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ABSTRACT

The concept of linear mountain waves is generally equated with steady-state stationary waves. This essentially
means that the absolute horizontal phase velocity of mountain waves is zero and that their momentum flux
profile is independent of height and time in the absence of dissipation and zero-level wind. This paper investigates
the generation of linear unsteady mountain gravity waves. The incident flow is transient, starting from zero at
a given time and returning to zero after a finite time. The topography is a single horizontal harmonic. The
unsteadiness of the waves is due partly to the temporal change of their phase velocity, which takes place during
their propagation in the time-dependent mean flow. When the wind ceases, most of the waves present have a
phase velocity nearly opposite to the maximum wind. For this reason, mountain waves can propagate through
levels of zero mean wind. The transient structure of the wave field also comes from the temporal change of the
amplitude of the ground forcing. Moreover, it is the result of the interference between the waves generated while
the wind increases and those generated while it decreases. These transient effects naturally lead to z-dependent
momentum flux profiles that are analyzed in detail.

This paper deals with an analytical model, when the unsteady incident flow is uniform in the vertical direction.
When the incident wind varies slowly in time, a comprehensive picture of the wave field is given by an asymptotic
expansion of the wave solution. When the mean flow changes rapidly in time and when it varies in the vertical
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direction, the solution is obtained with a numerical model.

1. Introduction

The atmospheric waves generated over a bottom to-
pography whose horizontal scale is small enough to
neglect the earth rotation have been studied by many
authors. The first comprehensive treatment of these
waves was made in the linear case by Queney (1947)
and Scorer (1949). It has been extended to finite am-
plitude topography by Lorng (1953). Thereafter, linear
and nonlinear studies have been developed in order to
give a comprehensive picture of these waves and of the
associated severe downslope windstorms occurring in
the lee of mountains (Peltier and Clark 1979; Durran
1986; Durran and Klemp 1987; Klemp and Lilly 1975;
Bacmeister and Pierrehumbert 1988). In general, these
studies assume that the incident flow is steady, although
some unsteadiness in the wave field is expected at the
start of the incident flow (Palm 1953; Jusem and Bar-
cilon 1985). In other studies, unsteadiness results from
local instabilities of the main wave ( Laprise and Peltier
1989; Bacmeister and Schoeberl 1989). In all of these
studies, most of the energy of the disturbance is trans-
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ported by a main stationary wave, because the incident
flow becomes steady after a finite time.

Observations show that this assumption is not always
valid. Some atmospheric examples can be found in
Smith (1982), who shows synoptic observations of
wind and préssure near a mountain. In this case, the
time-dependent component of the incident flow is re-
lated to the passage of synoptic disturbances. More
common geophysical examples of transient flow inter-
action with mountains have been studied by ocean-
ographers (Bell 1975) in the context of the interaction
between the fluctuating tides and the bottom topog-
raphy. In this context, the mean flow varies as a single
harmonic in time, allowing certain simplifications in
the mathematical treatment of the problem. Neverthe-
less, in the atmospheric case, this temporal structure
of the incident flow is not relevant, the amplitude of
the atmospheric tides being small in the troposphere
compared to that of the synoptic disturbances. To ap-
proach the atmospheric context, Bannon and Zehnder
(1985) added a steady component to such a sinusoi-
dally varying flow. They studied the influence of tran-
sience on the mountain drag, including the effect of
the Coriolis force. They found that some evanescent
long modes, which do not participate in the mountain
drag in the steady case (Smith 1979), can contribute
to the instantaneous mountain drag in the unsteady
case. In this paper, we investigate situations where the
time-varying wind is not a single temporal harmonic.
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In order to provide a simple description of transient
mountain waves, we study cases for which the incident
wind has at most one increasing phase and one de-
creasing phase. It is very different from the case of a
sinusoidally varying wind where an infinite number of
increases and decreases of the incident wind contiibute
to the wave field. It is supposed to idealize the time
behavior of winds in realistic situations, such as the
interaction between a front and a topography.

The nature of transient effects on topographically
disturbed flow depends on the relative size of the time
scale, Z;, that characterizes the temporal fluctuations
of the incident flow and of the time, #,, required for
the formation of the wave pattern over one vertlcal
wavelength:

ta ~ (C:gzn‘:l)_l ~ (kUO)_l-

Here, k and 1 are the horizontal and vertical wave-
numbers of the disturbance, U is the maximum wind
amplitude, C,; is a characteristic vertical group velocity
of the wave,

~ kU3

C‘gzN N ’

and N is the buoyancy frequency. The tilde symbol is
used to identify dimensional variables. The time scale,
14, is also the advective time required for a fluid particle
to cover one wavelength of the mountain range. The
case, I, < I,, reduces essentially to a ground-generated
vibrating disturbance in a stationary fluid. It was stud-
ied by Chimonas (1977) in order to explain the ob-
servation of infrasounds in the vicinity of mountains.
The situations for which > ¢, are called quasi steady.
In these cases, the importance of the time variation of
the mean flow on the wave depends on the relative size
of the time scale, #,, and of the scale,

;w = L/égzy

which characterizes the time required for the waves to
traverse a layer of height L, where temporal variation
of the mean flow occurs. For values characterizing the
tropopause (L = 10-km, N = 0.01, Us = 10 ms™}),
tw, is greater than one hour as soon as the horizontal
wavenumber (X,) of the wave exceeds 20 km. Conse-
quently, in the troposphere, the structure of mountain
gravity waves can be significantly affected by the tem-
poral variations of the flow occurring over one hour.
For middle atmosphere dynamics (L ~ 80 _km,; N
~ 0.02), ,, is longer than 1 day as soon as Ay > 30
km. Therefore, we should take into account the influ-
ence on these waves of the mean flow fluctuations, in-
duced by the planetary waves of short period.

For a quasi-steady flow, the temporal change of the
incident wind induces temporal variation of wave am-
plitudes at the ground. This naturally gives rise to a
transient wave field of which the momentum flux pro-
file varies with height. It gives rise to mean flow changes
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(Eliassen and Palm 1960; Andrews and Mclntyre 1976)
in spite of the fact that the fluid is not viscous. .

Furthermore, in quasi-steady flows, a direct effect of
the mean flow temporal change on a wave is to modify
its frequency (Lightill 1978). Thus, the topographic
waves, which have zero phase velocity when they are
generated on the mountain, will have nonzero phase
velocity when the wind stops. In this case, the topo-
graphic waves do not encounter critical levels where
the mean wind falls to zero. This is contrary to the
result of Eliassen and Palm (1960), who have studied
topographic waves in a steady flow. For these reasons,
unsteady topographic waves can propagate up to higher
levels than steady waves. They can also encounter crit-
ical levels where the - mean wind i$ not zero. In any
case, the gravity wave critical-level interaction is an
important process of the atmospheric dynamics. When
a gravity wave reaches a critical level, complex wave-
mean flow interactions occur. Assuming that the mean
Richardson number is generally larger than 0.25, the
wave is absorbed and deposits its. momentum at the
critical level (Booker and Bretherto_n 1967) This result
is valid for small amplitude waves at large Reynolds
number (Lott and Teitelbaum 1990). For large am-
plitude waves, the critical-level interaction is nonlinear,
and the reflection of the wave can be large while its
transmission remains very small (Brown and Stewart-
son 1980). For unstable flows, the dynamics of the
gravity wave critical-level interaction resembiles that of
instability (Jones 1968; Lindzen and Rosenthal 1983;
Lindzen and Rambaldi 1986; Lindzen and . Tung
1978). If the waves do. not reach critical levels, they
attain altitudes where they restore momentum to the
mean flow through viscous processes or wave breaking
(Lindzen 1981; Schoeberl 1988).

The purpose of the present study is to. mvestlgate
the structure of the gravity waves generated by transient
wind incident over a single harmonic mountain range.
The incident wind starts from zero at a given moment,
reaching its maximum amplitude after a finite time
and returning to zero thereafter. In the second section
of this study, we consider a wind profile that is constant
in the vertical direction. An analytical solution is ob-
tained and an asymptotic expansion of the wave field
is given when the time fluctuations of the mean wind
are slow (or quasi steady ). This helps to develop some
physical insight into thé dynamics of topographic
waves, generated by a time-varying incident flow. In
the third section, a numerical model is used. It allows
us to validate the preceding analytical calculations and
to extend them to more rapid winds. Furthermore,
particular attention is paid to the mean flow acceler-
ation induced by wave transience. For this purpose,
the momentum fluxes obtédined for different temporal
profiles of the incident wind (including the case for
which the incident wind reaches a constant value) are
compared. They are also compared to the momentum
flux profile induced by a transient gravity. wave whose
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amplitude variation is forced at the ground when the
phase velocity is nearly constant. This kind of model
has been used by Dunkerton (1981) and Fritts and
Dunkerton (1984) to study transient gravity waves.
We also examine the case for which the unsteady wind
is always zero at a given height. We determine whether
topographic waves can propagate vertically through
such a level, which is a critical level for topographic
waves in steady flow.

2. Uniform mean flow in the vertical direction
a. General solution

We modify the well-known Queney (1947 ) problem
to allow the spatially uniform incident wind to be a
function of time. The model atmosphere is a stratified,
inviscid, hydrostatic, and Boussinesq fluid. The use of
the Boussinesq approximation deserves comment. In
fact, in this approximation, the influence of the back-
ground fluid compressibility on the waves is neglected.
Consequently, the exponential growth of gravity waves
with height, which leads to gravity wave breaking in
the high atmosphere, is not represented. Nevertheless,
we assume that the characteristic vertical wavenumber
of the mountain waves, N/ Up, is large compared to
the inverse of the density scale height, g/ RT,. Then,
the mean flow compressibility has a weak influence on
the horizontal and vertical group velocities of the waves.
For this reason, we can adopt the Boussinesq approx-
imation, since we study the characteristics of mountain
wave propagation rather than their breaking. Although
the Coriolis force is important for the case of long
mountains in the unsteady case (Bannon and Zehnder
1985), we further assume that the characteristic in-
trinsic frequency of the waves considered is large as
compared to the Coriolis.parameter (i.e., the Rossby
number is large) and we do not take 1nto account the
effect of the earth rotation.
The basic-state velocity field is a zonal wind of the
form:

(1) = UpU(1).

This flow is incident on a corrugated mountain, the
profile of which is given by

h(X) = Re[H, exp(+ikx)].

Here H, is the maximum mountain height and & its
horizontal wavenumber. The mountain is assumed to
force a small linear perturbation into the basic flow.
This is known to be true when the characteristic vertical
wavenumber of the disturbance is large compared to
the mountain height. It corresponds to a situation of
small inversé Froude number:

NH,
0

Here, N is the constant buoyancy frequency associated
with the stable basic-state density stratification po:

Fr!= < 1.
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1 dpo

Ni=—g——,

g po dZ

Writing all the wave field parameters as:
A, %, £) = Re[/i(4, £) exp(ikX)],

the disturbed flow satisfies the equations:

(i+ ifczio(f))fil +ik2 =0 (2.1)
ot Po

P+ g = 0 (22)

Z

- \p A?
(i+ ikao(z))ﬂ———w, =0 (2.3)
ot po &

o
ikity + 5 = 0. (2.4)

Here, p, and p, are the pressure and density pertur-
bations. The kinematic boundary condition at the sur-
face is

w,(i 5= 0) = ikilo(7)Ho. (2.5)

Introducing Uy, k7', (kUp)™", Uo/N, and kUpH, as
scales of horizontal velocity, horlzontal length, time,
vertical length, and vertical velocity, and after some
algebraic manipulations, Egs. (2.1)—-(2.5) are reduced
to

2

d g
(6t + zU(t))( + lU(t)) -—
w (¢, z=0) =iU(2). (2.7)

To unravel the nonlinear temporal dependence inher-
ent in (2.6), we follow Bell (1975) and solve (2.6) in
a reference frame fixed with respect to the basic flow.
This is done by introducing the variable w(¢, z) defined
as

—w =0 (2.6)

w(t, z) = wi(t, 2) exp(+i J: U(s)ds) .

Then; Egs. (2.6) and (2.7) become
9w
az*or?

w(t,z=0)=+iU(t) exp(+i J: U(s)ds) . (2.9)

—-—w=0 (2.8)

This last substitution is needed to eliminate the time
dependence of the coefficients in Eq. (2.6). Equations
(2.8)-(2.9) can be solved using time Fourier trans-
form. In the frame fixed with respect to the flow, w is
a sum of monochromatic modes with nondimensional
intrinsic frequency, —w, and vertical wavenumber, m,
satisfying the dispersion relation, m = 1/w. The vertical
structure of each mode is given by

exp(+iemz),
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where ¢ = +1 is chosen so that the mode propagates

upward. In the frame fixed with respect to the topog-
raphy, the solution reads:

wy = iexp(-—i fot U(s)ds)

X fm F(w)exp[+i(wt+ 5)]@ (2.10)
—c0 @

where F(w) measures the amplitude and the phase of
the mode of frequency —w,

F(w) = L fm U(t) exp(+iy(t, w))dt, (2.11)
27 J-
and the phase ¢ is defined by
Wt w) = J; U(s)ds — wt.

In the following, we assume that the transient mean
flow is given by

U@ = %[l + cqs(j—f)]

for |t| <trand U(t) = 0 for |t| > ¢.

(2.12)

b. Asymptotic expansion of the wave field
1) APPROXIMATION FOR F(w)

In the quasi-state case, U(¢) is a slowly varying func-
tion, (i.e., ty = —#f;< —1 and ;> +1) and Eq. (2.11)
can be estimated by the stationary phase method. This
method is used because the phase change, Y(¢, w), is
rapid compared to the amplitude change, U(¢). Then,
the main contribution to the integral comes from the
neighborhood of the stationary points ¢; such that

4 - Ut) - w =
o (@)= Ut) —w =0,

(2.13)
Figure 1 displays the function U(¢) when it is given by
(2.12). For w < 0 or w > 1, a solution to (2.13) does
not exist since 0 < U(¢) < 1 for all z. When 0 < w
< 1 (represented on the figure), Eq. (2.13) admits two
roots, #;(w) and f,(w). The first stationary point is
reached during the ascending period of the incident
flow: #;(w) < 0. The second one is reached during the
descending period of the incident flow: t,(w) > 0. Then,
the functions U(¢) and y(¢, w) are expanded in Taylor
series in the neighborhood of ¢, (w) and £, (w):

2
w0 =9t ) + S G 0y + - D2
™
U(t) w
2n * 2 +

for i = 1, 2 and provided that y/(#;, w) # 0. Then, the
integral representation of F(w) is estimated by rotating
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u

J
t2 (w) 1:f

ty t(0) 0

F1G. 1. Normalized incident wind as a function of time. For a
given 0 < w < 1, the two moments, ¢, and £, are solutions of Eq.
(2.13).

the path of integration to the value sgn(U(t;))w/4,
which corresponds to the path of steepest descent
(Lightill 1978). Then, we have

w +oo 3
Flo)y~— 2 f 'exp[+i\l/(ti,w)
2w Ly
. st . T
— |U()] —2-+lsgn(U(t,-))z ds
271' +1/2
U(t;)

w

~

Z

2w =12

Xexp(+i¢(t,-,w)+isgn(U(l,-))%). (2.14)

It is verified that F(w) = 0 when w — 0. When w =
17, the two terms in the expression (2.14) become in-
finitely large since U(¢;) and U(%,) tend to O (i.e., ¢,
and ¢, tend to 0). In this case, the preceding asymptotic
development is not valid since both ¥(f,, w) and
¥(1;, w) are 0 when w = 1. This situation is solved by
retaining up to third powers of ¢ in the expansion:
3
Wt w) = (1 —w)t+ {7(0)%+ .

and retaining only the first term in the Taylor series of
U(t):
ut)y=1+ ---.

By changing the path of integration to the one of steep-
est descent, the solution is (Lightill 1978, 385-399):

1 coexp[—(=i/6)]
F(w) =~ —f

27 Jeoexpl=(57i/6))
N
X exp(+i(1 —w)t+ iU(0) —6-)dt,

which can be expressed in terms of Airy functions, in-
troducing

U(0) E

3_ _
and S )

Sx =(w— 1)t

1 coexp(wi6)

S3
exp(in + i—)dS.
27 Jowexp(5wi/6) 3
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Thus, the asymptotic form of F(w) is

.. . . _
F(w)=(—%0)) Ai[(——qg—)—)) lB(w— l)].

(2.15)

Due to the properties of the Airy function, F(w) decays
exponentially for w > 1 and becomes oscillatory for w
< 1. This allows a quick and smooth transition to be
made between the oscillatory solution (2.14), which
is valid for w < 1 and the solution F(w) = 0 which is
valid for @ > 1. Figure 2 displays the function F(w)
determined from the equations (2.14) and (2.15) when
U(1) satisfies (2.12) and ¢, = 207. Figure 2 shows how
properly the approximations (2.14) and (2.15) match
near w = 1.

2) APPROXIMATION OF THE WAVE FIELD

The next step in the approximation of the exact solu-
tion (2.10) consists in applying steepest descent meth-
ods in the w integration, using the preceding approxi-
mate form of F(w). Considering the asymptotic be-
havior of the solution (2.10) for large z and ¢ values
(i.e., z>» 1 and ¢ <€ 1). Note that in dimensional form,
the assumption of large z (or ¢) consists in estimating
the wave field at a distance (or a time) that is large (or
long) compared to one characteristic vertical wave-
length (or period) of the waves. Note also that when
a slowly varying wind ceases, ¢ > ¢/> 1, the assumption
of large ¢ follows the assumption of slowly varying wind.
Then, we can consistently introduce the preceding
asymptotic form of F(w) into (2.10). Furthermore, we
assume that on each side of the ray z = ¢ (which cor-
responds to the ray of intrinsic frequency, —w = —1),
the wave solution can be approximated with F(w) given
by Eq. (2.14). Then, (2.10) becomes,

wi(t, z) =~ +iexp(—i .[: U(s)ds)

X 2 fm w|270(4)| "2

i=1,2Y~®

X exp[+i(d>,-(w, t,z)+sgn(U(%)) %)]dw
(2.16)

where the phase ¢; is
ti(w)

di(w, t, z) = f

U(s)ds — wt(w) + wt + = .
0 w

For the time being, z and ¢ are fixed parameters, and
only the dependence on w is displayed in ¢;. Then, for
large z and ¢, the main contribution to the integrals in
(2.16) is from the neighborhood of the stationary points
ws such that
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20. 1

F(e)

1.50

-20. L

FIG. 2. F(w) when U(t) is given by (2.12) and ¢ = 207: (solid)
F(w) as given by (2.14); (dashed) F(w) as given by (2.15).

d¢;
9 (ws, 1, 2) = ¢i(ws, 1, 2)
ow

== tlw) — 5 =0 (2.17)
W

i = 1, 2. These are the equations of two rays that de-
scribe the propagation of wave packets whose vertical
group velocities are w?. Each wave packet was gener-
ated at the ground at the time #;(w;). Thus, to calculate
the amplitude of the wave at a given (z, t), it is nec-
essary to determine the intrinsic frequency, w;, of the
wave packets reaching (z, ¢). Figure 3 displays the lo-
cation of these rays in the (z, ¢) plane. To represent
the rays, we consider that at each initial time ¢;, a wave
packet is generated at the ground. Its intrinsic frequency
is —w; = —U(1)). Its vertical wavenumber is m; = 1/
w;. For ¢ > t;, this wave packet propagates along the
ray:

z=wit—t).

In Fig. 3, 13 rays are represented for 13 values of ¢;, ¢,
< t; < tr, and U(?) is given by (2.12). It shows that
the (z, t) plane is separated into three regions. In region
I, no wave arrives and Eq. (2.17) does not give a saddle
point. In region II, the solution is the superposition of
waves, generated during the ascending period of the
mean flow. In this area, Eq. (2.17) gives two saddle
points w; (s = 1, 2). They correspond to waves gen-
erated at times ¢, (w;) < 0 and #;(w;) < 0 [both saddle
points contribute to the first integral in (2.16)]. Region
I and region II are separated by the caustic defined as
the intersection of all the rays of the wave packets gen-
erated during the ascending period of the mean flow.
It is the wave front of the solution: at a given ¢ it is the
maximum height reached by the wave packets. In re-
gion III (z < t) the solution is the superposition of
waves generated when the wind increases, and of waves
generated when it decreases: at any point in this region
Eq. (2.17) gives two saddle points w; (s = 1, 2) cor-
responding to wave packets generated at the times
t1(w;) <0 and £,(w;) > 0. Then, the first and the second
saddle points contribute to the first and the second
integral in (2.16), respectively. At the boundary be-
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tween regions (II) and (III) (around the ray z = ¢),
there are rays corresponding to wave packets for which
w is close to 1. There, F(w) has to be considered as
given by (2.15) instead of (2.14). We will see that such
a matching between regions II and III is not necessary.

The preceding ray equations are consistent with the
usual ray tracing theory. At ¢ = ¢; a stationary wave is
generated at the ground: its relative frequency is w,
= — = —U(,). Its vertical wavenumber, m, is given
by the dispersion relation, m = w~!. Thereafter, since
the medium does not change in z, the vertical wave-
number, m, of the wave is conserved (Lightill 1978).
As it is related to the intrinsic frequency through the
dispersion relation, the latter is also conserved and the
wave propagates along a straight ray in the ( z, ¢) plane.

(i) Approximation of the solution in the wave
regions (I) and (II): z >

Above the ray z = ¢, only waves generated during
the ascending period of the mean flow are present, since
no saddle points corresponding to waves generated
during the decreasing period of the mean flow can be
found in this area of the (z, ¢) plane. Consequently,
no saddle points corresponding to i = 2 occur, and the
equation (2.16) is approximated by:

wi(z, t) =~ iexp(—i J: U(s)ds)

X fm W(2r U (11 ()2

~o0

X exp[+i(¢l(w, 1, 2) + %)] . (2.18)

As seen in Fig. 3, for z > ¢, a caustic exists; it is the
boundary between regions of complicated wave field
and a neighboring region including no wave. Before,
this caustic was defined geometrically. Mathematically,
in systems analyzed using the method of the stationary
phase, the difficulty arises when the second derivative
of the phase (with respect to the integration parameter,
i.e., w) vanishes. Thus, the ray equation:

z
o (wie, 8, 2)=t— ti, ——5 =0,

2
Wi

where .= fj(w;) (2.19a)
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103.51

)
~103.5 0.0

0.0
-207.0 207.0 310.5

F1G. 3. Rays of wave packet propagation in the ( z, ¢) plane: (solid)
wave packets generated during the ascending period of the incident
wind; (dashed ) wave packets generated during the decreasing period
of the incident wind. Same conditions as Fig. 2.

with the condition,

2z
¢{(wic, 8, 2) = —the + —5 =0,
Wie
where 1. = ti(w), (2.19b)

forms the parametric equations (with parameter w;.)
of the caustic [i.e., the envelope of the rays (2.17, i
= 1) in the (z, t) plane]. This caustic is represented
in Fig. 4. In the neighborhood of the caustic, the so-
lution is estimated by developing the phase and the
amplitude in equation (2.18) as

d(w, t,z) = ‘//(tlm wic) + wiet

)(w - wlc)

Ie le

— 3
_(,,;C+6_42)M+..

z z
+—+((z—zlc)——2
w

1c 6

amplitude
{
) Hexp("' [v ‘s)ds)“lc(zwt)(zn))"'/2+ e
0

Then, the parameter w,, is defined as a function of z
by the equation (2.19b), and the integral (2.18) is es-
timated by changing the path of integration to that of
the steepest descent. Since it has been verified that

6z
d),l”(wlm t; Z) = til,c + a4 > 0’
w

Ic

the solution (2.18) is approximated by

!
W =~ iexp(—if U(s)ds)wlc(21r('/(t,c))‘”2 exp[+i(¢(nc, wie) + wiet + wi + g)]
0 lc

<.

coexp[—(xi/6)]

. z 6z \ s3
exp[z(t — te) — ——;)s - (l’fc + —4) —]ds,
exp[—(5mi/6)] wic wic) 6
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which can be expressed in terms of the Airy function
Ai(x) by introducing suitable variables:

t”c
xS=iz—(t—t|c)s; S3=(—l+3—4z).

Ie 2 Wi

. z
X exp[ﬂ(tp(tlc, wie) + wit +—+

Due to the properties of the Airy function, the ampli-
tude of the solution decreases toward 0 above the caus-
tic. Below the caustic, it varies like a cosine function.

(i1) Approximation of the solution in the wave
region (111):z < t

Below the ray z = ¢, the waves are generated during
both ascending and descending periods of the mean
flow. Then, the phase and the amplitude in the integrals
of (2.16) are expanded around the stationary points w;
(i=1,2)

z
di(w, 1, ) =~ Y(t;, ;) + wit + —

1

Y
+_(w 2«:,) ¢"(wi, 1, 2)

¢

amplitude = iexp(—if U(s)ds)w,-lZwU(t,-)I“”z.
V]

Furthermore, for both saddle points it is found that

2z
¢"(wi, t,2z)=— — ;> 0.
Then, the two integrals in Eq. (2.16) are reduced to
the real error integral by changing the paths of inte-
gration through +7/4:

13
Wy =~ iexp(—if U(s)ds)
0

X Z wlU)|™'?(2z/w} = 1;)7"?

i=1.2
. z T
X exp[+l(\//(t,-, (JJ,') + w,-t +—+ (2 - l) 5)] .
w;

(2.21)

(iii) Discussion
In Fig. 4, the profiles of the wave amplitude and
phase velocities are shown after the wind stops (¢ = ¢,
2Ly, 3t); U(t) is given by (2.12) and ¢ = 207. Below
the ray z = ¢, the wave local phase velocities ¢, and ¢,
(i.e., —w; and —w,) and the wave-induced vertical ve-
locity are calculated using (2.17) and (2.21), respec-
tively. Above this ray, they are calculated using (2.19)

and (2.20), respectively. Furthermore, the shape of the
solution in the vicinity of z = ¢ is drawn in Fig. 5. It
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The asymptotic expression of w; in the vicinity of the
wave front becomes

!
wy ~ +i exp(—if U(S)ds)wlc@ﬂU(llc))—m
o

g)]z_vr .(z/w%c—(z—tlc)

S Al 3 ) (2.20)

Wie 4

shows how expressions (2.17) and (2.21) match just
below the ray z = ¢. The Airy integral interpolates from
the calm upper atmosphere (region (I) to the region
(III) where the wave amplitude varies as a succession
of bulges and nodes. There, the solution results from
the beats between waves of close amplitude and wave-
length. This can be seen as the interference between a
first system of gravity waves generated while the inci-
dent wind increases and a second system of gravity
waves generated while it decreases. Figure 4 also shows
that the wave amplitude is at its maximum just below
the wave front. This is normal since the waves there
have been generated at the ground when the wind was
nearly at its maximum.

The highly dispersive character of the wave should
also be noted. As shown in Fig. 4, it is found that the
maximum amplitude of the wave field decreases in
time. It is also found that the extension of each bulge
grows in time, allowing for the wave field to take up
the whole space between the ground and the caustic.
This spreading is a consequence of the broad spectrum
of waves forced at the ground during the gust of wind:
the function F(w) is different from zero in the whole
interval 0 < w < 1.

Figure 4 also shows the vertical profiles of the ab-
solute phase velocities, ¢ = U(t) — w. After the wind
stops, U(t) = 0, and w varies from O to +1 as z varies
from the ground to the caustic. Consequently, ¢ varies
between 0 and —1 in the same way. The waves present
near the caustic are the most unsteady since they were
generated at the ground when the incident wind am-
plitude was maximum [w ~ U(0) = 1 and ¢ ~ —1].
This shows that most of the waves forced on the moun-
tain are very unsteady after the wind stops.

This behavior characterizes the quasi-steady regime.
In this context, we further found that the number of
bulges decreases when the duration of the wind de-
creases: when f; approaches 0, the number of bulges
approaches 1.

3) SPATIAL PROPAGATION OF NONSTATIONARY
TOPOGRAPHIC WAVES

For a nonmonochromatic mountain, the linear wave
solution is the sum of zonal harmonics, each particular
harmonic being generated at the location of the moun-
tain. Then, the spatial propagation of the different
waves generated during the wind is determined by cal-
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FIG. 4. Wave field at three different times: (solid) vertical velocity w,(z); (long dashed) phase
velocity above the caustic, ¢;.; (medium dashed) phase velocity below the caustic for waves
generated during the ascending period of the incident wind, ¢;; (short dashed) phase velocity
below the caustic for waves generated during the decreasing period of the incident wind, ¢,. Same

conditions as Fig. 2.

culating the rays of propagation of the packets in the
(x, z) plane:

dx dw,
a Cox + U(t), where C,= Pyl w, = cte
dz dw,
Z;t‘ = ng, where ng = _(% = wf = cte.

Each value of w, € ]—1, O, corresponds to two wave
packets, generated at #,(—w,) and #,(—w,). Their tra-
Jectories in the (x, z) plane are given by the parametric
equations (with parameter ¢):

w (1 — i(—w,)) + f

ti(~wy)

X U(s)ds

wH(t = ti(—w,))

N
il

i=1,2.

Nine of those rays are represented in Fig. 6. They cor-
respond to the relative frequencies w, = —0.2, —0.4,
—0.6, —0.8, —1. The locations reached by each packet

for t>t(—w,) and

at various moments (#, 24, 3¢, .. .) are also repre-
sented by numbers (1, 2, 3, .. ., respectively). Figure
6 shows that the wave packets generated during the
growing phase of the wind first propagate leeward of
the mountain. In fact, a wave packet is stationary when
it is generated at the ground and its horizontal group
velocity is opposite to the incident wind. When the
latter increases, the group velocity is no longer balanced
and the packet propagates downstream. The direction
of propagation reverses during the decreasing phase of
the flow, when the incident wind becomes smaller than
the opposite of the horizontal group velocity of the
packet. The wave packets generated during the de-
creasing phase of the wind always propagate windward
because the incident wind is always smaller than the
one existing when they were generated. Nevertheless,
note that during the wind all the waves remain close
to the mountain. After the wind stops, all the waves
propagate windward. Figure 6 also shows that the larg-
est waves (those with relative frequency close to —1)
propagate fastest windward the mountain.
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FI1G. 5. Enlargement of the solution: (solid) w;(z) is calculated using (2.20);
(dashed) w, (z) is calculated using (2.21). Same conditions as Fig. 2.

3. Numerical simulations
a. The model

In this section, the dynamics of topographic waves
generated by a transient wind is investigated using a
two-dimensional (X, Z), linear time-dependent model
in Boussinesq approximation. The incident flow, which
varies in time and in vertical direction, is written as

do(1, 2) = Ugto(D)u (%)

and Up = 10m s~!. The streamfunction, ¥, , the buoy-
ancy force, b;, and the vorticity, {,, associated with
the topographically induced disturbance are defined
by

[l
-414.0

-207.0 0.0 207.0

X
FIG. 6. Rays of wave propagation in the (x, z) plane: (dashed)
waves generated during the ascending period of the mean flow; (solid)
waves generated during the decreasing period of the mean flow. Same
conditions as Fig. 2.
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The equations of motion are written in the stream-
function vorticity form:

9 . d%i a\pl 3b,
(6[ )SLl aF 9% | 0%
.~ dao¥
+ aé, s — —yAhL =0 (3.2)
3 , 0¥ .
(8t+uo )bl ?—l+ab1 —vAb, =0; (3.3)

they are valid whatever the time scale of the incident
wind variations. Furthermore, A is the Laplacian op-
erator, po(Z) is the basic-state density profile, N?
=4 X 10™* 52 is the buoyancy frequency, 4 is a linear
damping coefficient, and v is the molecular diffusion.
The boundaries of this model require special consid-
eration. At the bottom, the topographic gravity waves
are forced through the condition:

¥, =—ih at z=0. (3.4)

In order to prevent undesirable wave reflection at
the upper boundary, a 30-km sponge layer is used. In
this layer, the damping coefficient @ increases smoothly
from zero to 2, 5 kU,. The domain extension is 190
km in the vertical direction, and the upper boundary
condition is

¥, =0 at Zr= 190 km.

This ensures that no mean transport occurs in addition
to the one specified through . In the horizontal di-
rection, periodic boundary conditions are applied. The
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spatial derivatives in the x and z directions are calcu-
lated with centered finite differences. Thirty-two points
are used in the horizontal direction. It is found that
this is accurate enough to represent the vertical prop-
agation of the single horizontal harmonic wave con-
sidered in this study. The total horizontal length of the
field corresponds to one wavelength, 27 /k of the cor-
rugated bottom:

h(X) = Hy cos(kx).

Note that the use of a two-dimensional model to study
the monochromatic wave field resulting from this
ground forcing is not necessary: a-simpler (one di-
mensional ) model with Fourier representation of the
wave field would give similar results. Nevertheless, as
we disposed of a performant two-dimensional model,
we used it in the present study. In experiments for
which the mean flow is uniform in the vertical direc-
tion, the grid is uniform and 512 points are used in
the vertical direction. When the mean flow varies in
the vertical direction, a stretched grid with 1024 points
is introduced to allow for a small vertical grid spacing
in the shear layer. Indeed, since the waves can reach
critical levels in the shear layer, a particularly fine ver-
tical resolution is required there. In this case, we also
introduce a small viscosity, »# 0, and the step length
used is always smaller than the viscous scale,

, _ (K i\
Y v dZ ’

introduced by Hazel (1967). For a wave of absolute
phase velocity ¢, reaching a critical level at Z[i.e., ti(2)
= ¢}, I, characterizes the depth of the layer surrounding
Z where the diffusion is important. Our numerical ex-
periments revealed that this vertical resolution was suf-
ficient for convergence of the solution. The temporal
integration of (3.2) and (3.3) are performed with the
predictor corrector algorithm used by Lindzen and
Barker (1985). The vertical integration of the stream-
function equation (3.1) is done with a Gaussian elim-
ination technique. ‘

b. Validation of the analytic results

In this subsection, we verify the validity of the an-
alytical calculations presented in section 2. The incident
wind is given by

u (1) = % [1 + cos(w ! ;ftf)]

for 0<:t<

u,(1) =0
u(2)=1. (3.5)

The maximum mountain height is Hy = 100 m so the
inverse Froude number is 0.2, ensuring that the linear
approximation is justified. The mountain’s horizontal

Zlf,

elsewhere;
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wavelength is A = 2« /k = 13.1 km. With the param-
eters given above, the nondimensional time, 7= 207,
corresponds to ¢ = 12 h in dimensional units. Figure
7a represents the vertical profiles of the vertical velocity,
Wy, and that of the wave horizontal phase velocity, ¢,
obtained through numerical calculations at the wind
stops (1= 2tf = ] day). In order to make the compar-
ison with theoretical results easier, all the parameters
are represented in dimensional as well as in nondi-
mensional form. Figure 7b represents the theoretical
solution obtained in section 2. Comparison of Fig. 7a
and Fig. 7b shows that the characteristics of the wave
amplitude vertical variation, analyzed theoretically in
section 2, are also obtained with the numerical model.
In the numerical model, the phase velocity of the so-
lution is determined by analyzing the change in the
phase of the solution between ¢ and ¢ + dt, at a given
horizontal location. This procedure is not valid at grid
points where the amplitude of the wave falls to zero.
Furthermore, this numerical evaluation of the phase
velocity does not allow separation of the solution be-
tween the two different groups of waves interfering be-
low the caustic. Note that their presence is proved by
the beat in amplitude observed in the vertical direction.
In this case it is found that the “numerical” phase ve-
locity is close to — Uy above the caustic and increases
to 0 as Z decreases to 0. In all the cases, it is found to
be close to the analytical values.

¢. Extension to rapid wind

It has been found, by performing different compar-
isons of this kind, that the quality of the analytical
approximation weakens when' 1y decreases (the other
parameters remain unchanged ). This is not surprising
since the asymptotic developments performed in sec-
tion 2 are based on the quasi-steady assumption. Then
the generation of topographic waves when the wind
varies rapidly has to be studied numerically. In the
preceding configuration, the transient wind is rapid
when it lasts 2 h. Such is the case in Fig. 8, where the
wind time dependence is given by (3.5) and tf =1h.
When the wind stops (7 = 2tf 2 h; Fig. 8a), the wave
field presents one main bulge. A node for the solution
occurs near the ground. The arrows in the Fig. 8 rep-
resent the location of the caustic [as given by (2.19)].
The maximum amplitude of the wave is just below the
caustic: it is close to the ground. Besides, the phase
velocity of the wave is consistently negative and varies
between 0 (at the ground) and —2U, (far above the
caustic). At the caustic, it is —Up. Thereafter (I=6h
in Fig. 8b and 7 = 12 h in Fig. 8c), it appears that the
wave field presents two bulges separated by one node.
With increasing time, the vertical extension of the
bulges increases due to wave dispersion. Then, the ver-
tical propagation of the wave front and the vertical
dispersion of the frontal bulge combine together to
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make the wave present in the whole field 10 h after the

action was first demonstrated by Eliassen and Palm
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FIG. 9. Comparison of two models of topographic waves. Mountain wave model: (a) momentum
flux: (short dash) ¢ = 6 h, (medlum dash) 7 = 12 h, (solid) 7 = 18 h, (long and short dash)
= 24 h; (b) vertical velocity, W, at { = 18 h. Single wave packet model: (¢) momentum ﬂux
(short dash) 7 = 6 h, (medium dash) {=12h, (solid) 7 = 18 h, (medium short medium) 7
=24 h,(d) w,, at7 = 18 h. Dimensional parameters: )\ =13.1km, Ho=100m, Uy = 10m s,

N=002s",7=6h

and alter the mean flow. This vertical momentum flux
is represented at different times in Fig. 9 when the in-
cident wind is given by (3.5) and tf 6 h. All the other
parameters are those of the preceding experiments.
Accordingly, the corresponding nondimensional time
scale is #r = 103. Figure 9b shows the wave amplitude
at 7 = 18 h. As described previously, it fluctuates in
the vertical direction and more than six bulges are
present. As expected, the vertical profile of the mo-

mentum flux oscillates together with the wave ampli-
tude (Fig. 9a). Ignoring the nonlinear effects on the
disturbance, as the self-acceleration of the wave phase
velocity through the wave-induced mean flow change
(Fritts and Dunkerton 1984), the induced modification
of the mean flow at a given altitude can be described
as follows. As the frontal bulge arrives, the mean flow
is first decelerated because the momentum flux de-
creases with height. Once the maximum amplitude in
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the frontal bulge passes the altitude considered, the
mean flow is accelerated and returns to zero when the
first node arrives. Thereafter, the other bulges pass, de-
celerating and accelerating again the mean flow. Nev-
ertheless, the amplitude of these mean flow fluctuations
decreases in time because the maximum wave ampli-
tude attained in each bulge decreases with height. These
fluctuations of the mean flow also decrease in time
because the wave field disperses and the maximum
wave amplitude attained in each bulge decreases in
time.

This behavior is quite different from the transient
effects induced by a vertically propagating single wave
packet (Grimshaw 1975). To study transient gravity
waves, Dunkerton and Fritts (1984) used a model
where the ground-forcing amplitude varies while the
frequency is nearly constant. This kind of forcing cre-
ates a single wave packet (Fig. 9d). For the study of
unsteady mountain waves, this model is unrealistic
since it represents waves forced by a constant wind
incident over a time-varying mountain. Figure 9¢ rep-
resents the momentum flux induced by such a wave
field when the time fluctuation of the maximum ele-
vation, Hy, is given by (3.5) and ¢, = 6 h. Figure 9¢
shows that at various times, the vertical profile of the
momentum flux remains unchanged and propagates
vertically with a well-defined group velocity:
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This simply illustrates the usual concept of wave pack-
ets (Landau and Lifshitz 1959) where the wave am-
plitude changes in the vertical direction (defining the
form of the packet) while the frequency and the wave-
numbers change a little so that the wave field does not
disperse rapidly. As it propagates vertically this wave
packet first decelerates and then accelerates the mean
flow, which returns to zero. Furthermore, the maxi-
mum amplitude of the momentum flux does not
change in time. This is different from the transient
mean flow oscillations accompanying topographic
wave propagation.

To see if these oscillations are also present when the
transient wind is asymmetric, Fig. 10 shows the vertical
structure of the Reynolds stress for various types of
transient winds. In all these cases, the ascending period
remains unchanged while the duration of the decreasing
period varies:

-1 t—14\]

uv(t)=§[1+cos(7r Edd)
for 0<7<1;=6hours

t— 1y

~ 1
uu(t)=—[1 +cos(7r <
2 i

)

&t ., kus for fu<i<tiz+1i (3.6)
g=oms =Ty u,(1) =0, elsewhere.
(a) (b ©) (d) ) (6]
Tr=oo Tr=oo Ty=24h Te=12h Tr=6h Tr=3h
160 - /
(e é <
=
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F
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FIG. 10. Momentum flux associated with an asymmetric gust of wind at 7 = 24 h. (a) Single wave packet model;
(b), (c), (d), (e), and (f) mountain wave model. Dimensional parameters: A, = 13.1 km, Hy = 100 m, U, = 10

ms',N=002s"",7,=—6h.



2620

We further consider the five cases: 7, = 3, 6, 12, 24, oo
h. Figure 10 shows that in all the cases, the Reynolds
stress oscillates in the vertical direction. As long as the
decreasing time, ¢ < f; (Figs. 10e and 10f), it is a
succession of bulges and nodes, the wave amplitude
being zero at the nodes. For larger decreasing time
(Figs. 10b, 10c, 10d), this oscillatory structure is still
observed but the wave amplitude no longer falls to zero
at the nodes. Furthermore, the number of bulges pres-
ent increases when the decreasing time, f, increases.
At the limit, ¢, = oo (Fig. 10b), the oscillations of the
momentum flux are also very large: they are of the
order of magnitude of the linear stationary momentum
flux. In this case, the transient effects observed when
topographic waves are forced by a growing wind re-
mains very large once the wave front has passed. These
transient effects do not occur when the waves are forced
by a growing mountain (Fig. 10a). This last result is
important since this procedure is sometimes used to
force gravity waves in models of transient wave-mean
flow interaction ( Dunkerton 1981).

e. Unsteady topographic waves forced by a vertically
varying wind

In the troposphere, the rapid changes of the wind
intensity are often associated with the passage of a front.
An example of the interaction between a synoptic front
and topography is reported by Smith (1984), in the
context of lee cyclogenesis. This author has shown that
an important characteristic of the incident wind is that
it can reverse in the vertical direction. Moreover, the
interaction of topographic gravity waves with a zero-
level wind, %, is known to have important conse-
quences on the atmospheric dynamics in the vicinity
of mountains (Clark and Peltier 1984). When the in-
cident flow is stationary, these authors have shown that
mountain waves encounter a critical level at Z;, because
they are steady. The waves are nonlinearly reflected at
the shear layer and they are trapped between the ground
level and Z,. In some cases, resonance occurs that leads
to downslope windstorms. An indirect result of this
work is that the wave remains poorly transmitted
through the shear layer (see Fig. 7 in their work). As
in the linear case (Booker and Bretherton 1967; Elias-
sen and Palm 1960), steady topographic waves do not
go through a level of zero wind. When the wind varies
in time, the ground-generated waves can be unsteady
as they reach the shear layer. The waves do not nec-
essarily encounter critical levels and can propagate
freely toward the middle atmosphere although the in-
cident wind is always zero at Z,.

In the following experiments, the vertical variation
of the mean flow is given by

a.(%) =tanh(50D_ 5). (3.7)
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Here D and Z, are the depth and the altitude of the
shear layer, respectively. The temporal evolution of the
mean flow is given by (3.5), ¢ = 6 h, and we consider
the experiments: D = 1000 m and Z, = 12.5 km, 25
km, 50 km. The distance Z; is chosen so that the time,

tw = Z0/(Co:)max =~ ZoN/kU3 =1 h 30 min, 3 h, 6 h,

required for the largest amplitude wave packets to reach
the shear layer, is less than or equal to the unsteady
time scale, ¢. In the linear approximation, the waves
that encounter a critical level are absorbed because the
minimum Richardson number,

NZ N2D2
= = =
(), 22~ Uj

is always large (Booker and Bretherton 1967). This
result remains valid in the viscous case at large Reyn-
olds number (Hazel 1967). However, the use of the
linear approximation to study critical-level interaction
requires caution. In fact, the nature of the critical-level
regime depends on the relative sizes of the viscous scale,
1,, and of the nonlinear scale, /,,

Ri 4,

2/3
I, ~ €¢**D,

defined by Brown and Stewartson (1980). Here ¢ is
the normalized amplitude of the incident wave: e
= Hy/D. It characterizes the depth of the layer, sur-
rounding a critical level where the nonlinearities are
important. In the following experiments, Hy = 10 m
and » = 1 m?s™! so that

A -1/3
I, =20 m < min(/,) = (M) = 60 m.

vD
The critical level is thus controlled by dissipative pro-
cesses and the linear approximation is justified. This
discussion is based on our knowledge of steady critical
levels. Nevertheless, in the unsteady case, the interac-
tion may be different. It could be characterized by the
unsteady scale, /;,

_ 1 (96 dﬁo - D

" keot]| 0z kU
(Churilov and Shukhman 1987), representing the dis-
tance to the critical level, above which the transience
has important effects on the vertical structure of the
wave. Because /; is smaller than the viscous scale, the
viscosity ensures that the critical-level interaction is
quasi-steady.

Figure 11 represents the wave field at the times, ¢
= 6, 9, 12 h for the three experiments. The vertical
profiles of the incident flow and of the phase velocity
are also drawn. At ¢ = 6 h, the incident wind amplitude
is maximal and the wave is still close to the ground
(the wave amplitude is always zero above 15 km). This
is due to the slow vertical propagation of the wave field

=10ms<|,
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FIG. 11. Topographic waves generated by a vertically varying gust of wind. Top: %, = 50 km; middle: %,
= 25 km; bottom: %, = 12.5 km, (solid) vertical velocity; (dash) mean wind; (plus signs) phase velocity.
The temporal fluctuation of & is given by (3.5), the vertical variation of & is given by (3.7). Dimensional
parameters: A, = 13.1 km, Ho = 10m, Uy = 10 ms™", N = 0.02 s, tr=6h,v=1m?s"

during the increasing period of the incident wind. In
fact, during this period, the waves present at the front
have small amplitude intrinsic frequencies and prop-
agate slowly compared to the maximum vertical group

2621

velocity, (Cgz)max = 2.4 m s™!. This behavior follows
the discussion of the wave front propagation in section
2. As shown in Fig. 3, the caustic is initially tangent to
the ¢ axis, indicating a very slow vertical propagation
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at the beginning of the wind. The front approaches the
ray,

Z= (égz)maxzs

and propagates vertically at the maximum wave group
velocity, after the moment of maximum incident wind.
For this reason, the wave front reaches the shear layer
only in the experiment for which Z, = 12.5 km. The
waves present at this time at the shear layer have almost
zero phase velocity and encounter a critical level where
they are absorbed. After this moment, the incident wind
decreases and the phase velocities of the waves decrease
similarly. The waves reaching the shear layer now have
a negative phase velocity and can only encounter crit-
ical levels above Z,.

At £ = 9 h and in the experiment for which Z,
= 12.5 km many waves have already encountered crit-
ical levels at the shear layer and have been absorbed.
In the experiment for which Z, = 25 km, the wave
front has already reached the shear layer and some
waves have been absorbed there. Nevertheless, at this
moment, the waves arriving at the shear layer have
phase velocities almost equal to the minimum wind.
After this moment, they will no longer encounter crit-
ical level since their phase velocity will continue to
decrease. In the experiment for which Z; = 50 km, the
front is far below the shear layer and so no critical level
occurs. 3

At the end of the wind, ¢t = 12 h, and in the exper-
iment for which Z; = 12.5 km, most of the waves have
been absorbed at the shear layer and only residual
gravity waves continue to propagate vertically. In the
experiment for which Z; = 25 km, the waves present
in the frontal bulge have been absorbed at the critical
level, and the others continue to propagate vertically.
In the experiment for which Z, = 50 km, the wave field
is close to the one existing without the shear layer be-
cause the front reaches Z, after the wind stops.

In these experiments, the gravity waves pass the shear
layer when it is very high. Nevertheless, as the time
scale, 1,,, decreases when the horizontal wavenumber
increases, longer waves will propagate more easily
above the shear layer, even when it is located near the
ground. The unsteady shear layer acts as a filter favoring
the propagation of long unsteady mountain waves to-
ward the middle atmosphere. Furthermore, these re-
sults seem to contradict the laboratory experiments of
Thorpe (1981), where ground-forced gravity waves are
absorbed at an unsteady shear layer resembling the one
used in this section. Nevertheless, according to the pre-
ceding discussion, this_is normal since in Thorpe
(1981), the time scale, ¢, i1s very small as compared
to the time scale of the unsteady wind. This is related
to the narrowness of the tube he used. For instance, in
one of the experiments depicted in Thorpe (1981, Fig.
4), where the mean flow increases and decreases suc-
cessively, 1, =~ 4 X 1072 s, whereas the time scale of
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the mean flow variation is 10 s, no wave is observed
above the shear layer.

4. Conclusions

We have studied the linear gravity waves generated
when a time-varying wind blows over a single harmonic
mountain. The wave equations were first solved when
the mean flow is uniform in the vertical direction and
assuming the Boussinesq and hydrostatic approxima-
tions. By transforming the wave equations, the advec-
tion terms are simplified and it is possible to give an
analytical form of the solution. When the incident wind
is slowly varying (or quasi steady), an asymptotic form
of the wave field is calculated using steepest descent
methods. A time-dependent linear two-dimensional
model is used when the mean flow varies rapidly, or
when the mean wind also varies in the vertical direc-
tion.

If the mean flow is uniform in the vertical direction,
it is found that the front of the wave field after the wind
stops is nearly located along the line:

s = kU3/Nyt,

in the (2, 1) plane. Here, ¢ = 0 corresponds to the time
at which the mean wind reaches its maximum value
Uy, N, is the stratification, and k is the horizontal
wavenumber of the corrugated mountain. Above the
front, the amplitude of the wave decreases to zero. Be-
low it, it is a succession of bulges and nodes. Their
number increases when the duration of the wind in-
creases. The maximum amplitude attained in each
bulge at a given time increases with Z. It is at its max-
imum at the frontal bulge. When the wind stops, the
phase velocity of the wave field varies from 0 at the
ground to less than — U, above the wave front.

When the mean flow is quasi-steady, it is possible
to identify this solution as the superposition of moun-
tain gravity wave packets generated when the wind
blows. It is found that these wave packets propagate
along straight rays in the (Z, ¢) plane. The wave front
is then defined as the caustic of these rays. During their
propagation, each of these packets conserves its relative
phase velocity and its vertical wavenumber. Further-
more, the wave amplitude is maximum at the wave
front because the waves that arrive here were generated
at the ground when the mean wind was at its maxi-
mum. These waves also have the largest vertical group
velocity since they have the smallest (negative) intrinsic
frequency. The final form of the wave field below the
front results from the interference between the group
of waves generated while the incident wind increases,
and the group of waves generated when it decreases.
Furthermore, during the increasing phase of the wind,
all the waves tend to propagate leeward the mountain.
After the wind stops, all the waves propagate windward
the mountain. In fact, the (negative) relative horizontal
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group velocity of a given wave packet, which is opposite
to the wind when it is generated, is no longer balanced
by the advection when the wind ceases.

These results can have important consequences on
the dynamics of the atmosphere. Because the wave field
is transient, topographic waves tend to alter the mean
flow during their propagation. At a given height, it is
found that the mean flow is successively decelerated
and accelerated at the passage of each bulge. Further-
more, the maximum amplitude of the momentum flux
decreases in time because the wave field is very dis-
persive. These oscillations are also found when the
transient incident wind is asymmetric (i.e., the duration
of the decreasing period of the flow differs from its
increasing period ) or when it reaches a constant value.
This behavior is very different from that of a wave field
forced by a corrugated source whose amplitude varies
while its phase velocity stays constant. In the latter
case, the resulting wave field is not dispersive, the max-
imum amplitude of the momentum flux is constant,
and no oscillation of the mean flow occurs. This in-
dicates that some classical results (Dunkerton 1981;
Dunkerton and Fritts 1984) concerning the transient
gravity wave-mean flow interaction in the middle at-
mosphere do not apply when gravity waves are forced
by topography. This also shows that it is not the same
to start a numerical model of topographic waves by
increasing the height of a mountain in a constant wind
as to start it by increasing the amplitude of the incident
flow.

The fact that mountain waves can be unsteady has
other important consequences on their interaction with
the background flow. This is particularly evident when
they propagate through a zero wind level. This problem
has been studied when the mean flow always reverses
direction at a given height. Then, the wave-mean shear
interaction depends mainly on the relative size of ¢,
the minimum time required for a wave packet gener-
ated at the ground to reach the shear layer, and of t,
which characterizes the temporal fluctuation of the
mean flow. When ¢,, < t,, many waves reach the shear
layer when the shear intensity is still large, and are
absorbed at critical levels. This corresponds to the con-
figuration studied in Thorpe (1981) and explains why
he did not observe transmitted waves above the shear
layer. When 1,, > ¢, the wave front has not attained
the shear layer when the wind stops and no critical-
level interaction occurs. The wave pattern is close to
the one found when the mean flow is uniform in the
vertical direction. In this case, there is an important
flux of energy and momentum propagating above the
shear layer, and the waves propagate toward high at-
mospheric levels. In a study of the propagation of
mountain waves toward the stratosphere and meso-
sphere, Schoeberl (1987) found that mountain waves
are able to propagate toward these levels in the steady
case because the mean wind does not go to zero. In
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the present study, the unsteadiness allows the mountain
waves to propagate toward high levels in spite of the
existence of zero-level winds. This study also shows
that unsteady gravity waves, often observed in the
middle atmosphere (for instance, see Ebel et al. 1987),
can be mountain waves.

These results also have implications for the current
gravity-wave parameterization schemes used in general
circulation models (Palmer et al. 1986) and suggest
that such schemes estimate crudely the trajectories and
the phase velocity of mountain waves. This study fur-
ther shows that the unsteady structure of the wave field
can be described using (time-varying) ray-tracing
techniques. This could provide a basis for the improve-
ment of these schemes including nonstationary effects.
Nevertheless, additional studies have to be made to get
a better comprehension of the incidence of these un-
steady effects on the mountain waves. For this purpose,
this type of work has to be extended to more realistic
mountain profiles, to more realistic vertical wind pro-
file, and to more rapidly fluctuating winds. It would
also be essential to study the incidence of nonstationary
effects on the location of the wave-breaking zones.
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