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ABSTRACT. The influence of various types of dissipation on the behaviour of gravity waves propagating in a
shear layer and on shear instabilities are analysed. Among the instabilities, we study those found by Drazin (1958)
in an hyperbolic tangent wind profile, and another type which arises when stratification vanishes at the critical
level. The interest of this last type of instabilities consists in the fact that they are propagating waves and can
appear without rigid boundary conditions. The results we found concern linear approximation, which as is
usually assumed, is valid for small amplitude waves. Nevertheless, the limit of the validity has not been well
defined ; this is why we have performed calculation with a fully non-linear model to determine this limit. We
found that in general the linear approximation is restricted to waves whose maximum horizontal induced velocity

is less than 10 % of the velocity scale of the mean flow.

Annales Geophysicae, 1990, 8, (1), 37-52.

1. INTRODUCTION

The theory of gravity waves propagating through a
horizontal shear layer depending on altitude has been
extensively studied. Difficulties arise when the mean
flow matches the horizontal phase velocity of the
wave, producing a critical level.

In many studies, it is assumed that the fluid is inviscid,
non rotating and that the wave amplitude is suffi-
ciently small to use the linear approximation. In this
case, the vertical structure of the wave is governed by
the Taylor-Goldstein equation. In this context,
Booker and Bretherton (1967) showed that trans-
mission of the wave through a critical level depends
only on the Richardson number at this level. They
only considered background flow with Richardson
number larger than (.25 and found that the wave is

highly damped as it propagates through the critical |

level. Later on, Jones (1968) found that for low values
of the Richardson number at the critical level, overref-
lection and overtransmission can occur.

These results were confirmed wusing different
background flows : a broken line profile (Eltayeb and
McKenzie, 1975), a hyperbolic tangent profile (Van
Duin and Kelder, 1982) and a continuous jet profile
containing two critical levels (Teitelbaum and Kelder,
1985).

Viscosity and thermal conduction were introduced by
Hazel (1967). He has shown that for values of the
Richardson number larger than 0.25, a large amount
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of wave energy is lost near the critical level. Van Duin
and Kelder (1986) proved analytically that for large
values of the Reynolds number, the reflection and
transmission coefficients remain almost unchanged.
Teitelbaum et al. (1986) confirmed numerically this
result, at least qualitatively.

Geller etal. (1975) and Fritts and Geller (1976)
studied the instability in the vicinity of the critical
level. They found that viscosity and heat conduction
may have a strong stabilizing role. A numerical model
was used by Fritts (1978, 1982) to compare the effects
of viscosity, time dependence and non-linear interac-
tions. Time dependence is found to play only a minor
role in stabilizing the critical level. Non-linear effects
can give rise to higher harmonics of the forcing wave,
which develop large amplitudes near the critical level
when viscous effects are small.

A non-linear non dissipative treatment was given by
Brown and Stewartson (1980, 1982a. b). Thev have
shown that for large values of the Richardson number,
the linear model is valid up to a certain time inversely
proportional to the wave amplitude.

Another very different approach to the non-linear
stationary problem was given by Teitelbaum and Sidi
(1979). They have shown that a contact discontinuity
appears below the critical level in the absence of
dissipation. As a matter of fact, non-linearities might
change the results of linear models to an extent that is
not well understood neither theoretically nor exper-
imentally.
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More recently, Miller and Lindzen (1988) studied the
influence of viscosity and thermal conduction on the
reflection of a wave interacting with a shear layer and
on the instabilities which arise when a rigid lower
boundary is included. In this linear approach, the
authors found that dissipative processes may have a
destabilizing effect as it was previously stated by
Lindzen and Rambaldi (1986) for a Poiseuille flow.

In this study, we analyse the influence of various types
of dissipation on the behaviour of gravity waves and
instabilities. For this, we consider some cases close to
those studied by Miller and Lindzen (1988) (i.e.
reflection and transmission of gravity waves through a
critical level and instabilities).

Among the instabilities, we have studied those found
by Drazin (1958), in an hyperbolic tangent profile
(thereafter called Drazin instabilities) and another
type which arises when the stratification vanishes at
the critical level.

Our results are obtained using linear approximation.
It is usually assumed that this approximation is valid
when the wave amplitude is sufficiently small. Never-
theless, the threshold is not well defined. It is the
reason why in Section2 we compare the results
obtained with the linear approximation to a time-
dependent non-linear model in order to test the
validity of the linear approximation used in Sec-
tions 3-6. The limitations of the linear approximation
concern the maximum wave amplitude and the time
during which both simulations give nearly the same
reflection and transmission coefficients of a gravity
wave propagating through a critical level.

In Section3, using a numerical stationary linear
model, we study the influence of dissipations on the
reflection and transmission of gravity waves propagat-
ing through different wind profiles.

The influence of dissipations is also studied in the
problem of instabilities in Section 4. Furthermore,
non-lincar simulations are made to test the validity of
the linear approximation.

In Section 5, we use Rayleigh friction and Newtonian
cooling instead of viscosity and thermal conduction.

In Section 6, we simulate a turbulent shear layer
surrounding the critical level.

2. DESCRIPTION OF THE TIME-DEPENDENT
MODEL AND COMPARISON BETWEEN
LINEAR AND NON-LINEAR RESULTS

a. The model

Using the hydrostatic approximation, the non-linear
system of equations are written in dimensionless
form. We take d, Uy, d/U, and Njd* as units of

length, speed, time and geopotential height. d is the
thickness of the shear layer, U, and N, are typical
values of the background velocity and Brunt-Vaisili
frequency.

We introduce a stream function i :

'-pz =pu 'abx =—pw (1)
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the function :
R = ljbzz =+ ‘nbz/h (2)

where p = e"*/" and h = Hy/d (H, is a mean scale
length of the atmosphere) and the geopotential height

¢ = | gdz.
The equations are :
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U(z) is the normalized initial mean wind ;

n(z) is the normalized initial Brunt-Viisild fre-
quency ; -

J  is a Richardson number N d*/ Uy ;

Re is a Reynolds number U,d/v ;

Pr is the Prandtl number v /K ;

a is the normalized Rayleigh friction and b the
normalized Newtonian cooling coefficient ;

v is the viscosity coefficient and K is the thermal
conduction coefficient.

The driving wave mechanism is a heating source §
located far below the shear layer. It is given by :
2 .
S = f(l‘) 5 [z~ z;)/Az] ik —ct) (5)
k is the horizontal wavenumber and ¢ is the phase
velocity of the fundamental mode.

f(z) is a slowly varying function which is zero at the
initial time and reaches a constant value after one
period 2 7 /kc of the fundamental harmonic. It makes
it possible to limit the amplitude of the transient
modes which frequencies are very different from ke.

At the top and at the bottom of the field, we impose
very thick sponge layers in order to prevent reflections
at the boundaries and to introduce very simple
boundary conditions :

¥ =0 at the top and at the bottom of the field .

In the horizontal direction. we apply periodic bound-
ary conditions.

The spatial derivatives in the x and in the z directions
are calculated with centered finite differences.

As a very good resolution is required near the critical
level (the gridspacing must be smaller than the viscous
length (kRe)™ ' ; Hazel, 1967), we use a stretched
grid in the vertical.

The use of such a gridspacing requires some precau-
tions.
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Actually, far from the critical layer, as the gridspacing
becomes large, we are not able to integrate the modes
which are due to the viscosity and the thermal
conduction and whose vertical wavelengths are short.
Furthermore, a change in the gridspacing can induce
numerical reflections and waves can be trapped in the
high resolution zone (i.e. the critical layer). These
remarks make it necessary to compare in a few cases
the results obtained when we used a stretched grid
with those obtained when the gridspacing is small and
constant in the whole field.

When the change in the gridspacing is smooth, it
appears that the time evolution of the propagation of
the gravity wave through the critical layer is close to
that obtained with a constant gridspacing.

Furthermore, the structure of the perturbed field is
nearly the same in both cases.

The temporal integrations of R and ¢, are performed
with a predictor corrector algorithm due to Hyman
(1979) and used in Lindzen and Barker (1985). The
vertical integration of the i function is calculated by a
Gaussian elimination technique.

Figure 1 represents values of the field ¢,(x, z, ¢) for a
fixed X and for two different times. It illustrates the
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Figure 1
Vertical structure of the fleld used in the model and profile of the
wave induced horizontal wind velocity ue /=% ar a given time
(: ) and a quarter of period later (-—--). The mean wind is an
hyperbolic tangen: profile U(z) = 1 + th(z) while the Brunt-Vaisald
frequency is constant and C =1 (i.e. the eritical level is situated at
z=0).
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propagation of the gravity wave in the field described
above.

b. Limitations of the linear approximation

The limitation of the linear approximation is tested
for different values of the viscous parameters. In all
the experiments, we impose :

Uiz)=1+th(z); n*@z)=1; c=1;
k=2.-2410"2; J=02 and Ah=313.

We note that there exists a critical level at z = 0.

In order to test the linear approximation, we increase
the amplitude of the wave source (i.e. the amplitude
of the wave propagating toward the critical level) until
an amplitude for which the differences between the
values of the lincar and non-linear reflection and
transmission coefficients remain smaller than 5 %.

Note that, in these simulations, the initial background
wind profile is free of dissipation. The action of
dissipative phenomena on the initial background wind
profile is the same in the linear and non-linear cases.
As we are interested in the differences between both
approximations, this variation is irrelevant. Physically,
we can say that the initial mean background wind is
maintained by a source which compensates dissipative
effects. Note that the modifications of the background
wind by non-linear effects are taken into account and
undergo dissipation.

In Figure 2, the time evolution of the reflection and
transmission coefficients in the non-linear case
(Fig. 2a) and in the linear case (Fig. 2b) is represented
for Re = 4.410* and Pr = 1. The stationary state is
reached in both approximations after 7 periods of the
driving force and the reflection and transmission
coefficients remain the same up to at least 13 periods.

We find that the largest value of the horizontal
velocity of the incident wave at which the non-linear
effects can be neglected is equal to 510 °. The
maximum amplitude of the horizontal wind induced
by the wave in the whole field is equal to 2.5 107, It
corresponds to the simulation represented in
Figure 2a. In dimensional form, if we consider realistic
scales: Uy=10ms™!, N3=410"%s"?; it means
that for a viscosity equal to 0.05 m? s~ !, the horizontal
velocity of the incident wave near the source is
0.05ms™!, while the maximum amplitude of the
horizontal wind induced by the wave near the critical
level is 0.25 m s~ . The above results show that for the
chosen values of the viscosity, the linear solution is
limited to rather small amplitudes.

The results displaved in Figure 2¢ correspond to a
similar non-linear simulation when the amplitude of
the incident wave is three time that of the preceding
case. A stationary state is reached while the reflection
coefficient obtained is larger than in the linear case.
This difference is due to the fact that during the
transient period, the background conditions slightly
change and the Richardson number at the critical
level decreases to a value equal to 0.16.

For other experiments with higher values of the wave
amplitude and the same viscosity. the non-linear
simulations never reach a stationary state.
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Temporal evolution of the reflection (——) and transmission (------ )
coefficients. U(z) =1 +th(z);n*(z)=1;¢c=1;k=22410"7
J=02;Pr=1;h=312 and Re — 4.4 10%. (a) ‘Non-linear ca.se
the amphmdc of the incident wave is 5.1077; (b) Linear case;
(c) Non-linear case ; the amplitude of the incident wave is 1.5 10 >

We repeat the same experiments for Re = 4.4 107 and
Pr = 1. We find that the linear approximation remains
valid up to a value of the incident wave equal to
31072 (0.3ms™!); the maximum horizontal wind
amplitude induced by the wave is equal to 0.11
(1.1ms™'; Fig. 3).

The validity of the lincar approximation for higher
values of the wave amplitude and more dissipation
than in the preceding case means that the viscosity
and the thermal conduction act against non-lineari-
ties.

General dissipation inhibits the growth of secondary
modes which appear due to the non-linear cascade.
Furthermore, dissipation does increase the thickness
of the layer in which the momentum and thermal
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Same as Figure 2 except that Re = 4.4 10°. (a) Non-linear case ; the
amplitude of the incident wave is 3-107%; (b) Linear case.

exchanges between the wave and the mean flow take
place. The last effect means that for the same wave
amplitude and for larger viscosity, the modification of
the mean flow is less important than in a thicker layer.
As a consequence, the reflection and the transmission
of the wave are less modified.

Such a mechanism is subjected to limitations, since we
cannot indefinitely increase the amplitude of the
perturbed field by increasing the viscosity and the
thermal conduction to keep the system stationary. In
other experiments with higher viscosity (Re = 4.4 10°
and Pr = 1), the maximum amplitude of the incident
wave for which the linear approximation is valid
remains very close to that obtained when
Re = 4.410°. Actually, we can remark that, for such
viscosity, the deposition of momentum and tempera-
ture on the mean flow are significant in the whole field
and are not closely concentrated around the critical
level (the viscous length (kRe) " 3 ~ 0.3). From this
point, any increase in the viscosity will increase the
momentum and thermal deposition far under the
critical level and the amplitude of the wave for which
the linear approximation remains valid is now limited
by this process.

These results permit us to give some general quantitat-
ive appreciation of the linearisations frequently
adopted to treat this kind of problems. One can say
that the linear approximation is not Vahd if the
amplitude of the incident wave exceeds 3 - 1072 and if
the amplitude of the largest horizontal wind induced
by the wave near the critical level exceeds 0.1
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(0.3ms™' and I1ms™! in dimensional form if
Uy =10ms™'). These values are of course approxi-
mative because they are deduced from numerical
experiments and for particular values of the par-
ameters, but we think that they give an idea about the
limitations of the linecar approximation.

Our results differ from those obtained by Brown and
Stewartson (1980, 1982a, b) who found that a statio-
nary state cannot persist for a very long time because
secondary modes generated around the critical level
increase in time and modify the reflection and trans-
mission coefficients. This is not surprising since
Brown and Stewartson considered the inviscid case.

Furthermore, we observe that viscosity and thermal
conduction play the same role in preventing non-
linear effects. In fact, the maximum amplitude for
which the linear approximation is valid when Pr s 1
remains the same if we permute the values of viscosity
and thermal conduction.

Nevertheless, if the wave amplitude is such that the
non-linear effects become important, the role of
viscosity and thermal conduction differs. Figure 4
displays the results concerning the time evolution of
the reflection and transmission coefficient when
Re = 2.210* while Pr = 5 in the non-linear (Fig. 4a)
and in the linear cases (Fig.4b). Until five wave
periods, the linear and the non-linear results are the
same. From this point, linear results remain stationary
whereas non-linear ones show increasing values of the
reflection and transmission coefficients.
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For Pr=0.2, Re =4.410° the non-linear results
(Fig. 5a) are stationary, but the wave transmission is
smaller than in the linear simulation (Fig. 5b).

The temporal variation of the reflection and trans-
mission coefficients when Pr = 5 can be explained by
the modification of the background wind profile :
viscosity is more important than thermal conduction
in the wave-mean flow momentum exchange.
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Same as Figure2 except that Re = 2.210° and PrRe = 4 10
(a) Non-linear case ; the amplitude of the incident wave is 1.3 LU -
(b) Linear case.

3. EFFECTS OF DISSIPATION ON A LINEAR
GRAVITY WAVE PROPAGATING THROUGH
A SHEAR LAYER

a. Stationary model

The following results regard the influence of molecular
viscosity and thermal conduction on the reflection and
the transmission of a gravity wave interacting with a
critical level. The approach is linear and we use a
stationary numerical model. .\'evenhe’;a of
the results have been verified with I ent
model in its linearized version. ThL principle of t
stationary model is similar to the one used by Lin

and Rambaldi (1986). for the viscous Poiseuille flow.
We develop an algorithm which calculates direcily the
stationary modes of the viscous
F(z) e~ in the r\d*oaat“ approximation.
horizontal wave number & and the phase velocity ¢ are

§S. some

e depen

the

LZ&LA

problem :
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real. All the variables are normalized as for the time- where :
dependent model.
We got to solve a system of three second order R(z)
equations : F(z) = | ¢.(z) (7
AF,+BF,+CF=S§ (6) ¥ (z)
The functions R, ¢, and ¢ are the same as those of the preceding section
i/kRe 0 0
Az) = 0 i/kPrRe 0 (8a)
0 0 1
ot (). 0 i(2)
kReh = \ kRe /. k42
B(z) = 0 0 0 (8b)
0 0 1/k
. a .k L [ Uz
U—c—i-—-i— J] -U,, ——
TP Re TkRen? T (kReh)z # ="
b ik n’
= =xy == g T —— _ 8
C(z) 0 U—-c—i T Prie (8¢)
1 0 0

All the parameters H, Re, Pr, h, a, b, as well as
U(z), n(z), c and k are identical to those introduced
in the non-stationary model

0
Jn(z)
0

S = ©)

Jy,(2) is a heating source located sufficiently far below
the critical level and which generates an incident wave
propagating towards the critical level.

In the preceding equations, we note that all but one of
the viscous terms are inversely proportional to kRe. In
fact, the influence of the viscosity and of the thermal
conduction depends only on this parameter and on the
Prandtl number. This is not surprising since
(1/kRe)'? is the normalized viscous length introduced
by Hazel (1967).

in order to avoid the influence of the boundaries, we
introduce very thick sponge layers to inhibit reflec-
tions at the top and at the bottom of the field. The
choice of the boundary conditions doesn’t affect the
solution because the wave is completely attenuated
there. We impose then ¢ = 0 at the top and at the
bottom of the field (9).

The system is integrated using a Gaussian elimination
technique.

The reflection coefficient is computed at an height
z,, located above the source but sufficiently far below
the critical layer, such that

) =0

m

(2
dz

42

At this level, we may separate the solution in 6 modes
for which vertical wavenumbers {; are given by the
viscous dispersion relation :

1 f8 i & o P4 18%
=it T o ek
PrRe*k* PrRe?k*h PrRe k
Pr+1 93 zgz . ';F
2 g T =,
+¢ PrRe Th € ic h+ 0. (10)

As in the Lindzen and Rambaldi (1986) formulation
of the Poiseuille problem, we can identify two modes
for which the vertical wavenumbers are close to the
wave numbers of the inviscid problem. The whole
solution is given by the superposition of these two
inviscid modes and four viscous modes. The stream
function may be written as :

¥(z,)=Upe

- BPrRe €

ilyz, ilyz, ilsz,
"+ Doe + Apg. € -
if

if
+ CPrRe €

SIm if
+ Dppe €

3i°m

< (11)
Up is the amplitude of the incident « inviscid » wave.
Do is the amplitude of the reflected « inviscid » wave.
A_ prres Bprres Cprres Dpyre are the amplitudes of the 4
viscous modes.

The viscous modes are important at the shear layer
and near the source, but they are very strongly
absorbed as they propagate away. At the height
z,, where the reflection coefficient is calculated :

¥ (z,)=Up eiflz”‘ + Do e fam (12)

within a very good approximation. The reflection
coefficient is :
R | Do |

|Up| "

(13)
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The same mode separation is made at an height
z; located far above the critical level. This makes it
possible to choose the sponge layers parameters such
that the downward propagating modes (i.e. the modes
that might be reflected from the upper boundary) are
negligible in comparison with the upward inviscid
propagating mode. We can write there :

¥
Ylzp)=Up e (14)
and the transmission coefficient is :

_ Up’|
~Up| e

After (12), (13), (14) and (15), we note that the
reflection and transmission coefficients defined there
are independent on the height where they are calcu-
lated.

We consider that the results obtained by this way take
only into account the influence of the dissipation at
the critical level.

b. Results

In order to test the results of Van Duin and Kelder
(1986), realistic values of the mean profiles and of the
viscous parameters are considered. These authors
found that for large Reynolds number, the reflection
and transmission of the wave are the same as in the
inviscid case. In figure 6, we consider realistic scale
length Uy = 10 ms- ! and NZ=410"*s"%in order to
test the influence of viscosities with values consistent
with those find in the stratosphere (v = 0.01 m*s™ ')
and in the mesosphere (v = 0.5m*s™!).

The dimensional wavenumber of the wave is
k=10"%*m.

We compare these results with those of the inviscid
case found by Van Duin and Kelder (1982) for the

hyperbolic tangent wind profile. For » = 0.01 m®s’,
the wave is reflected like in the inviscid case. For

2 = S
g
g
B -\"--\_;_ o
0. _ . (ERNRE TS | ESCL N
HINTMM 2 iz

Figure 6
Variation of the reflection coefjicient as a function of the minimum
Richardson number. U(z)=1+1h(z): n(z |—¢: c=1 and
Pr=1. While the dimensional paramet ters we consider are:
Up=10ms "3 hy = 7000 m ; E=10"*m . (-o--- )

(—) v=05m"s

) v =0.01m?s ! ;

1:(

y=0m"s”

vy =0.5m?%s !, the reflection coefficient is lowered.

Figure 7 displays the same results for the jet profile

(oor ™)

with two critical levels compared to the inviscid case
found by Teitelbaum and Kelder (1985). Note that
similar results are obtained for the transmission
coefficient.

Also note that low values of the viscosity do not
prevent the existence of overreflection.

Reflection coefficients, expressed as a function of the
nondimensional viscous parameters are reported in
Table 1, for a given Richardson number J = 0.15. The
mean wind is a hyperbolic tangent profile. For
kRe = 1000, variations of the reflection coefficient as
a function of the viscosity are small and are indepen-
dent of the thermal conduction (i.e. the Prandtl
number). For kRe < 1000, the effect of the viscosity
becomes important while the influence of the thermal
conduction is always small.

1.5 |-

REFLECTION
COEFFICIENT:
It i

0.75
PHASE VELOCITY:
Figure 7

Variation of the reflection coefficient as a function of the positions ¢
of the critical level. U(z) = (1 +z2) 15 n(z Y=1; J=0.1 and

Pr=1, hy=7000. (----- ) v=0; (—) »=001m?s *;
() v = 0.5m%s .

Table 1

Reflection coefficient as a function of the Prandtl number and kRe.
J=0.15, h=36.15, c=1, U(z) =1 +th(z). n*(z) = 1.

kRe

1862.0 745.0 186.0 93.1" 62.1 46.0 37.25

10.0 0.866 0.822 0.776 0.738 0.707 0.680
8.0 0.866 0.822 0.776 0.738 0.707 0.680
6.0 0.866 0.822 0.776 0.738 0.707 0.680
| 4.0 0.866 0.822 0.776 0.738 0.706 0.679
[ 2.0 0.866 0.822
Pr 1.0 0.866 0.822
0.3 0.866 0.821
0.25 0.866 0.820
0.166 0.866 0.820
0.125 0.865 0.819 .
0.1 0.865 }SZ_ 0.765 0.722 0.685 0.653
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4. INFLUENCE OF DISSIPATION ON
INSTABILITIES ‘

a. Numerical procedures

In this Section, we consider instabilities existing
without rigid boundaries. Among the instabilities, we
shall consider those which, in the limit of vanishing
growth rate, are evanescent and those which, in this
limit, are outgoing waves, emitted spontaneously by
the shear layer. As in most works concerning instabili-
ties, we use the Boussinesq approximation.

As in Section 2, we pay attention to the limitations of
the linear approximation. We adapt the non-linear
non-stationary model to the Boussinesq approxi-
mation. Then, we compare non-linear simulations to
linear ones.

The results concerning the influence of the dissipations
in the linear approach are obtained with a stationary
model very similar to that introduced in Section 3.

In fact, the equations of our stationary model can be
obtained from the hydrostatic one taking & — co and
adding to the matrix coefficient C;; the value
— k5

Now R = ¢, — k*¢ and ¢, = 8'/8 where 6 is the
potential temperature.

The stationary numerical model required always a
wave source. The use of such a model in stability
problems deserves some comments. As in the case of
wave reflection and transmission, we separate the
solution between the wave source and the critical level
in 6 modes. Above the shear layer, we perform the
same separation of modes. In order to find the growth
rate of the instabilities, we change the imaginary part
of the phase velocity ¢; until the upward « incident »
inviscid mode, located between the source and the
critical layer, becomes negligible compared to the
downward one (the ratio between these two modes is
less than 10~ 7). In this last calculation, we don’t take
into account the 4 viscous modes : at the height of the
separation between modes, their amplitudes are neg-
ligibly small compared to the amplitudes of the two
inviscid modes. Although these viscous modes can be
important near the source and near the critical level,
they are very strongly absorbed when they propagate
away.

This simple method makes it possible to solve numeri-
cally linear instability problems with dissipation with-
out presuming the form of the solutions at the
boundaries. Furthermore, the method can be used for
propagating waves instabilities as well as for evan-
escent ones.

In a few experiments, we confirm the growth rate
found by this trial and error method with the help of
the time dependent model (adapted to the Boussinesq
approximation). In this case, the driven force is a
perturbation introduced around the critical level dur-
ing a short time. It is possible to measure the growth
rate when it becomes constant as it is expected in the
linear theory.
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b. Drazin instabilities

In Figure 8, we display the time development of such
a growing disturbance for J =0.23, Re =2.410%
Pr=1, while n*z)=1, u(z)=1+th(z) and
k*=0.5 in the linear case (Fig. 86) and in the non-
linear case (Fig. 8a).

‘The figure shows that the non-linear solution is

consistent with the linear one at the beginning. After
20 periods, as the maximum amplitude of the pertur-
bations becomes larger than 3 1072, the non-linear
and the linear simulations begin to differ. It indicates
that the linear approximation remains valid up to a
rather small amplitude.

Considering the linear problem, the influence of
viscosity on the Drazin neutral curves has been
calculated for values of kRe as low as 10°. The neutral
curve is lowered in a very small amount in agreement
with the work of Maslowe and Thomson (1971) using
an hyperbolic tangent wind but with the particular
density varjation proposed by Holmboe.

The maximum Richardson number for which a neutral
solution exists, decreases linearly with (kRe)™* and is
independent of the Prandtl number as it was analyti-
cally found by Churilov and Shukhman (1987).
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Figure 8

Time growth of a Kelvin-Helmholiz instability at different heights :
—)z; () z. + 0.1 and (----- )z, —0.1. U(z) =1 +1th(z);
niz)=1;¢=1;k*=05;J=023; Re =2.410* and Pr—1.
(a) Non-linear case ; (b) Linear case.
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For values of the kRe greater or equal to 10°, we find :
J::%-—247/kRe. (16)

This result quantitatively differs from that obtained by
Churilov and Schukhman :

1 5

——Z /kRe . 17
53 /kRe (17)
Furthermore, we find that the growth rates of the

unstable modes weakly decrease with the viscosity
and are not affected by the Prandtl number.

J =

¢. Propagating waves instability

The stabilizing effect of dissipation found in the study
of Drazin instabilities is not a general result. Actually,
it strongly depends on the background cenditions.
Recently, Miller and Lindzen (1988) have shown that
dissipation can give rise to instabilities in a flow with a
rigid lower boundary even if the minimum Richardson
number is greater than 0.25. Here, we shall consider
the case when the Brunt-Viisdld frequency vanishes
at the critical level and there are no reflections at the
boundaries. Physically, the Brunt-Viisild frequency
can vanish at the critical level if a turbulent layer has
been developed at this place. It is well known that
turbulent mixing can annul the stratification. In this
case, dissipation can give rise to unstable modes which
don’t exist in the inviscid case.

Inviscid study

Let us suppose that the Brunt-Viisdld frequency
varies as a given even power of the shifted wave
frequency. If the power is two. there is always
resonant overreflection.

Using Boussinesq approximation in dimensionless
form, the mean wind is :

U=1+1th(z).
The mean Brunt-Véiséld frequency is : n°(z) = th(z)
and the new variable s = 4 (z) is introduced.
For a phase velocity of the wave ¢ = 1, the Taylor-
Goldstein equation writes :
d*w 5 2s dw
ds* s*—14ds

J 2 k?
+(W—nfkﬁn_@%4f}W=°“&

I'fe)I'(e—a—0b)

where J = Ngd*/Us; N§ is representative of the
Brunt-Viiséla frequency far from the critical level and

-J will be called the pseudo-Richardson number since

the real cne always vanishes at the critical level.

The equation (18) has 3 regular singular points at
s == 1 and oc. The exponent pairs are :

a,=i(J—kH"?/2
S:+1‘a2=i(J—k2)”2/2 (19a)
Y1 = oy
S__l{%,:az (19b)
=2
§ =0 {g;=—1. (19¢)

Equation (18) can be transformed in the hypergeomet-
ric equation (Olver) by considering new variables :

:1—5

r
v 2

and w=t"01-)"W. (20)

The equation for W becomes :

t(l—t);—;W+ (e — (a+b+1)—r)%W—
—abW =0 (21)
where :
@ =e;+B;+y,=2+i ([ -k~ (22a)
b=a;+B;+y=—1+i(JT—Kk3? (22b)
e =1+a,—a,=1+i(J-EH". (22¢)

Equation (21) is the hypergeometric equation and a
solution can be written (Olver) :

F(a,b;es;t) with F(a,b;e;0)=1. (23)

In the upper half plane, the asymptotic form for
zs+o (le.s—+1andt—-0) of Wis:

w=t"(1-¢)" (24)
i.e.

—ilz

w=e where P = T-EDH2. (29

The solution (25) corresponds to an outgoing wave in
the upper half plane.

In the lower half plane. the asvmptotic form corre-
sponds to s - — 1, or t —» 1. that i to say z — — .

We can use the relation (Olver: 10.12, Chap. 8) :

Fla, biest)= F -1 g hose o L (1 —t)-%"%«
e e37) IF'(e—a)I'(e—b) g o i ¢J £)
><F(e}fa(f;(i)_ﬂf(e—a.e—b:1—e—fz—b:1—:l (26)
and for z » — 0 :
1‘_~A:5:_'I'(e?]f['ez—a—b)*J__;;g_.I'l'e)l"{aA-:’véel" (27)
T \Te—a)T(e-b) T(a)T(b) ' -

Ol
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Hence, the first term in (26) corresponds to an
incident wave and the second to a reflected wave.

Furthermore ¢ —a = —1; then I'(¢ —a) = o0.

The first term in (26) vanishes and with the property
of the gamma function :

re)r@+b—e)| _
I'(a) I'(b) =1 2

there is resonant overreflection (independently of the
values of the wavenumber and of the pseudo
Richardson number).

If the Brunt-Viisild frequency varies as s* the
exponent pair for the singularity located at oo in the
Taylor-Goldstein equation is :

’_1 2_ 172
1
2

12
J) .

In this case, resonant overreflection exists only for
J =2. Numerically, we find unstable modes for
J<2.

Here, we can remark that the instabilities we find are
very different from those found by Drazin in the same
wind profile and when the Brunt-Viisila frequency is
constant. In fact, the neutral curve found by Drazin
(1958) corresponds to non-propagating waves with
frequency greater than the Brunt-Viisald frequency.

In the case we study, the neutral modes correspond to
propagating waves.

Furthermore, the vertical variation of the Brunt-
Viisdld frequency we use is very special. Nevertheless,
we have verified numerically that for a Brunt-Viisald
frequency varying as a fractional power of the wave
shifted frequency, similar results are obtained.

(294a)

(29b)

Influence of dissipation

The results obtained considering dissipations for the
case n*(z) = s* are very surprising. The value of J for
which there is resonant overreflection increases with
increasing dissipation (for Pr = 1) up to a maximum
and then decreases.

In Figure 9, we show the variation of this pseudo-
Richardson number at which resonant overreflection
arises as a function of the viscous parameters kRe and
for different values of the Prandtl number. These
curves represent the locus of resonant overreflection
in the plan (J, kRe) and can be considered as the
neutral curves for this problem since they separated
stable and unstable regions.

Considering the neutral curve (Pr = 1), dissipation
tends to permit instabilities for a pseudo-Richardson
number which is greater than that obtained in the
inviscid case.

In addition, the validity of the linear approximation
has been tested for this type of instability.

Figure 10 shows the time variation of the amplitude of
the instability at two different heights in the non-
linear (Fig. 10a) and in the linear case (Fig. 104).
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Figure 9

Variation of the pseudo-Richardson number at which resonant over-
reflection arises as a function of (kRe)™\. U(z):1+th(z);
n*(z) = th*(z). (...... )Pr=033;(----- Y Pr=1; (--) Pr=3.
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Figure 10

Time growth of a propagating wave instability at different heights :
(- ) z. and ( ) z,+ 1. Ulz) =1+th(z); n'(z) = th*(z);
c,=1; £=6710"7; Re=2210% and Pr=1. (a) Non-inear
case ; (b) Linear case.

In this example, J = 1.8 ; Re =2.210*; Pr=1 and
¢, = 1. ¢, is the real part of the wave phase velocity.
The linear approximation remains valid to describe
the onset of this type of instabilities as long as the
amplitude is sufficiently small. Figure 11 shows the
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Figure 11
Similar to Figure 10a, except that the initial perturbation is larger and
that the time integration is performed during 80 periods instead of 40.

time development of the same instability during a
longer time and in the non-linear case. The time
growth is linear instead of being exponential. Never-
theless, we can note that non-linearities don’t prevent
the wave from reaching significant values of the wind
speed.

5. INFLUENCE OF THE NEWTONIAN
COOLING AND OF THE RAYLEIGH FRICTION

Frequently, the dissipative processes are modelled by
Rayleigh friction and Newtonian cooling. In order to
test the accuracy of these parameterisations, we
examine the influence of Newtonian cooling and
Rayleigh friction on the reflection of a linear gravity
wave propagating through a critical level and on the
Drazin stability problem.

Furthermore, the use of the Newtonian cooling is
meaningful because it approximates the atmospheric
infrared cooling and because some physical insights
into the phenomena induced by dissipation at the
critical level are possible.

In Figure 12, we compare the variation of the reflec-
tion coefficient of a gravity wave incident on a critical
level when there is Newtonian cooling or Rayleigh
friction. The background wind has an hyperbolic
tangent profile ; the Brunt-Vaisild frequency is con-
stant and we consider the hydrostatic approximation.
Figure 12 shows that the Newtonian cooling tends to
increase the reflection (the result is similar for the
transmission). Furthermore, for sufficiently large
values of the Newtonian cooling, overreflection can
occur for flows having a minimum Richardson number
larger than 0.25. As overreflection is linked to instabi-
lities (Rosenthal and Lindzen, 1983a, b), we can
presume that Newtonian cooling can destabilize the
flow.

To confirm this assumption. we solve numerically the
Drazin stability problem in presence of Newtonian
cooling. This is academical because. in the atmos-
phere. Newtonian cooling is not sufficiently strong to
influence the short Duuod modes appearing in this
problem. Nevertheless (Fig. 13). the neutral stability

REFLECTION
COEFFICIENT :
/R

0. 0.10 0.20
MINIMUM RICHARDSON NUMBER: J

Figure 12

Variation of the reflection coefficient as a ﬁmcuon of the minimum
Richardson number. U(z)=1+1th(z); nYz)=1; c=1;
h=313 and k=22410"% (.....) a=0,
a=0,b=0; (—-)a/k=01, b=0.
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Neutral ~ curve  corresponding to the Drazin  profile
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curve tends to move up when there is Newtonian
cooling and there are unstable modes when the
minimum Richardson number is everywhere greater
than 0.25.

The importance of dissipative processes for the stabili-
ty of stratified shear flows has been recently em-
phasized by Miller and Lindzen (1988).

The destabilizing influence of the thermal dissipation
is known since Jones (1977) noted that « the radiative
diffusion will weaken the stabilizing effect of the
buoyancy force ».

Actually, the buoyancy force stabilizes the stratified
flows because it exerts a backward force on ﬁach
particle displaced from its equilibrium position. When
the particle is displaced, the buoyancy force is closely
related to the temperature difference between the
particle and the mean flow :

. (dp — 8p) (3T —dT) .
.’:—Q‘P——&=—g.ﬂ—~— (2U

p T
where dp (or dﬂ the variation of the density (or

S
temperature) of the fluid particle as it moves wh

miec
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8p (or &T) is the density variation of the fluid
surrounding the particle. The thermal dissipation, as
it tends to relax this temperature difference, deerecases
the temperature amplitude of the backward force
exerted on the particle and limits the stabilizing effect
of the buoyancy force.

That is the case when there is a Newtonian cooling.
Let us consider a fluid particle which moves up from z
to z + 8z ; while its density change is dp, its tempera-
ture change is dT and its pressure change is p, 8z.
When there is a Newtonian cooling b, the entropy
change is :

ds dT - &8T
5_—bcp(—T )

If we introduce a time scale ¢, representative of the
phenomenon which displaces the fluid particle, we
can roughly express the thermal exchange law as :

€

dT dp ( dT 8T )
— -k =- — . 32
T k bt, 7 T (32)
Furthermore, we have :
dp dp dT
e e T 33
P p ‘4 (33)

We can derive from this relation the buoyancy force :

0, 1
— PR e I wF B S
f=g(dp —38p) gp §X1+btc

(34)
If we compare it to the value obtained in an adiabatic
situation :

62’
—4gp —.

C
We see that the Newtonian cooling decreases its
amplitude and then limits its stabilizing effect.

These changes in the stability characteristics of the
flow are not surprising since the usual stability
theorem is not valid when there is dissipation (Miller
and Lindzen, 1988).

When there are Newtonian cooling or Rayleigh fric-
tion, it is possible to derive a stability theorem in a
way similar to that used to derive the wellknown Miles
Howard’s theorem (Miles, 1961 ; Howard, 1961). The
-necessary condition for the existence of an instability
‘which growth rate is k¢; is that :
{o+i)
A

: b
c,—U—z(ci--FE)
2 b
(a+%)

: a
¢, —U-i (Ci+E)
must be valid somewhere in the flow. & is the
Newtonian cooling while g is the Rayleigh friction. It
is possible to derive this result in the hydrostatic as
well as in the Boussinesq approximation.

fa = (35)

N 1
024

(36)

For a = b, we find again the usual necessary stability
condition.
For b = a, unstable modes (¢; = 0) may exist in a flow

having a minimum Richardson number greater than
0.25.
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In fact, we can have R; = 1/4 and verify :

1¢ +b/k
£"iar:i-l-a!/k

at the critical level. These results confirm the assump-
tion that the Newtonian cooling can have a destabiliz-
ing effect on the flow.

Figure 12 shows that the Rayleigh friction tends to
decrease the reflection (and the transmission) of the
gravity wave. The form of the solution around the
critical level can partly explain this result.

With Rayleigh friction, the Taylor-Goldstein equation
for a mode

W(Z) eik(x—cz)+z/2h

in the hydrostatic approximation is :

- J _

CRSHTRE
%_%}lz}w=0. 37)

(v-c-ig)

Near the critical level, we have U —c =2z +.-. and
we can obtain by a Frobenius expansion the form of
the solutions at the critical level :

z=10 Wy =Z+ayz°+--- (38)
wy=1+4+2a,Znz+a,z+--- (39)

: Jk
th = 40
wi a, iz (40)

For z < 0, we obtain the form of w, by an analytical
continuation through the critical level :
wy=1+4+2a,z0n|z| + (& —2a,im)z+--- (41)
We write a general solution w = Aw,; + Bw, and we
calculate the vertical energy flux:

F,=Real ((U—-c)uw* + ow*)/2

F, = Real (w (42)

a ( w ) x)
— (w.—— | w"
2K\ "k
and we find that there is a loss of energy flux at the
critical level :

F.(0°)-F,0)=-21
2 k

The Newtonian cooling gives a continuous energy flux

through the critical level : F, (07 ) — F,(0") = 0.

We obtain the same results in the Boussinesq approxi-
mation.

As the reflection and transmission of the wave are
closely related to the energy budget of the perturbed
tield, the energy loss observed can be associated with
the decrease in the reflection and transmission coef-
ficient obtained in the numerical experiments when
there is Rayleigh friction. We presume that the
Rayleigh friction has a stabilizing effect on the flow.

To confirm this assumption, we test the influence of
the Rayleigh friction on the stability problem of

|B|*. (43)

ST

t
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Drazin (Fig. 13). This figure shows that the Rayleigh
friction tends to strongly move down the neutral
stability curve.

On the problems of wave reflection and Drazin
instability, the Rayleigh friction tends to have a
stabilizing influence which is qualitatively similar to
that observed in Sections 3 and 4b when viscosity was
introduced.

Furthermore, in Sections 3 and 4, we observed that
the changes in the thermal conduction does not
influence these two problems. This seems to be a very
different effect to that observed when Newtonian
cooling is introduced. The main reason is that we limit
our investigations to Prandtl number greater than 0.1
and lesser than 10. Nevertheless, Jones (1968) and
Miller and Lindzen (1988) found, for very low values
of the Prandtl number, unstable modes which don’t
exist in the inviscid case. Numerically, we observe
that for Pr = 1072-10~7, unstable modes can appear
in the Drazin problem when J= 1/4 and that the
reflection and transmission of a gravity wave propagat-
ing through a critical level can be greater than those
obtained in the inviscid case. Nevertheless, this des-
tabilizating influence of the thermal diffusion is very
irregular. For instance, at a given Reynold number,
we observe that the reflection and transmission coef-
ficients of a gravity wave propagating through a
critical layer decrease a little when the thermal
diffusion increases and reach important values for
very low Prandtl number. Similar irregularities are
observed when we calculate the changes in the growth
rate of an unstable mode in the Drazin problem. In
these two cases, the changes are monotonic when the
Newtonian cooling increases and for a constant
Rayleigh friction.

This difference is not surprising because the Newto-
nian cooling and the thermal conduction act very
differently in the processes described by Jones : the
Newtonian cooling relaxes the temperature differ-
ences while the thermal conduction relaxes the tem-
perature gradient differences.

In this paper, we limit our study to Pr=0(1)
because, even when eddy dissipation exists, it is not
realistic to consider very low values of the Prandtl
number in the atmosphere. In this case, the influence
of the viscosity dominates that of the thermal dif-
fusion.

Nevertheless, in the problem of outgoing wave instabi-
lities, the thermal diffusion can have a destabilizing
effect even when Pr=0(1). In fact, we see on
Figure 9 that the value of the largest pseudo-
Richardson number N§ d*/ug, at which resonant over-
reflection arises. increases as the Prandtl number
decreases.

6. INFLUENCE OF VISCOSITY AND OF
THERMAL CONDUCTION WHEN THEY ARE
CONFINED AROUND THE CRITICAL LEVEL

The values of the parameters which can influence
reflection. transmission and instabilities are those
found in the high mesosphere assuming that the

dissipation is caused by molecular viscosity and heat
conduction.

Let us assume that eddy viscosity and eddy conduction
of heat can be properly described by the same
mathematical formalism. The main difference in con-
sidering eddy dissipations is that the phenomenon will
be confined to a layer surrounding the critical level. It
means that the physical properties of the medium
change more or less abruptly near this level. Passing
from one region to another, the waves must undergo
reflection and can be partially trapped inside the
viscous layer. The interaction between gravity waves
and turbulence has been extensively studied by Fua
and Einaudi (1984), Einaudi and Finnigan (1981) and
Finnigan and Einaudi (1981). Our interest is to study
the influence of a turbulent layer on the reflection and
transmission of gravity waves and also on the insta-
bility characteristics of the Kelvin-Helmholtz waves.

The numerical results indicate that there is always an
optimal thickness of the dissipation layer for which
the reflection and the transmission of the wave have at
least a relative maximum value.

The wave being trapped, this maximum must be
related to the relative phase of the successive reflec-
tions inside the layers.

If the values of the viscosity and of the thermal
diffusion are increased, the reflectivity of these
« boundaries » can be increased, but the dissipative
effects of the critical level become more important
and compensate the former effect.

In Section 3, we showed that the thermal conduction
has little effect on the reflection of the wave at the
critical level when Pr=1. We can expect that for
values of the Prandtl number less than 1, the dissipat-
ive layer will increase the reflection of the wave in
regards to the inviscid case. The results reported in
Figure 14 agree with this assumption.

For Pr =10, the wave reflection has a maximum
smaller than in the inviscid value. For Pr = 3. the
reflection coefficient is also smaller than in the
inviscid case.

Figure 14
Variarion of the reflection coefficient as a function of the depth of the
viscous layer surrounding the critical level. Ula)=1+kz;

n(z)=1: ¢=1: kRe=83. J=0.1, the straight line (—)
corresponds to the inviscid value of the reflection coefficient. (......)
Pr=01:(----- ) Pr=1; (—) Pr=10.
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The curve corresponding to Pr = 0.1 shows what we
expect. The reflection is greater than in the inviscid
case and it decreases then to lower values indicating
that we are in the presence of a partially trapped
wave.

Similar simulations concerning the Drazin stability
problem show that when the viscosity and the thermal
conduction are confined around the critical level,
unstable modes appear for values of the minimum
Richardson number which are greater than 0.25. As in
the preceding problem, this last result strongly de-
pends on the Prandtl number.

7. CONCLUSION

In this paper, we studied the influence of dissipative
processes on the reflection and transmission of a
gravity wave propagating through a shear layer as well
as on some stability problems.

We found that for high Reynolds number when values
of the viscosity are consistent with those found in the
middle atmosphere, the reflection and transmission of
a wave incident upon a shear layer are the same as in
the inviscid case. These results confirm previous
theoretical results found when the background wind
profile is an hyperbolic tangent or a jet containing two
critical levels. These results have been obtained with a
linear approximation which is assumed to be valid for
sufficiently small wave amplitudes. To define more
precisely these limitations, we test the incidence of
non-linearities with the help of a fully non-stationary
non-linear model. We observe that for low wave
amplitudes (|u| <30cms™' near the critical level,
for instance), the reflection and transmission coef-
ficients obtained in linear and in non-linear simu-
lations are very similar during a very long time (at
least 20 wave periods). If we impose higher amplitudes
to the forced wave, secondary modes can grow and
the background wind undergoes rapid modification.
In this case, the system cannot reach a stationary
state. To a certain extent, this non-linear phenomen
can be reduced when the values of the viscosity and of
the thermal conduction increase. Nevertheless, this
last effect is limited, and we observe that the linear
approximation is never valid if the amplitude of the
incident wave exceeds a few 10cms~ ! while the
maximum horizontal wind induced by the wave near
the critical level does not exceed 1 ms~! when the
velocity scale of the flow is 10 ms™ 2.

The instabilities we study are those which in the limit
of vanishing growth rate are evanescent waves and
those which in this limit are propagating waves.

Typical instabilities of the first type are those discov-
ered by Drazin (1968) for which we find that the
maximum Richardson number allowing neutral sol-
utions decreases linearly with increasing viscosity.
This decrease found numerically is more rapid than
that found analytically by Churilov and Shukhman
(1987). Here the validity of the linear approximation
is limited to rather small amplitudes.
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Instabilities of the second type are those which can
exist if the stratification vanishes at the critical level.
This situation can exist when a turbulent layer has
been developed at this place. Then, resonant over-
reflection can occur in the inviscid case.

Going further in this analysis, we discover that for
some background conditions, the fluid becomes un-
stable for modes which in the limit of vanishing
growth rate are propagating waves. The influence of
viscosity is very surprising in that it allows the
existence of instabilities for pseudo-Richardson
number higher than without dissipations. In this case
also, the linear approximation is valid for low values
of the wave amplitude (|u|=0.2ms"'). Further-
more, the non-linear model shows that the wave can
reach higher amplitude but with a time growth which
is linear with respect to the time instead of being
exponential.

We studied also the effect of Rayleigh friction and
Newtonian cooling which are often used to para-
meterize viscosity and thermal conduction.

The stabilizing influence of Rayleigh friction we
observe in Drazin’s instability problem and in the
gravity wave critical level interaction problem looks
like that observed when viscosity is introduced. It is
meaningful to note that, concerning the problem of
reflection and transmission of the wave when there is
Rayleigh friction, we can calculate a loss of energy
flux at the critical level.

The destabilizing influence of the Newtonian cooling
we observe can also be compared to that of thermal
conduction. However, when we consider realistic
values of the Prandtl number (i.e. Pr = 1), the effect
of the thermal dissipation is dominated by the stabiliz-
ing influence of the viscosity. Furthermore, the
changes in the properties of the phenomena we study
when the thermal diffusion increases (and Re remains
constant) are very irregular compared to those ob-
tained when the Newtonian cooling increases (and the
Rayleigh friction remains constant). This difference
can be due to the fact that those thermal dissipations
act very differently on the perturbed temperature
field.

These changes in the stability characteristics of the
flow are not surprising since the Miles Howard
theorem is not valid when there is dissipation. It is
meaningful to note that we can derive again this
stability theorem when there are Rayleigh friction and
Newtonian cooling. We observe that the necessary
condition for the existence of unstable modes is no
longer valid and that we can have unstable modes in a
flow where Ri = 1/4 everywhere if the Newtonian
cooling is greater than the Rayleigh™ friction.

Furthermore, we showed that dissipative processes,
when they are confined near the critical level, as it can
be if a turbulent layer is present, the reflection and
transmission of the wave as well as the Richardson
number allowing instabilities in the Drazin problem,
can increase. This is a consequence of the limits of the
dissipative region acting as partially reflecting bound-
aries.

Most of the results in the present study concern the
linear approximation. We have shown that such an
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approximation remains valid for low amplitude waves.
In a next study, we will investigate the non-linear
properties of these problems when the amplitudes are
larger and when there is dissipation.
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