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ABSTRACT

A two-dimensional rotating anelastic model is used to analyze the large-scale flow (LSF) response to the
breaking of gravity waves (GWs) at critical levels. In the response the balanced part is separated from the inertial
oscillations (IOs) and the inertia–gravity waves (IGWs). Interest also focuses on the relative importance of the
two, when the regime of the critical levels interaction becomes nonlinear.

In the linear periodic case, the balanced response is a mean transverse velocity that equilibrates the wave
drag via the Coriolis torque, and the unbalanced one is an IO. Their relative importance is well predicted by a
temporal Rossby number associated with the timescale of the GWs forcing onto the mean flow. When the
dynamics are nonlinear, the GWs are reflected by the shear layer, affecting the GWs’ forcing amplitude. A
nonlinear feedback loop also makes the ratio between the IO and the balanced response much larger than in
the linear case.

In the nonperiodic case, the balanced motion is a growing baroclinic pattern, which results from steering by
the shear of the potential vorticity (PV) dipole generated where the GWs break. The unbalanced response consists
of IGWs propagating away from the shear layer. Contrary to the periodic case, the ratio between the two is not
much affected by nonlinearities, and stays well predicted by a spatial Rossby number associated with the spatial
scale of the GWs forcing on the LSF. When this number is near 1, and the interaction nonlinear, the IGWs
outside of the shear layer make a substantial fraction of the total wave signal.

1. Introduction

The large-scale flow (LSF) response to the breaking
of vertically propagating gravity waves (GWs) with
short horizontal wavelength has been the subject of
many studies during the last 40 years. They follow the
seminal works of Eliassen and Palm (1961) and Breth-
erton (1969), which have shown that mountain GWs
induce a net transfer of momentum from the ground
toward the atmosphere. The fact that breaking GWs is
important to the general circulation of the atmosphere
is now well established (Palmer et al. 1986; Holton
1982).

In mesoscale and synoptic-scale meteorology the mo-
mentum deposit by GWs is also an important process.
In the 2D context, the breaking of mountain GWs can
help the development of downslope windstorms, by pro-
ducing, below where they break, a resonant cavity for
all the disturbances generated by the mountain (Smith
1985). This process becomes very efficient when the
mountain GWs break at a critical level, a situation where
the flow response is extremely sensitive to the height
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of the space between the critical level and the ground
[Clark and Peltier (1984); see also Bacmeister and Pier-
rehumbert (1988) for a comparison between the theories
of Smith (1985) and Clark and Peltier (1984)]. The non-
linear dynamics of mountain GWs can also lead to the
development of larger-scale disturbances, that spread in
time, and build up a blocked flow region upstream of
the obstacle (Pierrehumbert and Wyman 1985).

For 3D obstacles, the breaking of GWs induce down-
stream wakes (Miranda and James 1992; Schär and Dur-
ran 1997) that are well described by the potential vor-
ticity (PV) produced by the GWs’ momentum deposit.

It is noteworthy that 2D and 3D studies complement
one another. On the one hand, the 2D studies emphasize
and probably overstate, by construction, that part of the
LSF response that cannot be described using PV, and
that is made in part of long secondary GWs. These long
disturbances make up the flow dynamics near the ob-
stacle. The 3D studies, based on PV diagnostics, even-
tually illustrate with less ambiguity the nature of the
interaction between the primary GWs and the large-
scale flow. The PV produced by breaking GWs can in-
fluence the flow dynamics far downstream from the ob-
stacle.

Compared to studies about the impact of GWs on the
zonal mean flow (Palmer et al. 1986), it is noteworthy
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that most studies about the impact of GWs breaking on
the regional circulation often neglect the Coriolis force.
This is not justified in many circumstances, and again,
the example of mountain waves is instructive. Indeed,
the ageostrophic forcing they induce on the LSF is well
known through records of the surface pressure drag. As
noticed by Scavuzzo et al. (1998), the drag measured
along a L 5 150-km-long transect across the Pyrénées
(Bessemoulin et al. 1993) presents narrow peaks of less
than T 5 1 day. At these space scales and timescales,
the temporal and spatial Rossby numbers

1 U0e 5 and e 5 , (1)T Lf T f L

are near 1, indicating that the LSF response to the GWs’
drag is influenced by the Coriolis torque. In Eq. (1), f
is the Coriolis parameter and U0 is a characteristic wind
speed. In the rest of the paper L and T will indicate the
characteristic space scales and timescales at which the
GWs affect the LSF.

A convenient framework to address the LSF response
at these temporal and spatial scales is that of the geo-
strophic adjustment theory. It shows that an initial dis-
tribution of mass and momentum evolves by radiating
inertia–gravity waves (IGWs) toward a balanced state
fully described by the initial PV distribution (Rossby
1937; Blumen 1972; Fritts and Luo 1992). The nonlinear
mechanisms that produce the imbalance can be strong
during the life cycle of barotropic and baroclinic insta-
bilities (Ford 1994; O’Sullivan and Dunkerton 1995),
as well as during fast frontogenesis (Reeder and Griffiths
1996). With the Rossby numbers evaluated with the
Pyrénées Experiment (PYREX) data being near 1 (Sca-
vuzzo et al. 1998), it is evident that GWs breaking is
another major source of imbalance. In response, the
large-scale flow adjusts, as witnessed by the presence
of large IGWs near the Pyrénées during events where
the pressure drag evolves on a timescale that compares
with 1/ f (Scavuzzo et al. 1998).

Momentum deposition due to short GWs as a poten-
tial source of secondary IGWs has been investigated by
Vadas and Fritts (2001). These authors considered the
linear response to a prescribed momentum deposition
that acts at all spatial and temporal scales. With a com-
parable linear approach, Buhler et al. (1999) noticed
that the initial imbalance that induces IGWs can be due
to the mixing associated with Kelvin–Helmholtz insta-
bilities. Nevertheless, there are few nonlinear studies in
the rotating case that describe the GWs breaking to-
gether with its LSF response.

In the present paper we describe the LSF response to
GWs breaking in the fully nonlinear rotating case, and
with particular attention given to (a) the partition be-
tween the balanced response and the IGWs/internal os-
cillations (IOs) in the LSF response, and to (b) the pos-
sible nonlinear feedbacks between the LSF response and
the GW forcing. Because this problem embraces a very

large range of scales, from the very small scales of
turbulence to the few hundred kilometers characterizing
the Rossby radius of deformation, and this is true as
well for the temporal scales, the computational overhead
makes it untreatable at reasonable cost. To circumvent
this difficulty we formulate the problem by making a
series of simplifications.

First, we assume that the dynamics stays two-dimen-
sional (2D) all of the time, which we know is not valid
when GWs break (Fritts et al. 1996; Afanasyev and
Peltier 2001). We circumvent that difficulty by imposing
that the GWs break at well-identified critical levels
where the dynamics are controlled by artificially high
viscosity (see appendixes A and B). During GWs break-
ing, it dissipates the Kelvin–Helmholtz instabilities be-
fore they lead to 3D convective overturning. To impose
the presence of critical levels, we consider near-steady
gravity waves and specify a background flow

U(z) 5 U tanh[(z 2 z/D],0 c

g du02 2N (z) 5 5 N 5 const, (2)0u dz0

whose velocity reverses sign at a given altitude zc. In
Eq. (2), U(z) is the plane-parallel background velocity,
D is the shear layer depth, N is the Brunt–Väisälä fre-
quency, u0(z) is a background potential temperature pro-
file, and g is the gravitational acceleration. Note as well
that the thermal wind balance imposes the presence of
a second background potential temperature

f u (z) dU0Q(y, z) 5 2 y, (3)
g dz

where y is the direction perpendicular to the 2D plane
of interest here.

Another difficulty is that no disturbance can stay 2D
when the background wind shear varies with altitude.
Nevertheless, they can be forced to stay 2D by neglect-
ing Qzw in front of u0zw in the thermodynamic equation,
where w is the vertical velocity. This approximation is
only valid when the background Richardson number is
large everywhere (see appendix A). Note also that this
approximation does not preclude the derivation of con-
sistent GW–LSF interaction diagnostics, such as (a)
Eliassen–Palm flux transformed Eulerian mean flow
budgets (Andrews and McIntyre 1976), (b) PV budgets
(Haynes and McIntyre 1987), and (c) disturbance energy
budgets.

Another difficulty is that the background flow (2)
supports baroclinic instabilities. To limit their impor-
tance in the LSF evolution, we impose that the back-
ground minimum Richardson number Rim 5 D2/2 2N U0 0

k 1, so only long baroclinic instabilities can develop;
none of the imposed GWs correspond to unstable
modes. For the LSF, the onset of baroclinic instabilities
is also limited by (a) the rather small size of the domain
and (b) the presence of lateral sponge layers where linear
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FIG. 1. Simple example of the adjustment to a specified momentum
deposit. Ratio between the IO amplitude and the balanced solution
for t . pT and as a function of the Rossby number.

damping coefficients far exceed the characteristic bar-
oclinic instability growth rate.

Section 2 presents the interaction between a mono-
chromatic GW and a shear layer in the periodic case.
The domain length equals the GW horizontal wave-
length. The LSF is the horizontally averaged flow. In
the response we distinguish between a balanced flow
that equilibrates the GW drag via the Coriolis force and
inertial oscillations. Section 3 presents the interaction
between a narrowband (in the parallel x direction) packet
of GWs and the LSF. In this case the large-scale flow
is defined via a low-pass filter that excludes all the GWs.
In the LSF the balanced part is deduced from the PV
field, and the IGWs are identified in the far field. Section
4 presents some conclusions.

2. Periodic cases

a. Heuristic solution

In a periodic domain, and assuming that a GW de-
posits momentum in a zone of limited vertical extend,
the mean flow response is driven by the forced inertial
oscillator equations:

]^r u&0 2 f ^r y*& 5 ^F &,0 x]t

]^r y*&0 1 f ^r u& 5 0. (4)0]t

In Eq. (4), the overbar corresponds to the usual along-x
mean, the star corresponds to the transformed Eulerian
mean formalism (Andrews and McIntyre 1976), and the
(^ &) correspond to a vertical averaging, which are upper
and lower limits, dubbed, at least, the region where the
GW breaks. When the momentum deposit ^ & varies inFx

time with a timescale T that is slow compared to 1/ f , the
response in Eq. (4) is near

^r y & 5 2^F &/ f. (5)0 b x

In Eq. (5), the subscript b denotes ‘‘balanced’’ in the
sense that ^r0 & is given by a diagnostic equation. Iny b

this balanced response a wave-induced deceleration is
equilibrated by a positive transverse motion. When eT

ø 1, the solution to Eqs. (4) differs significantly from
^r0 &. As an example, if a forcing ^ & starts at t 5 0y Fb x

varies like

F02 [1 2 cos(t/T )] for 0 , t , pT, and
2

2F for t . pT, (6)0

and alters a flow that is initially at rest, the solution for
t . pT is

2F F e cosp0 0 T^r y*& 5 2 1 1 cos ft0 2 1 2[f 2 f e 2 1 eT T

sinp
1 sin ft . (7)]eT

The first terms on the right-hand side of Eq. (7) is the
balanced solution [Eq. (5)], and the second is an IO.

The ratio between the IO and the balanced response
in Eq. (7) is plotted for different values of the parameter
eT in Fig. 1. When the Rossby number eT . 1, the
balanced solution is a poor approximation of the com-
plete solution, and the amplitude of the inertial oscil-
lation is comparable to that of the balanced mean trans-
verse velocity. When eT K 1 the balanced solution ap-
proximates very well the solution.

b. Numerical experiment setup

To treat the periodic case with more details, we use
the 2D anelastic model described in appendix A. The
background flow (2) parameters are U0 5 10 m s21, D
5 2500 m, 5 1.1024 s22, f 5 1.09 1024 s21, and2N 0

zc 5 10 km. For this flow, the minimum background
Richardson number Rim 5 (N 2/ )(zc) 5 6.25, and the2U z

inertial period, 2p/ f 5 16 h. In all the simulations the
domain total height is 25 km and a damping layer lies
above zT 5 20 km (Fig. 2). The model grid has N 5
306 points in the vertical direction, and the vertical grid
spacing varies with altitude to ensure good resolution
at the critical levels (see appendix B for for a compar-
ison between dz and the length scales of the GW–critical
level interaction). Accordingly, the grid spacing is con-
stant and equals dzmin 5 30 m when zc 2 D , z , zc

1 D. It equals dzmax 5 250 m when 0 km , z , zc 2
2D and when z 5 zc 1 2D , z , 25 km. Here dz varies
as a cosine function of altitude in the intervals zc 2 2D
, z , zc 2 D and zc 1 D , z , zc 1 2D, in order to
ensure smooth transitions between dzmax and dzmin.

We consider a domain of length LD 5 30 km and the
truncation in the horizontal direction is M 5 64, a value
for which model convergence was verified. To impose



1694 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 2. Typical model configuration in the periodic case. Corrugated
bottom H(x) (thick solid line and filled area); background parallel
velocity U(z) (thick solid line); potential temperature profile of the
fluid at rest u0(z) (thin solid line); wave vertical velocity w9(0, z)
(thick dashed line). The gray zone above z 5 20 km indicates the
sponge layer.

FIG. 3. Periodic ‘‘linear’’ case: H0 5 1 m. (a) Vertical profiles of
the mean flow forcings at t 5 40 h: parallel momentum forcing Fx

(thick solid line), transverse momentum forcing (thin solid line),Fy

and thermal forcing (thick dashed line); and are multipliedH F Fx y

by 108, is multiplied by 5 108. (b) Vertical profiles of the meanH
flow responses averaged in time between t 5 32 h and t 5 48 h:
parallel wind (z) (thick solid line), transverse wind *(z) (thin solidu y
line), and potential temperature (z) (thick dashed line); all valuesu
are multiplied by 104.

a periodic wave, the corrugated bottom H(x) [Eq. (A7)
in appendix A] is

H(x) 5 H cos(2px/L ),0 D (8)

where H0 controls the GW amplitude. All the simula-
tions presented last 96 h.

c. Near-linear regime, H0 5 1 m

To analyze the wave–mean flow interaction we form
the transformed Eulerian mean of the 2D anelastic Eqs.
(A3)–(A4) in appendix A (Andrews and McIntyre
1976):

r u 2 r f y*0 t 0

5 2] (r u9w9 2 r f u9y9/u ) 1 ] m] u 5 F , (9)z 0 0 0z z z x

r y* 1 r f u0 t 0

5 2] [r y9w9 1 ] (r u9y9/u )] 1 ] m] y 5 F ,z 0 t 0 0z z z y

(10)

r u 1 r y* Q0 t 0 y

5 2] (r u9w9 2 Q r u9y9/u ) 1 ] k] u 5 H. (11)z 0 y 0 0z z z

In Eqs. (9)–(11), the prime denotes the departure from
the mean flow, and the residual mean transverse velocity

* 5 2 (1/r0)(r0 /u0z)z. Figure 3a shows the ver-y y y9u9
tical profiles of the GW forcings , and in Eqs.F F Hx y

(9)–(11) at t 5 40 h and when H0 5 1 m. In this case,
the critical-level regime is near linear (see appendix B),
so the GW fields become steady after 24 h of integration
and stay unchanged at least until t 5 96 h. Figure 3a
shows that the dominant effect of the wave is to de-

celerate the mean flow in the x direction: (thick solidFx

in Fig. 3a) is negative over a 1-km-deep layer located
below zc 5 10 km, and is very small elsewhere. The
transverse forcing (thin solid in Fig. 3a) is positiveFy

around and just below 10 km and becomes negative
below 9.75 km. Integrated vertically and over the shear
layer it is null, which naturally follows that the wave
drag is oriented in the x direction. As , the thermalFy

forcing makes no net contribution (thick dashed inH
Fig. 3a), it presents a maxima near 9.75 km surrounded
by two minima at z 5 9 km and z 5 10 km, respectively.

The mean flow responses to these forcings that do
not contain IOs are shown in Fig. 3b at t 5 43 h. In
this figure, the IOs are filtered out by averaging in time
and over one inertial period the instantaneous mean flow
profiles (z), *(z), and (z). Figure 3b shows that theu y u
transverse flow response *(z) has increased nearly ev-y
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FIG. 4. (a) Eliassen–Palm flux difference between both sides of the
shear layer. All values are divided by Dr 5 rr(p/LD)NU0 . (b) Ho-2H 0

dograph of the mean momentum vector averaged over the shear layer
depth. All values are divided by Dr/ f 5 rr(p/ fLD)NU0 . The right2H 0

hodograph in (b) is translated horizontally for clarity and the crossed
symbols indicate the location of the linear steady response to a con-
stant forcing of value Dr. Here, H0 5 1 m (thin solid line) and H0

5 80 m (thick solid line) in both (a) and (b).

erywhere in the lower part of the shear layer (i.e., be-
tween z 5 9 km and z 5 10 km; thin solid in Fig. 3b)
to equilibrate (z) via the Coriolis torque. In the sameFx

space, the potential temperature has decreased every-
where (thick dashed line in Fig. 3b). Since this net and
negative potential temperature pattern cannot result
from a direct thermal forcing (thick dashed line in Fig.
3a), it can only be induced by the transverse flow, and
through the transverse advection term r0 y [Eq.y*Q
(11)].

Note also that in the long term, the mean flow profile
(z) in Fig. 3b never reaches a limit profile (not shown):u
continuously decreases in response to r0 y. In theu y Qb

long term, this causes the shear layer to become con-
vectively unstable everywhere, u0z 1 z , 0, a situationQ
we do not discuss in this paper. By contrast with the
other two mean flow profiles, the parallel mean velocity

(z) presents no net modification (solid line in Fig. 3b):u
it is positive around z 5 10 km but negative around z
5 9.5 km.

A concise way to address the net effect of the wave
on the mean flow is to form an absolute angular mo-
mentum budget by integrating vertically the Eqs. (9)–
(10) over the shear layer depth (i.e., from zc 2 D up to
zc 1 D). It results exactly in the heuristic model Eqs.
(4) with

z 1Dc
u9y9

^F & 5 2 r u9w9 2 r f , (12)x 0 0[ ]u0z z 2Dc

and after verification, the diffusive fluxes of momentum
through z 5 zc 2 D and z 5 zc 1 D are very small.

Figure 4a shows the temporal evolution of the wav-
eforcing ^ & for different values of H0. In the linearFx

case (thin solid line in Fig. 4a) ^ & becomes constantFx

after t 5 4–5 h and near equal and oppositely signed
to the hydrostatic-Boussinesq linear nonrotating moun-
tain GW drag Dr 5 r0(1)(p/LD)NU0 . From this tem-2H 0

poral evolution we can deduce the forcing timescale T
that best fits the timescale in the heuristic model forcing
[Eq. (6)]: pT 5 4–5h. In this case, the Rossby number
eT ø 2, and we can expect that the inertial oscillation
amplitude compares to that of the balanced motion [Fig.
1 and Eq. (5)].

This is verified in Fig. 4b in which the left curve
shows the hodograph of the mean momentum vector

(^r u&; ^r y*&)0 0 (13)

and the entire duration of the model integration. The
hodograph is a circle in which the ray approximately
equals the balanced solution amplitude (the linear bal-
anced solution is indicated by the cross in Fig. 4b); each
circumvolution around this circle is made within a pe-
riod nearly equal to the inertial period.

d. Nonlinear regime: H0 5 80 m

When H0 increases, the GW dynamics becomes non-
linear and the GW becomes sensitive to the mean flow

changes it induces. To numerically address this transi-
tion we perform successive experiments, increasing H0,
and present the case where H0 5 80 m. The thick solid
line in Fig. 4a shows that the waveforcing ^ & decreasesFx

within 5–6 h down to near minus the linear GW drag,
and then starts to vary around that linear value. In the
long term, its variations get locked with the inertial
oscillation: the time lag between two maxima (or two
minima) in ^ & after t 5 50 h, being near 16 h. As aFx

consequence, the amplitude of the IO (thick solid line
in the right of Fig. 4b) becomes very large, compared
to the linear balanced response (again, indicated by a
‘‘1’’) and to the inertial oscillation in the linear case:
the inertial oscillator [Eq. (4)] is excited by a forcing
^ & that has significant power near f .Fx

In the establishment of this resonant feedback, the
nonlinear reflections of the incident GW play a central
role. In the nonrotating case, it is well established that
they essentially result from the changes in the wind
shear intensity just below the critical levels. In this case,

modifies the parallel velocity (z), induces a regularF ux

descent of the critical level, and produces sharp wind
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FIG. 5. Temporal evolution of the mean flow and of the wave field
in the periodic case, and for H0 5 80 m. (a) Backround flow U(z)
(thick gray line) and total parallel mean flow U(z) 1 (z): thick solidu
line is t 5 64, 80 and 96 h; thin solid line is t 5 84 h; thick dotted
line is t 5 88 h; thick dashed line is t 5 92 h. (b) Wave vertical
velocity: thick solid line is t 5 80 h; thin solid line is t 5 84 h; thick
dotted line is t 5 88 h; thick dashed line is t 5 92 h.

shears below this level (Fritts 1978; Lott and Teitelbaum
1992). As shown before, with rotation, induces aFx

transverse velocity, so the net effect on the horizontal
velocity is perpendicular to that expected in the non-
rotating case. An eventually more spectacular difference
is that with Coriolis force, the mean flow response ex-
periences inertial oscillations that modulate the mean
flow profiles.

As an illustration of this, Fig. 5a presents the profiles
of the mean parallel flow U(z) 1 (z) at three successiveu
times, each separated by 16 h (thick solid lines in Fig.
5a) and at three successive times each separated by 4
h (thin–thick dashed, and thick long-dashed lines in Fig.
5a). These curves show that the mean flow varies more
within one inertial oscillation period than from one pe-
riod to the next. For instance, at t 5 80 h, the phase of
the inertial oscillation is such that the mean flow U(z)
1 (z) is larger everywhere than the initial backgroundu
flow U(z). If we assume that the altitude zb, where U(zb)
1 (zb) 5 0, indicates the upper bound of the area whereu
the GW is absorbed and/or reflected, it is near zb 5 10

km at t 5 80 h. Four hours later (t 5 84 h; thin solid
line in Fig. 5a), the mean parallel flow has decreased
everywhere, and zb ø 9.5 km. Another 4 h later (t 5
88 h; thick dotted line in Fig. 5a), U(z) 1 (z) is smalleru
than the background flow and zb ø 9 km everywhere.
Thereafter, the flow increases and zb returns above z 5
10 km (t 5 92 h; thick long dashed in Fig. 5a). As a
result of these inertial oscillations in the altitude where
the GW interact with the critical level, it is likely that
the phase of the reflected GW will vary at that peri-
odicity. Furthermore, as these oscillations are related to
important wind shear variations, we can expect that the
amplitude of the reflected GW will also vary.

This point has been verified by looking at the am-
plitude and the phase of the reflected GW, below the
shear layer (Fig. 5b). For this diagnostic, we write the
GW vertical velocity below the shear layer as

Ïr (z)w90

W0ø exp(ikx)[exp(1imz) 1 R exp(2imz)
Ïr (z)0

2 R exp(1imz)], (14)

where R is a complex reflection coefficient. The eval-
uation of R from the model outputs gives, for its real
part, Rr ø 0, 20.25, 0.23, and 0.5 at t 5 80, 84, 88,
and 92 h, respectively. From Eq. (14), these values can
be related to ^ & by the approximate relationshipFx

2^F & ø 2r NpL U H (1 2 2R ).x r D 0 0 r (15)

Equation (15) with the values of Rr given above is en-
tirely consistent with ^ &, which is near its negativeFx

linear value at t 5 80 h (thick solid line in Fig. 4a);
has a pronounced negative minimum at t 5 84 h; and
is near zero at t 5 92 h.

3. Nonperiodic case

In the nonperiodic case, the large-scale forcing has
finite horizontal scale and can induce IGWs propagating
away from the area where the GWs critical level inter-
action occurs. In this case, the degree of imbalance is
not only given by eT but also by eL [Eq. (1)].

a. Experiments setup

In all the simulations presented next, the domain ex-
tends between x 5 300 km and x 5 600 km, and the
layer between x 5 300 km and x 5 600 km is occupied
by a sponge layer to damp all disturbances that pass
through the lateral boundaries. In most cases, the model
truncation in the horizontal direction is M 5 768, a value
for which model convergence was verified by making
sensitivity tests varying the horizontal resolution. The
vertical structure is as in section 2, and the simulations
last 30 h.

To set up a framework that allows us to distinguish



15 JULY 2003 1697L O T T

FIG. 6. Horizontal domain and GW forcing characteristics in the
non periodic case. Corrugated bottom H(x) (light solid line); power
spectrum of H(x), ĤĤ*(k) (thick solid line); transfer function of the
low-pass filter K̂K̂*(k) (thick dashed line).

FIG. 7. Nonperiodic simulation with H0 5 15 m and at t 5 30 h. (a) Vertical velocity (contour interval 0.01 m s1). (b)
Large-scale momentum forcing Flx (contour interval 2 1026 m s22). Negative values are dashed.

the LSF from the GWs, we specify a corrugated bottom
with a well-defined spectral low-frequency cutoff:

2x 3px
H(x) 5 H exp 2 cos , (16)0 21 2 1 2L LH H

where LH 5 25 km. Figure 6 shows that the profile (16)
mimics a massive mountain of approximate length L 5
100 km made of five successive ridges separated by
nearly 16.7 km. Its power spectrum ĤĤ*(k), where the
hats indicate Fourier coefficients, is narrowband, cen-
tered around the horizontal wavelength lx ø 16.7 km,
and has no power above lx ø 50 km (thick solid line
in Fig. 6). Accordingly, disturbances with horizontal
scales above 50 km will be due only to nonlinear in-
teractions. At these wavelengths, the GWs are near hy-
drostatics and weakly influenced by rotation, so they
experience little horizontal dispersion as they propagate
toward the shear layer. Accordingly, we can also use L
5 100 km as the horizontal scale to evaluate the spatial
Rossby number eL 5 U0/ fL 5 1.

To extract the LSF we apply to the total disturbance
fields a nonrecursive low-pass filter K(x) in the hori-
zontal direction. The filter uses a Kayser window (Ham-
ming 1983, chapters 7 and 9) and is adjusted to minimize
Gibbs effects and to have a neat cutoff around lc 5 50
km. Its transfer function K̂K̂* is near 1 for all wave-

lengths above lx 5 75 km and near 0 for all wavelengths
below lx 5 50 km (thick dashed line in Fig. 6).

To derive diagnostics for the LSF we apply the low-
pass filter K to the anelastic Eqs. (A3)–(A4) in appendix
A and write the long disturbance fields evolution:

[] 1 (U 1 u )] 1 w ]x]u 1 w U x 1 f z ` ut l x l l l z l

ul1 =f 2 g z 5 F (x, z, t), (17)l lu0

[] 1 (U 1 u )] 1 w ] ]u 1 Q y 1 u wt l x l z l y l 0z l

5 H (x, z, t). (18)l

In Eqs. (17)–(18), the index l indicates the long distur-
bance field, so F l and Hl include, by construction, the
diffusion of LSF disturbance fields and the nonlinear
interaction between short gravity waves.

b. Near-linear regime, H0 5 15 m

In the experiment presented in this section, the max-
imum mountain height is H0 5 15 m, so the regime of
the interaction between the GWs and the shear layer is
linear viscous. Accordingly, after a spinup period that
lasts less than 6 h, the GWs fields stay near constant
throughout the 30-h simulation. At this time the GWs
pattern consist of a system of vertically propagating
mountain waves that are absorbed within the shear layer
(Fig. 7a). The absorption of the GWs below zc results
a momentum deposit, which gives an LSF forcing in
the parallel direction Fxl that is essentially negative with-
in the shear layer (Fig. 7b).

The large-scale flow response to the critical level ab-
sorption of the GWs is shown in Fig. 8. Apparent on
nearly all fields in Figs. 8a–c, the LSF response at t 5
6 h is large inside the shear layer (between z 5 8 km
and z 5 12 km) but also presents a wavelike pattern
below z 5 8 km. This wave pattern can essentially be
seen on ul and ul (Figs. 8a,b), while the transverse ve-
locity field y l is dominated by a disturbance confined
inside the shear layer (Fig. 8c). The fact that the dis-
turbance field below the shear layer is inclined in the
direction of the flow indicates that it is made of IGWs
propagating downward.

The structure of the long disturbance fields at t 5 30
h is shown in Figs. 8d–f. Below the shear layer, it con-
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FIG. 8. Nonperiodic case with H0 5 15 m. LSF disturbance fields at (a)–(c) t 5 6 h and (d)–(f ) t 5 30 h. (a), (d) Parallel wind ul: contour
interval is 5 3 1023 m21 s; (b), (e) Potential temperature ul: contour interval is 2 3 1023 K; (c), (f ) transverse wind y l: contour interval is
1022 m s21. Negative values are dashed.

sists of a large-scale standing wave, which results from
the superposition of downward IGWs and upward-prop-
agating IGWs of same amplitude (Figs. 8d,e). The
downward IGWs are generated in the shear layer, while
the upward IGWs result from the total reflection of the
downward IGWs at the ground. This standing pattern
below z 5 8 km becomes steady after t 5 18 h, because
the reflected upward IGWs are entirely absorbed within
the shear layer.

At that time, the LSF transverse velocity presents a
large positive pattern (Fig. 8f) centered near (x, z) 5
(0, zc), and that is confined within the shear layer. The
LSF potential temperature also presents, within the
shear layer, a pattern that is clearly distinct from the
IGWs present below the shear layer (Fig. 8e). Although
more complex in structure than the y l pattern in Fig. 8f,
it is predominantly negative over a long horizontal strip
near zc. If one follows their evolution in time, the y l

and the ul patterns within the shear layer grow steadily.
The balanced part of the flow fields in Fig. 8 is dis-

played in Fig. 9; they are estimated after inversion of
the PV field Qb in Figs. 9a,c (see appendix C for the
inversion procedure). The balance transverse velocity
y b (not shown) is very near the long disturbance field

y l(x, z) displayed at t 5 6 h and t 5 30 h in Figs. 8c
and 8f, respectively. For the potential temperature field,
the balanced part is displayed at t 5 6 h and t 5 30 h
in Figs. 9b and 9d, respectively. Comparison between
these fields and the large-scale flow fields in Figs. 8b
and 8e clearly shows an excellent agreement within the
shear layer.

The fact that the balanced response stays confined
within the shear layer follows that the disturbance po-
tential vorticity stays confined there as well. For in-
stance, the potential vorticity field at t 5 6 h (Fig. 9a)
is a dipole pattern with a positive lobe standing above
a negative one. This near-exact balance between the
negative lobe and the positive one follows that the
breaking GWs induce a nonadvective potential vorticity
flux, JN ø 2FlxQyez (see appendix C), oriented upward,
because Flx is negative and Qy is positive inside the
shear layer. As time increases (Fig. 9c), this PV-dipole
is steered by the background shear, with the negative
PV lobe advected downstream, and the positive one
advected upstream.

A more quantitative way to evaluate the partition be-
tween balanced flow and IGWs in the response is to
evaluate the total disturbance energy:
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FIG. 9. Same as Fig. 8, but for (a), (c) potential vorticity Qb: contour interval is 2 3 10211 K m2 s21 kg21; (b), (d) balanced potential
temperature ub: contour interval is 2 3 10211 K m2 s21 kg21. Negative values are dashed.

FIG. 10. Disturbance energies evolution when H0 5 15 m. All
energies are divided by . LSF total energy (thick solid line); LSF4H 0

balanced energy (thick dashed line), and LSF energy outside the shear
layer (thin solid line).

1X z T 2 2 2|u | g uk kE 5 r 1 dz dxk E E 0 2 21 22 2N u 02X 0

2 2 2|u | g uk k5 r 1 , (19)0 2 277 1 2882 2N u 0

where X 5 300 km. In Eq. (19) the indices k 5 l, b
distinguishes the long disturbance field and the balanced
field. We also evaluate the fraction of energy that goes
outside of the shear layer E0 by excluding in Eq. (19)
the contribution that comes from the long disturbance
field between z 5 zc 2 D and z 5 zc 1 D.

The thick line in Fig. 10 shows the temporal evolution
of the LSF disturbance energy during the simulation.
After t ø 4 h, which corresponds to the time at which

GWs have reached a significant amplitude inside the
shear layer, El starts to grow rapidly and typically con-
tinues until t 5 10–15 h. A closer examination of the
different terms that enter the total disturbance energy
budget shows that in the first 10 h, the disturbance en-
ergy is essentially produced by the work done by the
large-scale forcing onto the disturbance field,

^^r F u &&,0 l b (20)

and the balanced flow contributes little to that term.
Between 5 and 15 h, the energy growth is essentially
due to the conversion of mean kinetic energy to dis-
turbance energy,

2^^r u w U &&,0 l l z (21)

a production term that is essentially ageostrophic, with
the balanced flow making little contribution to it. It is
during that stage that significant IGWs are emitted out-
side the shear layer, as indicated by the growth of E0

during that period (thin line in Fig. 10). Although this
conversion term is known to be efficient in generating
long secondary waves (Farrel and Ioannou 1993; Lott
1997), it does not last in the present configuration. The
IGWs coming from the shear layer in Figs. 8a,b are
reflected back at the ground and return to the shear layer,
where they are absorbed again (Figs. 8d,e). Accordingly,
the disturbance kinetic energy production term falls to
zero at t 5 15–20 h, and the IGW energy outside of
the shear layer E0 reaches a constant amplitude (thin
line in Fig. 10).

After that first 15 h, the disturbance energy growth
is essentially due to the conversion of mean available
potential energy to disturbance energy:
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FIG. 11. (a) Total disturbance parallel velocity u9(x, z) and (b) LSF disturbance parallel velocity ul(x, z) at t 5 30 h and
for H0 5 250 m. Contour interval 0.5 m s21. Negative values are dashed.

FIG. 12. Disturbance energies as a function of H0 at t 5 30 h. All
energies are divided by ; LSF total energy (thick solid line), LSF4H 0

balanced energy (thick dashed line), and LSF energy outside the shear
layer (thin solid line). The dots represent the ratio r 5 Eb/E0.

g f Uzr y u . (22)0 l l77 88u0

This is a pure baroclinic term, essentially due to the
balanced flow. It is in good part due to the fact that the
LSF transverse velocity y b . 0 transports mean potential
temperature [term y bQy in Eq. (C1), appendix C]. Be-
cause this transport occurs near where U(z) 5 0, ub also
decreases [Eq. (C1) in appendix C]. This makes y bub

, 0 in the shear layer and the available potential energy
production term .0, according to Eq. (22). Consistent
with this, in the long term, the disturbance energy
growth is the balanced energy growth (thick dashed line
in Fig. 10), and the difference between the disturbance
energy El and the balanced energy Eb is near the IGW
energy outside of the shear layer E0.

c. Nonlinear regime: H0 5 250 m

When H0 increases, the dynamics become nonlinear,
and the LSF response amplitude compares with the GWs
and background flow amplitudes. As an illustration of
this, Figs. 11a and 11b compare the total disturbance
horizontal velocity field, u9(x, z) and the filtered dis-
turbance horizontal velocity field ul(x, z) at t 5 30 h
and for H0 5 250 m. Although the total velocity field
is dominated above the mountains by the GWs, the LSF
disturbance is clearly evident in most places. For in-
stance, between x 5 0 km and x 5 40 km and below
zc 5 10 km, the LSF disturbance in Fig. 11b makes a

significant contribution to the total disturbance hori-
zontal velocity field u9 in Fig. 11a. It makes the total
disturbance field u9(x, z) , 0 above z 5 7.5 km and
between x 5 0 km and x 5 40 km in Fig. 11a. Down-
stream of the ridge, between x 5 75 km and x 5 150
km and below z 5 10 km, the LSF disturbance field
dominate the total disturbance field at near all altitudes.

As a consequence of the substantial modifications of
the LSF seen in Fig. 11a, we can expect some feedback
onto the GWs themselves. As in the periodic case, these
modifications increase the GW reflection at the shear
layer, and affect in return the waveforcing Fxl. To il-
lustrate this point, Fig. 12 shows the disturbance en-
ergies for different values of H0. In the linear case, H0

5 10, 15, and 20 m; El/ is near constant, which4H 0

naturally follows that the LSF disturbance fields ul and
ul vary with , that is, like the GW drag. As H0 in-2H 0

creases—H0 5 35, 50, and 65m—nonlinearities start to
affect the GWs, and the nonlinear reflection increases
the waveforcing, the ratios El/ being significantly4H 0

larger than the linear case. It is a situation where the
fraction of GWs reflected at the shear layer are in such
a phase when they arrive at the ground, that they en-
hance the wave drag. A rather similar mechanism was
described by Clark and Peltier (1984) in the nonrotating
case. As H0 increases again—H0 5 100, 150, 200, and
250 m—the nonlinear reflections of the GWs cause the
forcings to drop significantly, and the energy of the LSF
disturbance becomes around 10 times smaller than that
predicted in the linear case. The fact that nonlinear GW
reflection can either increase or decrease the waveforc-
ing is not very surprising. As noticed in the periodic
case (section 2d), moderately different LSF changes
confined to the shear layer can produce reflected GWs
with very different phases and amplitudes.

The dots in Fig. 12 present the ratio between the LSF
disturbance energy Eb and the IGWs energy outside of
the shear layer E0. Contrary to the periodic case, this
ratio is near insensitive to the degree of nonlinearities,
it is around r 5 3 at t 5 30 h. Prior to that time it is
smaller, which is consistent with the balanced part of
the LSF disturbance that keeps increasing in time while
the amplitude of the IGWs outside the shear layer stay
constant after t 5 20 h typically. At t 5 20 h, this ratio
is near r 5 2 (not shown).
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4. Conclusions

The fact that the dynamics of gravity waves near crit-
ical levels is affected by the Coriolis force has been
largely documented in the linear case (Jones 1967; Tei-
telbaum et al. 1987; Shen and Lin 1999). In this context
and for long waves, the dynamics inside the shear layer
can be quite different from the nonrotating case ana-
lyzed by Booker and Bretherton (1967). The results pre-
sented here show that the Coriolis torque also affect the
dynamics of rather short GWs, when nonlinear effects
are significant. In this case, it is not the primary gravity
waves that are directly sensitive to the Coriolis torque,
but the LSF they induce when they break. Compared
to the nonrotating case, the most obvious difference is
that in the periodic nonrotating case, a momentum de-
posit due to GW breaking produces a regular descent
of the large-scale parallel wind, while in the rotating
case it is equilibrated by a transverse flow. Still, in the
periodic case, GW breaking also produces IOs super-
imposed onto this transverse flow. The incidence of the
Coriolis torque on the LSF response affects the GW
dynamics in return. In the periodic case, these feedbacks
lead to a resonant loop, which causes the ratio between
the amplitude of IOs and that of the transverse flow to
far exceed that predicted by the linear theory.

To test the robustness of these findings, we have re-
peated some of the experiments presented in the paper,
changing the model configuration and the GW param-
eters. For instance, we verified that comparable behavior
occurs for a long GW, whose first critical level zj1 is
located significantly below zc (i.e., zc 2 zj1 ø D, and
zj1 K zc 2 lm; see appendix B). We also found com-
parable behavior when the GW reflected at the shear
layer is damped artificially near z 5 0, so it does not
return toward the shear layer.

The importance of these feedback loops in the non-
periodic case is difficult to address. Simulations that last
significantly longer than a day require much CPU time
and necessitate a very large domain not to be affected
by lateral boundaries, at least when breaking is forced
to occur in a background flow with nonzero wind. Nev-
ertheless, we can speculate that comparable feedback
loops can occur when GW breaking occurs in a fluid at
rest, that is, when the LSF response stay near where the
GWs break.

The response to GWs breaking in the nonperiodic
case shows two very characteristic patterns. The first is
a long-standing wave, which, in our case, stays located
below the shear layer. The second is a growing baro-
clinic disturbance that stays inside the shear layer. When
the spatial Rossby number is near 1, these two patterns
have comparable amplitude, at least during 1–2 days.
Enhancing nonlinearities within moderate bounds does
not fundamentally affect the shape, the evolution, and
the relative importance of these two patterns. The non-
linearities only cause the GWs to become more or less

efficient in producing LSF disturbances, because the
GWs become nonlinearly reflected at the shear layer.

Contrary to the periodic case, we did not test cases
where the GWs and the IGWs coming from the shear
layer are not reflected by the ground. On the one hand,
we can imagine that the balanced response will behave
like that presented in the paper, since it essentially re-
sults from the fact that GWs deposit momentum there.
The amount of momentum deposited is affected by the
geometry, but not the general structure of the balanced
response. For the IGWs, on the other hand, the structure
will be quite different, and the LSF disturbance below
the shear layer will present only downward-propagating
IGWs. The downward flux of energy associated with
these IGWs will be continuously sustained by the kinetic
energy production term [Eq. (20)] that falls to zero when
the IGWs return to the shear layer in the present paper.

The fact that GW breaking can result in long radiating
IGWs supports the interpretation of Scavuzzo et al.
(1998), who attributed the presence of IGWs near above
the Pyrénées to such a secondary emission. In Scavuzzo
et al. (1998) nevertheless, gravity wave forcing was im-
posed, while here, it is entirely simulated. Another dif-
ference with Scavuzzo et al. (1998) is that the results
here do not produce large IGWs going into the upper
atmosphere. This is due to the fact that long waves have
critical levels inside the shear layer where they are ab-
sorbed. We can speculate that this would not occur, if
the GWs were not breaking at critical levels located in
a shear layer.

Although most of the mechanisms presented in this
paper are of some importance in the 3D case, it is im-
portant to recall that linear studies prove that the 2D
response to prescribed body forcing overstates the IOs/
IGWs compared to the 3D case (Vadas et al. 2003). This
follows that 2D models do not allow the parallel velocity
in the LSF response to be in thermal wind balance with
a transverse potential temperature gradient. It is very
likely that the omission of this balance in the response
also has large consequences in the nonlinear cases.

The simulations presented here also show that GWs
breaking near critical levels are rather efficient in taking
available potential energy from the background baro-
clinic flow. In the shear layer, this causes GWs to force
an LSF disturbance that grows fast, and through a dy-
namical process that is essentially balanced and that is
not due to baroclinic instabilities. In this process, the
breaking GWs induce a vertical dipole of PV, which is
steered by the vertical shear. This steering causes the
positive and negative PV lobes of the dipole to be ad-
vected far away from each other. If they were staying
above each other, we could speculate that any vertical
mixing would tend to damp them.

The ability of GWs to interact with the background
flow, at the place where they can efficiently extract
available potential energy from the environment, may
cause them to play a more significant role in mesoscale
and synoptic-scale meteorology than is generally ad-



1702 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

mitted. In the context of mountain meteorology for in-
stance, it is well known that the surface pressure drag
far exceeds the GWs Reynolds stress, which suggests
that the large-scale flow (Lott 1995) and the low-level
flow dynamics (Lott and Miller 1997) largely overstate
the contribution of upper-level GWs in the momentum
budget. To a certain extent, the simulations presented
in this paper suggest that even a small stress can give
rise to a large response.

APPENDIX A

Basic Equations and Model

The model uses the 2D anelastic equations described
by Scinocca and Shepherd (1992) only modified to in-
clude the Coriolis term in the f -plane approximation.
In the model, we split the horizontal velocity field, the
potential temperature, and the potential between back-
ground and disturbance quantities:

u 5 U(z)x 1 ũ(x, z),

u 5 u (z) 1 Q(y, z) 1 ũ(x, z),0

f 5 F (z) 1 F(y, z) 1 f̃(x, z). (A1)0

In Eq. (A1), the subscript zero refers to the fluid at rest,
the tilda to perturbations, and the capital to the back-
ground flow. In the following and everywhere in the
text, the tilda will be omitted. The background potential
temperature field, Q(y, z), is introduced to maintain the
background velocity field in thermal wind balance,

dU 1 g ]Q
5 2 , (A2)

dz f u ]y0

and F is in hydrostatic balance with Q. With these no-
tations, the anelastic equations for the disturbance fields
are written as

u
(] 1 U] )u 1 U wx 1 f z ` u 1 =f 2 g zt x z u0

1
5 2u= · u 1 =m · =u, (A3)

r 0

dQ du 10(] 1 U] )u 1 y 1 w 5 2u · =u 1 =k · =u,t x dy dz r 0

(A4)

= · (r y) 5 0. (A5)0

Note that in Eqs. (A3)–(A4) the diffusions of the back-
ground fields has been neglected because their impact is
not of much interest. More significantly, in Eq. (A4), the
buoyancy term Qzw is neglected as well, an approximation
that permits the disturbance fields to stay 2D when Uz ±
0. It was implicitly assumed by Jones (1967), in this study
of linear critical levels with Coriolis force. If we consider
a transverse axis y, this term equals 2( fu0y/g)Uzzw: it is
null in the plane of the simulation located at y 5 0. Com-
parison with u0zw proves that it becomes significant at a

transverse distance of the plane y ø Rim(U0/ f ) 5 625 km,
which is significantly larger than the characteristic hori-
zontal scale of the disturbances L ø 100 km analyzed in
this paper.

To parameterize crudely the convective instabilities
that can appear in the shear layer, we introduce diffusiv-
ities that resemble those used in first-order turbulent clo-
sure schemes, but using only the background fields:

2m 5 k 5 0.5(dz) |U |[1 2 tanh(Ri/4 2 1)]. (A6)z

At the top and bottom, the boundary conditions are free-
slip and, to force GWs, a linear corrugated bottom at z
5 0 is raised smoothly and within th 5 1 h to impose

w9(x, 0, t) 5 U (0)] H(x).0 x (A7)

APPENDIX B

Critical Levels Characterization

A steady stationary monochromatic GW with hori-
zontal wavenumber k often admits three critical levels:

U(z ) 5 0, U(z ) 5 1 f /k, andc j1

U(z ) 5 2 f /k, (B1)j2

when it propagates in a shear flow given by Eq. (2).
When f 5 0 the incident GW wave is attenuated at zc

providing the Richardson number Ri(zc) . 0.25 and
deposit momentum (Booker and Bretherton 1967). In
the presence of the Coriolis force, dissipation, and non-
linearities, this result is modified depending on the rel-
ative importance of these three processes. To charac-
terize it, it is relevant to introduce the scales

1/3
f m

l 5 , l 5 ,f m [ ]kU (z ) r kU (z )z c 0 z c

2/3
|A|

l 5 , (B2)N [ ]U (z )z c

which characterize the distance to zc of the two inertia
zjs critical levels (Jones 1967), the distance to zc beyond
which one cannot neglect the dissipative terms (Hazel
1967), and the distance to zc beyond which one cannot
neglect nonlinearities (Lott and Teitelbaum 1992). In
Eq. (32), | A | measures the disturbance amplitude; in
our case, it is given by | A | 2 5 NU0 .2H 0

In the simulation presented in this paper the viscous
scale lm ø 100 m, which is significantly larger than the
model vertical grid spacing in the shear layer (dzmin 5
30 m ensuring that the critical-level dynamics is prop-
erly solved. Note also that lm K D so GWs absorption
remain predicted by the Richardson number at the crit-
ical level (Hazel 1967). Furthermore, lf ø 150 m ø lm,
so the three critical levels are linked with each other
through dissipative processes, but as lf K D as well,
the GWs behave similarly to the nonrotating case (Tei-
telbaum et al. 1987). The nonlinear scale lN varies be-
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tween a few meters and a few hundred meters, that is,
from the linear viscous regime ln K lm to nonlinear
viscous ones ln ø lm.

APPENDIX C

Balanced Equations

If we assume that the large-scale forcings (a) are small,
(b) impose small Rossby numbers, (c) are dominated by
Flx, and (d) give rise to a response whose vertical scale
is near D, the long disturbance Eqs. (17)–(18) are well
approximated by the linear hydrostatic set:

2 f y 1 ] f 5 F ,b x b lx

] f 2 gu /u 5 0, (C1)z b b 0

(] 1 U] )y 1 fu 5 0,t x b b

(] 1 U] )u 1 Q y 1 u w 5 0. (C2)t x b y b 0z b

It satisfies a linear quasigeostrophic PV conservation
equation

r (] 1 U] )Q 1 r y ] ( f Q /r ) 1 r w ] ( f u /r )0 t x b 0 b y z 0 0 b z 0z 0

5 2= · J , (C3)N

where the disturbance quasigeostrophic PV, Qb, and its
nonadvective flux JN, are given by

r Q 5 (u ] y 1 f ] u ) and0 b 0z x b z b

J 5 1(F ] Q)y 2 (F ]yQ)z, (C4)N lx z lx

respectively. The balanced large-scale flow response can
be deduced from Qb by using the two balance equations
(C1). This results in a linear elliptic equation for fb that
can be inverted assuming the balanced potential tem-
perature is 0 at the model boundaries:

]fb 5 0 at z 5 0 and z 5 z . (C5)T]z
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