind amplitude or the low-level strat-
ification still within reasonable bounds. None of these
modifications gives changes much more pronounced
than those occurring when the low-level wind is
changed, and there is little benefit in presenting results
for more than these three profiles. The topography
height in the model has been slightly modified from that
measured by the airplane flights. It is lowered to insure
an equal altitude on both sides of the 2D model domain.

b. Results

In this section, we often describe the wave field in
terms of Fourier series in the horizontal direction. At
each altitude and at each time, the Fourier coefficients
of each dynamical field is the direct output of the nu-
merical model, which is spectral in the horizontal di-
rection. In the steady case, this description is very nat-
ural because one harmonic,

1/2 ikxc9(x, z) 5 r R[ĉ (z)e ],k 0 k (5)

has a vertical structure that is simply governed by the
Taylor–Goldstein equation,

r 0zU 2 U zz z2 2 2d ĉ N r r 3 r k 0 0zz 0z 2 1 2 1 2 2 k ĉk2 2 2dz U U 2r 4 r 0 0

2d ĉk 25 1 [S(z) 2 k ]ĉ 5 0, (6)k2dz

where S(z) is the Scorer parameter. Near the ground the
vertical wavenumber of a harmonic is, (0) 5 S(0)2mk

2k2. It corresponds to a vertically propagating wave if
the horizontal wavenumber is below [S(0)]1/2.

The contribution of each harmonic to the Reynolds
stress at different altitudes, r0(z)ûk (z), and the Scorerŵ*k
parameter for the wind profile 2 [U(0) 5 5 m s21] are
displayed in Fig. 8. The Reynolds stress below 3 km
(lowest three solid lines in Fig. 8), is transported by two
well-defined harmonics with wavelengths lx ø 7.8 km
and lx ø 24 km on the one hand, and by a continuum
of long modes with k , kmin 5 min[S(z)]1/2 on the other.
These two modes are the two resonant modes of profile
2, each contributes equally to the Reynolds stress near
the ground, and each transports approximately as much
momentum as the continuous part of the wave spectrum.

As altitude increases, the contribution of the short-
trapped mode to Re decreases (Fig. 8); it is near zero
above Z 5 4 km, which is also its lowest turning height.
In the following such a mode will be referred to as a
resonant-trapped mode. Conversely, the contribution of
the long-resonant mode to Re stays near constant as
altitude increases. As its horizontal wavenumber, k .
[S(z)]1/2, between Z 5 7.5 km and Z 5 10 km, this
modes nearly entirely leaks through a zone where it is
evanescent according to Eq. (6). In the following such
a mode will be referred to as a resonant leaking mode.
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FIG. 9. Linear simulation: vertical velocity field. Contours every 5
m s21; negative values are dashed.

That the shortest mode does not leak compared to the
long one can be easily understood, comparing a char-
acteristic e-folding scale, ø (k2

min 2 k2)1/2 to the21l k

depth over which these modes are evanescent, dk (which
can be taken as the distance between its two turning
heights; Fig. 8). For the leaking mode, lk 5 38 km k
dk 5 2.5 km, while for the trapped mode, lk 5 8 km ø
dk 5 9 km.

Figure 9 presents the simulated vertical velocity field
and shows a strong lee wave patterns with horizontal
wavelength lx ø 7–8 km below Z 5 5 km and near lx

5 25 km everywhere above, including the stratosphere.
Figure 9 further indicates the clearest deficit of the sim-
ulation. When compared to Fig. 2, it can be easily seen
that the simulation overstates the wave’s amplitude and
the downstream extent of the waves.

This simulation has to be contrasted to that of Sa-
tomura and Bougeault (1994), which, in the same sit-
uation, produced waves with small horizontal wave-
length through nonlinear interaction; the mountain pro-
file they used being very smooth. In our simulation, the
mountain profile directly forces the resonant modes of
the background flow. This linear simulation has some
points in common with those presented in Lott (1998),
since most of the harmonics forced at the ground prop-
agate vertically and encounter a turning height in the
troposphere. In contrast with this author nevertheless,
all the resonant modes found here have a second turning
height so they can eventually leak through the jet stream
toward the stratosphere. Nevertheless as the short-res-
onant mode is trapped, one can expect that a significant
part of the wave drag is transported in the horizontal
direction only. To address this point, we conduct the
pseudo-momentum budget diagnostic made in Lott
(1998), and which are a direct application of the the-
oretical studies about wave propagation and wave-mean
flow interaction (McIntyre 1980; Shepherd 1990; Scin-
occa and Shepherd 1992; Durran 1995). By considering
momentum and pseudo-momentum budgets over a rect-
angular domain [0, Z]x[2X, 1X], one can show that
the waves Reynolds stress,

X X

Re(X, Z ) 5 r u9w9 dx ø F (x, Z ) dxE 0 E z

2X 2X

5 P (X, Z), (7)z

where Fz is the vertical component of the pseudo-mo-
mentum flux F. Over this domain, if A is the pseudo-
momentum, its budget writes,

]M(X, Z )
Z 1X1 [P (X, z)] 1 [P (x, Z )] 5 0, (8)z 0 z 2X]t

where the integrated pseudo-momentum M(X, Z), and
lateral pseudo-momentum flux Px(x, Z), are given by,

Z 1X

M(X, Z ) 5 A(x, z) dx dz andE E
0 2X

Z

P (x, Z ) 5 F (x, z) dz, (9)x E x

0

respectively. In the steady case one can show that the
drag D 5 Re(X, 0); so when there is no wave upstream,
Px(2X, Z) ø 0, and

D 5 P (X, Z) 1 P (X, Z),x z (10)

Figure 10a shows that the Reynolds stress decreases
with altitude in the trapped layer (i.e., below the turning
height of the trapped resonant mode, Z 5 4 km) whereas
it is constant above. Its value at the ground, D, is 1.5
times its value in the constant part of the profile. Since
the waves are steady and are not dissipated, this decrease
with height of the Reynolds stress can only be balanced
by an incoming flux of pseudo-momentum Px. As shown
in Fig. 10b, this horizontal flux is quite large and ac-
counts for more than 33% of the wave drag D 5 Re(Z
5 0): it exactly balances the increase with height of the
wave-Reynolds stress shown before, and closes the
pseudo-momentum budget equation in the steady case
D 5 Px 1 Pz.

c. Sensitivity to the background flow

The differences between the profile of U(z) and u0(z)
measured by the soundings and the airplanes (Fig. 7)
make the choice of one particular flow to interpret the
observed waves rather arbitrary. Indeed, sensitivity tests
to these profiles reveal that the wave’s structure varies
a lot between experiments where the background pro-
files are modified within limits provided by the extrema
of U(z) and u0(z) given by the soundings. To illustrate
this point, we present now two-simulations with the
profiles 1 and 3 shown in Fig. 7b.

Figures 11a and 11b present the cross correlation
r0(z)ûk (z) for profiles 1 and 3, respectively. A no-ŵ*k
ticeable result is that, with profile 1 there are two res-
onant modes, while with profile 3, there is only one [the
local maxima that appears near kmin 5 min[S(z)]1/2 in
Fig. 11b is a local maxima of the orography spectrum].
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FIG. 10. Linear simulation: pseudo-momentum fluxes diagnostics.
(a) The vertical profile of the wave-Reynolds stress; domain half
length—X 5 70 km (thick solid), and X 5 140 km (thick dashed).
(b) The horizontal variation of pseudo-momentum integrated through
vertical boundaries of different elevations—Z 5 2.5 km (thick solid),
Z 5 5 km (thin solid), and Z 5 7.5 km (thick-dashed). All values
are in pascals; that is, PZ and PX in Eqs. (7) and (9) are normalized
as Re is in Fig. 6a.

FIG. 11. Same as Fig. 8 but for the (a) U profile 1 and (b) U
profile shown in Fig. 7.

For profile 1, the shortest mode is entirely trapped and
the long one is leaking into the stratosphere. Note nev-
ertheless that the long mode only leaks partially, part
of its momentum flux does not pass in the lower strato-
sphere. Comparing the wave’s structure, it is noteworthy
that the horizontal wavenumber of the resonant modes
are very different from one case to the other. The strong-
ly trapped mode’s wavelengths are lx 5 6 km, 7.8 km,
and 8.9 km for profiles 1, 2, and 3, respectively, those
of the leaking modes are lx 5 13.3 km and 25 km for
profiles 1 and 2, respectively.

The Reynolds stress profiles for these three simula-

tions are presented in Fig. 12a. With a partially leaking
resonant mode and a trapped one (U profile 1; thick-
solid line in Fig. 12a), the Reynolds stress increases
with altitude up to Z 5 6 km, which is the altitude of
the long-resonant partially leaking mode lowest turning
height. With a fully leaking long resonant mode (i.e.,
U profile 2, thick-dashed line in Fig. 12a) the stress only
increases up to Z 5 3 km, which is the altitude of the
short fully trapped mode turning height. Note that with
profile 3 (thick long-dashed, Fig. 12a), the Reynolds
stress is near constant with altitude because (i) the fully
trapped resonant mode amplitude is very small, its
wavelength being near a zero of the orography spectrum
(not shown), and (ii) its constant phase lines are nearly
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FIG. 12. Reynolds stress profiles for different simulations. (a) Full
orography: steady profiles are thick and gray, unsteady ones (3-h run)
are thin and black; U profile 1 (solid), U profile 2 (dashed), and U
profile 3 (long-dashed). (b) Unsteady simulation with cutoff moun-
tain; U profile 2 model: 3 h (thick solid), 72 h (long-dashed), and
airplane data, (thin and circles).

vertical near the ground, its horizontal wavenumber k
being near [S(0)]1/2.

The point (i), raised by the simulation with the U(z)
profile 3, reveals that the linear simulations are extreme-
ly sensitive to the orography specification. In the present
study the orography is that seen by the lowest airplane
flight and probably mixes into a 2D section narrow fully
3D peaks with more 2D-like ridges. Accordingly, we
could have constructed the orography profiles in a more
consistent way, for instance by averaging in the trans-
verse direction a 3D high-resolution dataset. As there
are a lot of arbitrary choices in proceeding so, and as
the results obtained would have been qualitatively com-
parable to those presented here, it seems simpler to pro-
ceed as we did. Nevertheless, to emphasize that large
quantitative differences are to be expected when the
orography spectrum is changed in a moderate way, we
have repeated the simulations with profile 3 using a
distorted orography profile whose power spectrum is
enhanced near the resonant wavelength. This is done
crudely by enhancing the orography Fourier coefficients
of h(x) in the model by a factor of five within a narrow
wavelength band of length 6 3 1023 cycles km21 cen-
tered on the resonant mode horizontal wavenumber, kx

5 0.113 cycles km21. As a result of this, the orography
profile h(x) (not shown), is not much different from the
one used before. They differ everywhere by less than
200 m and have the same summits at the same places.
In the simulations with this distorted orography, the
trapped mode in the steady case transports up to 25%
of the Reynolds stress instead of near 0% in the pre-
ceding simulations.

d. Unsteady case, cutoff mountain

When compared to airplane data, the steady simu-
lations always overestimate the wave amplitude and the
downstream extent of the resonant trapped modes. With-
out referring to three-dimensional and/or dissipative
processes, these errors can be related to the fact that the
observed waves are unsteady or that the dynamic is
nonlinear. According to the strong sensitivity of the
waves to the background flow specification, the steady
hypothesis is not much justified because the resonant
modes take a long time (more than a few hours) to build
themselves a few tens of a kilometer downstream of the
ridge. It is difficult to believe that in a realistic context,
the Scorer parameter remains the same for more than a
few hours. As an indication of this, we analyzed the
variation in time of the minimum value of the Scorer
parameter deduced from the soundings. At 0600 UTC
it was around 0.03 km21 (Fig. 8) while 6 h before, it
was around 0.05 km21. This difference is due to the
fact that the maximum wind perpendicular to the ridge
has rapidly increased during this period.

To address this unsteady aspect, we present here the
results of the experiments described in sections 3b and
3c after 3 h of integration only. At this time, the model
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FIG. 13. Unsteady linear simulation (3-h run) with cutoff orography
and U profile 2. Vertical velocity at airplane flight transects.

response presents only few oscillations downstream of
the ridge (not shown), which is more consistent with
the number of oscillations detected by the airplanes in
Fig. 2. For the Reynolds stress profiles (thin lines in
Fig. 12a), these simulations reveal that all the resonant
modes (trapped, partially leaking, or fully leaking) con-
tribute to its amplitude decay with altitude below Z 5
7 km, typically. For the leaking modes, this effect fol-
lows that the pseudo-momentum A above the ridge and
at low-level decreases in time during the build-up phase.
Since the lateral fluxes of pseudo momentum Fx(X, Z)
in Eq. 8 are negligible at t 5 3 h, and for X . 50 km,
the variations in time of the integrated pseudo-momen-
tum M can only be balanced by a Reynolds stress that
increases with altitude.

The deficit of the linear model in simulating the wave
amplitude is probably related to 3D nonlinear low-level
flow splitting. Indeed, for the PYREX IOP 3, the non-
dimensional mountain height HN is larger than 1:

hmax N
H 5 dz ø 3 k 1,N E U0

where hmax is the maximum of the mountain profile
shown in Fig. 2, and N(Z) and U(z) are those of profile
2. This means that the overall dynamics is not linear
(see for instance Smolarkiewicz and Rotunno 1989) so
that an important fraction of the flow below hmax passes
around rather than over the mountain. To estimate that
fraction, we follow Lott and Miller (1997) and calculate
the blocking level height Zb:

hmax N
dz ø 1.E UZb

This relationship gives, Zb 5 hmax 2 1000 m for profile
2. Next, assuming that only the fraction of air located
between Zb and hmax passes over the mountain and excite
waves, we assume that the incident flow only see’s a
mountain that is hmax 2 Zb-high, and for which the pro-
file is that of the Pyrénées peaks that exceed Zb.

Linear simulations with this cutoff mountain have
been conducted with U profiles 1, 2, and 3. In the steady
case, they systematically show better agreements with
the observations regarding both the wave amplitude and
the Reynolds stress compared to the cases with full orog-
raphy. For the number of oscillations downstream of the
ridge they again need to be looked at after only 3 h of
integration to resemble the measured fields. An example
is given in Fig. 13, which shows the wave field after 3
h for an integration forced by the cutoff orography (low-
est curve in Fig. 13) and for wind profile 2. The agree-
ment with observation is reasonable at all altitudes, and
the Reynolds stress presents a variation with height up
to 6–7 km (Fig. 12b). In this simulation, the analysis
of the contribution of each harmonic to Reynolds stress,
shows that the amplitude decay of Re with altitude in
Fig. 12b is in part due to the buildup of the resonant
modes but is also due to the buildup of the long non-

resonant waves. This last result is also consistent with
the observations, the amplitude of the stress due to the
long waves (thick long-dashed line in Fig. 6a) being
larger below 5–6 km than above.

4. Nonlinear dissipative effects

This last linear simulation reveals two important in-
gredients needed to simulate with accuracy the ampli-
tude of the lee-waves system: the nonlinearities, and
especially the fact that a significant fraction of the in-
cident flow goes around instead of passing over the ridge
and the fact that the observed waves are unsteady. They
also reveal that if the difference S(0) 2 min[S(z)] is
‘‘small’’ (as for profile 3), the contribution of the res-
onant modes to the Reynolds stress can be small. If this
is the case in nature, it means that the contribution of
the trapped modes to the stress is due to processes not
accounted for in the linear simulations, like the nonli-
nearities and the dissipations. To address these points,
we next conduct a limited series of nonlinear simula-
tions for a given flow profile where the difference S(0)
2 min[S(z)] is as small as in profile 3. We then adjust
dissipation in the model to again match the observations
as well as possible.

a. Model description

The model used is the mesoscale nonhydrostatic
(meso-NH) model (Lafore et al. 1998) with an integra-
tion domain of length 320 km and of height 20 km. The
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FIG. 14. Nonlinear simulation: vertical velocity field; contours every 0.5 m s21.

FIG. 15. Vertical velocities at different altitude, superposition be-
tween airplane observations (thin solid) and the nonlinear simulation
(thick solid).

horizontal resolution is 700 m and the model has 60
levels with resolution varying from 50 m at the ground
to 500 m at the top. An absorbing layer is set above 12
km and the topography is deduced from the aircraft
measurements. The model includes the Bougeault and
Lacarrere (1989) turbulent kinetic-energy boundary-
layer parameterization scheme in its unidimensional ver-
sion. Furthermore we already know that in the two-
dimensional context the low-level flow blocking and the

associated reduction of the gravity wave forcing can not
be simply accounted for. A way to deal with this without
referring to the ‘‘cutoff mountain’’ approach, is to as-
sume that the low-level flow blocking can be simulated
in the two-dimensional context by decelerating the low-
level flow in some way. In the meso-NH model, this
can be done by specifying a large roughness length over
the mountain: it will be set equal to 15 m in the ex-
periment presented in section 4b, and sensitivity to this
parameter is discussed in section 4c.

Before proceeding to more complete simulations, we
verified that the two models converge; that is, that the
meso-NH model, in a linear nondissipative configura-
tion and with the incoming flow profile 2, reproduces
the train of waves described in section 3. Compared to
the conceptual case analyzed before, the sounding
adopted is the Zaragosa sounding, that is, that located
on the upstream foot, modified, as in Satomura and Bou-
geault (1994), to reconstitute missing data. This profile,
as shown Fig. 7b, is rather near profile 3 everywhere
between Z 5 0.5 km and Z 5 10 km.

b. Results

Figure 14 presents the vertical velocity field after 4
h of model integration and shows that the thickness of
the trapped wave layer is about 8 km as in the linear
simulation of section 3. As expected from the linear run
with U profile 3, there is only one resonant mode with
a wavelength lx ø 10.5 km that is a little longer than
in the observation. By scaling down the orography by
a factor of 100, we verified that the horizontal wave-
length is not much affected by changes in the mountain
elevation.

Figure 15 presents a direct comparison with the air-
craft measurements, after 4 h of integration. Observed
and simulated vertical velocity are superimposed and
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FIG. 16. Nonlinear simulation: vertical velocities at Z 5 4 km with
Z0 5 0.2 m (dotted), Z0 5 2 m (dashed), and Z0 5 15 m (solid).

FIG. 17. Nonlinear simulation: time evolution of the 314-K
isentrope at 1) 1130, 2) 1140, 3) 1145, 4) 1150, 5) 1210 UTC.

except for the first oscillation, the model agrees with
the observation for the wave amplitude. The number of
waves is nevertheless not correct in the simulation; they
propagate up to the domain limit while in the obser-
vation they do not go far beyond 50 km downstream.
Even if these differences can be due to 3D turbulence
or 3D wave dispersion (Sharman and Wurtele 1983),
section 3 has shown that a trapped wave that decays
downstream so rapidly can be obtained in the early un-
steady phase of a 2D simulation. The wave phase is also
quite correct, but since both the observed and the sim-
ulated fields are unsteady this particular phase matching
is more circumstantial. Indeed, after 4 h of integration,
the wave field in the model is not stationary.

These results show that the addition of dissipative
and nonlinear effects, insures that the wave amplitude
is excellent above and slightly downstream the ridge.
This matching was obtained for a roughness length val-
ue Z0 5 15 m, which is known to be adapted, when
one wishes to simulate mountain waves with realistic
amplitudes (Georgelin et al. 2000). To a certain extent,
in our simulation, this value compensates for the ab-
sence of blocking and for the fact that the nonlinear
low-level flow goes around rather than over the ridge.
Sensitivity tests using roughness lengths of 0.2 m and
2 m for the same configuration have been conducted in
order to address the role of friction on the trapped wave
amplitude. Figure 16 presents a comparison between the
vertical velocity at Z 5 4.2 km for the three different
roughness lengths, it clearly shows that the wave am-
plitude decreases when the friction increases. The wave
amplitude in the simulation with Z0 5 0.2 m is close
to the linear one, suggesting that, in a full nonlinear
regime, the wave amplitude is controlled by frictional
effects.

This sensitivity of the wave amplitude to friction is
contrary to the small sensitivity found by Satomura and
Bougeault (1994). This discrepancy can be explained
by the fact that in the simulations presented by these
authors, the turbulent kinetic energy keeps close to the

ground and does not interact much with the trapped
waves whereas, in our simulations, turbulence forms a
plume downwind of the mountain (not shown) and
reaches 3.5 km of altitude, which corresponds (Fig. 14)
to the altitude of the maxima of the vertical velocity.
The strong value of the roughness length thus has an
unexpected but realistic impact: a large zone of turbu-
lence around 3–4 km of altitude is observed downwind
of the Pyrénées during the IOP 3 (Bougeault et al. 1997).

c. Nonlinear instationarity

If the nonlinear run is extended up to 12 h, so that
we can assume that the build-up phase is completed
near aloft the ridge, the simulated trapped waves still
appear strongly unsteady. This phenomenon has been
studied by Nance and Durran (1998), who have shown
that it is due to nonlinear wave interaction and that it
is likely to produce lee wave fluctuation. Nance and
Durran (1998) have also shown that the temporal var-
iation of the wave crests form an elliptic hysteresis cy-
cle. This effect is illustrated on Fig. 17, where the el-
evation of the 314-K isentrope is displayed five suc-
cessive times. The summit of the crests describe an el-
liptical pattern in approximately 1 h.

d. Reynolds stress

An analysis of the Reynolds stress profiles and of the
contribution of the trapped-resonant mode to that stress
has been undertaken. They reveal that in all cases, the
trapped waves contribute little to the stress. This is of
course consistent with the linear simulation with U pro-
file 3 in section 3. It shows that dissipative and nonlinear
processes alone are not sufficient to explain the contri-
bution of the resonant modes to the stress. Although
this is based on a limited ensemble of simulation, it
seems that within the limits provided by the observa-
tions, if the trapped modes do not transport momentum
in the linear steady inviscid case, there are little chances
that they will do so, under the combined action of dis-
sipation and nonlinearity.



3578 VOLUME 58J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

5. Discussion

The spectral analysis of the waves system observed
by airplanes aloft the Pyrénées main transect during the
PYREX IOP 3 reveals that two modes with wavelengths
lx ø 8.5 km and lx ø 15.5 km are the most significant
oscillatory signals that can be extracted from the data.
As altitude increases, the amplitude of the shortest mode
goes decreasing compared to that of the longest one. At
long wavelengths the signal resembles a continuum of
harmonics for which dynamical significance is not easy
to test in the spectra of the vertical velocity only. Indeed,
the null hypothesis chosen is that of a red noise, and
the mountain-forcing spectra looks like a red-noise.
Nevertheless, this continuum is nearer being significant
in the cross-spectra between u9 and w9 at high altitude.
This suggests that the u9 and w9 series are linked dy-
namically at long wavelengths, in the sense that they
are more related one with one another than two inde-
pendent random series. The cross spectral analysis also
reveals that the two oscillations mentioned above con-
tribute significantly to the momentum budget at low
level. When cumulated over all wavelengths, their con-
tribution to the stress is nearly half that stress value at
low level. Their contribution drops sharply as altitude
increases.

Following early studies interpreting the structure of
observed waves using linear theory, we conduct linear
two-dimensional simulations where the background
flow specification are near that observed by the four
soundings launched close to the PYREX transect—the
15 October 1999 around 0600 UTC. We also made ex-
tensive sensitivity tests, varying the background flow
profiles within reasonable limits. These simulations re-
veal that (i) the onset of two resonant modes this day
is quite natural and (ii) these resonant modes transport
a significant fraction of momentum. Near Z 5 4 km,
the fraction of momentum transported by the resonant
modes can be comparable to that transported by the free
waves.

On the one hand, these findings complete those of
Tannhauser and Attié (1995), who detected only one
mode that day, and contradict them in that they con-
cluded that this mode does not contribute to the mo-
mentum budget. Regarding the number of modes, that
our findings and theirs contradict is not much surprising
because these authors only had available the four lowest
flights, while the long mode strongly manifests itself in
only one among these. Regarding the role of the reso-
nant modes in the momentum budget, that our findings
and theirs contradict follows that the contribution of the
shortest mode to the momentum budget is small around
Z 5 5 km. This altitude is near the turning height of
the short-resonant mode; it is also below two of the four
lowest level flights made this day. Our results partly
recover those of Brown (1983) who has shown that the
resonant modes can contribute to the Reynolds stress
providing that they leak into the stratosphere. Again we

complete his view since our analysis reveals that both
trapped- and leaking-resonant modes can contribute to
the stress at low level. The sensitivity tests we made
further illustrate why the past numerical studies of
trapped waves contradict with one another over the im-
portance of the resonant modes to the momentum bud-
get. By varying the background flow within reasonable
limits, the number of resonant modes, their ability to
leak into the stratosphere and the altitude up to which
they contribute to the momentum budget vary consid-
erably. Qualitatively, nevertheless, these sensitivity tests
reveal important and robust behaviors. For instance,
they show that the onset of more than one resonant mode
this day is rather natural. They also show that all the
resonant modes can participate to the momentum bud-
get.

Compared to the observations, the linear simulations
always overestimate (i) the distance between the wave-
lengths of the two resonant modes, (ii) the waves’ am-
plitude, and (iii) the waves’ downstream extent. They
also do not explain (iv) how a leaking-resonant mode
can have a stress that varies with altitude. In the limit
of the experiments presented here, we reach the con-
clusion that the overestimate of the distance between
the wavelengths of the resonant modes cannot be solved
in the 2D context. The other three points can be solved
if we consider unsteady simulations and use a cutoff
mountain to crudely account for nonlinear effects. We
then reach a linear simulation of 3 h, which matches
the observations both with respect to the wave pattern
observed (amplitude and downstream extent) and with
respect to the contribution of the resonant modes to the
stress below Z 5 5 km and not above.

To address the role of nonlinear and dissipative effects
alone, we have also conducted a limited number of ex-
periments using the meso-NH model. Providing that
low-level flow blocking is now simulated using a mod-
erately strong value of the roughness length, these sim-
ulations show a good agreement with the observations
as well. The quality of these simulations is in large part
related to the fact that the boundary layer scheme in the
model simulates a large zone of turbulence downstream
and around 3–4-km altitude (incidently consistent with
the observations). In addition, the nonlinear simulations
give an illustration, in a realistic configuration, of the
nonlinear wave nonstationarity described in Nance and
Durran (1998). These nonlinear simulations are con-
ducted for flow profiles where the resonant modes do
not contribute much to the Reynolds stress in the steady
inviscid case. Since the Reynolds stresses are small in
all these simulations, they show that nonlinear dissi-
pative processes alone cannot explain the observed con-
tribution of the resonant modes to the Reynolds stress.

These results are relevant in the context of subgrid-
scale orographic parameterization. They further legiti-
mize the use of the cutoff mountain concept introduced
in some subgrid-scale orography parameterization
schemes (Lott 1999) to evaluate the part of the mountain
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drag that is related to the waves only. To parameterize
the contribution of the trapped waves to that drag is
more difficult because it is strongly related to the res-
onant modes of the incident flow profile and to the orog-
raphy spectrum. Nevertheless, it seems reasonable to
associate each harmonic forced at the ground with a
pseudo-momentum flux. Those that meet a turning
height will carry that pseudo-momentum downstream.
The variation with height of the Reynolds stress can be
taken as the difference between the wave drag at the
ground and that part of the drag associated to the waves
that do not meet a turning height in the lower tropo-
sphere. If one assumes that the trapped waves are
damped downstream, one can actually consider the
Reynolds-stress divergence as a force acting on the
large-scale flow. Our work further legitimizes that this
force can be evaluated without knowing explicitly the
processes that damp the trapped waves, as is currently
done in the Gregory et al. (1998) and Lott (1999) pa-
rameterization schemes.
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