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ABSTRACT

The gravity waves (GWs) produced by three-dimensional potential vorticity (PV) anomalies are examined

under the assumption of constant vertical shear, constant stratification, and unbounded domain. As in the two-

dimensional case analyzed in an earlier paper, the disturbance near the PV anomaly is well modeled by quasi-

geostrophic theory. At larger distances the nature of the disturbance changes across the two inertial layers that

are located above and below the anomaly, and it takes the form of a vertically propagating GW beyond these.

For a horizontally monochromatic PV anomaly of infinitesimal depth, the disturbance is described ana-

lytically using both an exact solution and a WKB approximation; the latter includes an exponentially small

term that captures the change of the solution near the PV anomaly induced by the radiation boundary

condition in the far field. The analytical results reveal a strong sensitivity of the emission to the Richardson

number and to the orientation of the horizontal wavenumber: the absorptive properties of the inertial layers

are such that the emission is maximized in the Northern Hemisphere for wavenumbers at negative angles to

the shear.

For localized PV anomalies, numerical computations give the temporal evolution of the GW field. Ana-

lytical and numerical results are also used to establish an explicit form for the Eliassen–Palm flux that could be

used to parameterize GW sources in GCMs. The properties of the Eliassen–Palm flux vector imply that in

a westerly shear, the GWs exert a drag in a southwest direction in the upper inertial layer, and in a northwest

direction at the altitudes where the GWs dissipate aloft.

1. Introduction

Spontaneous adjustment, the mechanism whereby a

well-balanced flow radiates gravity waves (GWs) in the

course of its near-balanced evolution (Ford et al. 2000;

Vanneste and Yavneh 2004; Vanneste 2008), is a possi-

ble source of atmospheric GWs. It can be distinguished

from other mechanisms, including topographic forcing

and the classical adjustment originally described in

Rossby (1937), by the fact that it involves no process

external to the flow itself. In realistic configurations,

however, spontaneous adjustment is mixed with other

mechanisms. For instance, large mountain GWs pro-

duce potential vorticity (PV) anomalies when they

break (Schär and Smith 1993), as well as secondary GWs

(Scavuzzo et al. 1998). To measure the relative impor-

tance of these two signals, Lott (2003) studied the large-

scale response to mountain-wave breaking near critical

levels and showed that substantial GWs are reemitted

during the breaking itself, while the long-term evolution

is dominated by the balanced response. Martin (2008)

subsequently found that the PV field associated with the

balanced response radiates GWs well after the end of

the initial breaking. This emission, although weaker

than the initial one, is potentially more persistent since

it is tied to the slowly evolving PV. It is plausible,

therefore, that it contributes to the low-frequency GWs

observed in the wakes of breaking topographic waves

(Plougonven et al. 2010).
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To quantify this emission by PV more precisely, Lott

et al. (2010, hereafter LPV10) examined the GWs

emitted by small-amplitude PV anomalies in a shear. In

this scenario, the separation between balanced motion

and GWs does not hold: because of the Doppler shift,

motions that are balanced in the vicinity of the anoma-

lies become, in the far field, gravity waves [see also

Plougonven et al. (2005); Mamatsashvili et al. (2010)].

In the linear approximation, and assuming constant

wind shear L and constant Brunt–Väisälä frequency N,

LPV10 found that substantial GWs reach the far field

when the Richardson number J 5 N2/L2 is not too large

(say, between 1 and 10). By substantial, we mean that,

for PV anomalies representative of those likely to be

found when thin layers of stratospheric air enter the

troposphere, the Eliassen–Palm (EP; or pseudomo-

mentum) flux associated with the GWs is comparable to

that measured in the stratosphere far from mountains

(Hertzog et al. 2008).

A practical result of LPV10 is a simple analytical es-

timate for the EP flux that could be used in general

circulation models (GCMs) that include the strato-

sphere. In nondimensional form, this estimate is given

by

F ;
1

4
e2p

ffiffi
J
p

. (1.1)

LPV10 also showed that half of this flux is absorbed in

the inertial layers above and below the PV anomaly

while the other half is radiated in the far field as GWs.

The dimensional EP flux follows from (1.1) by multi-

plication by the scaling factor

F0 5
rrg2

f u2
r N3

(rrqrsz)2, (1.2)

where g is the gravity constant, f the Coriolis parameter,

rr and ur background reference values for the density

and potential temperature, qr the amplitude of the PV

anomaly, and sz its depth. In a GCM, these last two

quantities could be related to the grid-scale PV value

and to the vertical grid spacing.

A limitation of LPV10 is the restriction to two-

dimensional PV anomalies, with no structure in the di-

rection transverse to the basic shear. This is a significant

limitation since the absorption of GWs at inertial levels

strongly depends on the orientation of the horizontal

wave vector. This is known from the investigations on

GW propagating upward toward inertial levels: Grimshaw

(1975) and Yamanaka and Tanaka (1984) showed that

the absorption at the lowest inertial level is large for

nL , 0, where n 5 l/k is the ratio between the transverse

and parallel horizontal wavenumbers, and much smaller

for nL . 0. This results in a ‘‘valve effect,’’ which

Yamanaka (1985) interpreted by analyzing the tilt of the

phase lines of the GWs (i.e., of particle displacements)

relative to the isentropes. The configuration that we

analyze is quite different since the GW associated with

a PV disturbance is generated between the critical levels

and propagates outwards of them. Nevertheless, the

argument of Yamanaka (1985) applies and we find

strong absorption at the inertial level if nL . 0 and much

weaker absorption if nL , 0.

The motivation of the present paper is to extend the

results in LPV10 to three-dimensional PV anomalies.

Accordingly, its first aim is to obtain the vertical struc-

ture of the 3D singular modes associated with PV

anomalies that have the form of a Dirac function in the

vertical. The analytic results derived for monochromatic

anomalies can then be integrated to obtain the vertical

structure associated with anomalies of arbitrary hori-

zontal structure and show, in particular, that a horizon-

tally isotropic PV anomaly produces a very specific

anisotropic GW signature beyond the inertial levels. A

second aim is to deduce further, by integration over the

continuous spectrum, the GW response to a vertically

smooth, localized PV distribution. A third aim is to ex-

tend the EP flux predictions in (1.1) and (1.2) to the 3D

case. In this case, the (vertical component of the) EP

flux, which can also be interpreted as a wave stress, is

a horizontal vector. For a horizontally isotropic shear in

the Northern Hemisphere, this vector is shown to make

an angle with the shear that decreases with altitude,

from zero at the anomaly level to some negative value in

the far field. This implies that a PV anomaly in a westerly

shear exerts a drag that is oriented to the southwest in

the upper inertial region and to the northwest where the

associated GW dissipates aloft.

The plan of the paper is as follows. The general for-

mulation of the problem and its transformation to a di-

mensionless form are given in section 2. There we

discuss both the exact response to a d-PV distribution in

the vertical, and its Wentzel–Kramers–Brillouin (WKB)

approximation valid for J � 1. The WKB analysis ex-

tends that of LPV10 by resolving the Stokes phenome-

non associated with the existence of an exponentially

small (in J) contribution to the solution that grows ex-

ponentially between the PV anomaly and the inertial

levels. Taking this contribution into account, we obtain

a 3D generalization of the EP flux estimate (1.1). Section

3 presents the vertical structure of the response in some

detail. It emphasizes the directional aspects and relates

them to the tilt of the solution about isentropes in the

meridional plane. Section 4 recasts the results in di-

mensional form and considers PV distributions that are
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localized horizontally and that have a finite depth, in which

case the GW response is transient. Section 5 summarizes

the results. Appendixes A and B provide technical details

on the exact and WKB solutions, respectively.

2. Formulation

a. Disturbance equations and potential vorticity

In the absence of mechanical and diabatic forcings,

the linearized hydrostatic–Boussinesq equations for a

three-dimensional disturbance in the shear flow u0 5

(Lz, 0, 0) read

(›t 1 Lz›x)u9 1 Lw9 2 f y9 5 2
1

rr

›xp9, (2.1a)

(›t 1 Lz›x)y9 1 fu9 5 2
1

rr

›yp9, (2.1b)

0 5 2
1

rr

›zp9 1 g
u9

ur

, (2.1c)

(›t 1 Lz›x)g
u9

ur

2 f Ly9 1 N2w9 5 0, and (2.1d)

›xu9 1 ›yy9 1 ›zw9 5 0. (2.1e)

Here u9, y9, and w9 are the three components of the

velocity disturbance, p9 is the pressure disturbance, u9 is

the potential temperature disturbance, and N2 5 gu0z/ur

is the square of the constant Brunt–Väisälä frequency,

with u
0
(y, z) being the background potential tempera-

ture. Without loss of generality we assume that L . 0.

Equations (2.1a)–(2.1e) imply the conservation equation

(›t 1 Lz›x)q9 5 0, (2.2)

for the PV perturbation

q9 5
1

rr

[u0z(›xy9 2 ›yu9) 1 u0y ›zu91Lu9y 1 f ›zu9].

(2.3)

It follows that the PV at any time t is given explicitly in

terms of the initial condition q9
0
(x, y, z) 5 q9(x, y, z, t 5 0)

by

q9(x, y, z, t) 5 q90(x 2 Lzt, y, z). (2.4)

b. Normal-mode decomposition

To evaluate the disturbance field associated with the PV

anomaly (2.4), we express this solution in Fourier space,

q9(x, y, z, t) 5

ð ð
q̂(k, l, z, t)eikx1ily dk dl

5

ð ð
q̂0(k, l, z)ei(kx1ly2kLzt) dk dl, (2.5)

where q̂0 is the horizontal Fourier transform of q90:

q̂0(k, l, z) 5
1

4p2

ð‘

2‘

ð‘

2‘

q90(x, y, z)e2i(kx1ly) dx dy.

(2.6)

Here and henceforth integrations without limits are

understood to be over the whole space. We rewrite (2.5)

in the form

q9(x, y, z, t) 5
kL

f

ð ð ð
q̂0(k, l, z9)ei(kx1ly2kLz9t)d

�
kL

f
(z 2 z9)

�
dz9 dk dl, (2.7)

where d(j) is the Dirac function of the variable

j 5
kL

f
(z 2 z9). (2.8)

Note that (2.7) can be interpreted as the expansion of

the perturbation PV in the (singular) normal modes of

(2.3); these modes form a continuum, parameterized by

the phase speed Lz9. The scaling used in (2.8) places the

inertial levels z 5 z9 6 f/(kL) of these modes at j 5 61

(Inverarity and Shutts 2000).

The expansion of the vertical velocity w9 corresponding

to the expansion (2.7) of the PV can be written as

w9(x, y, z, t) 5

ð ð ð
ŵ0(k, l, z9)ei(kx1ly2kLz9t)W

�
kL

f
(z 2 z9)

�
dz9 dk dl, (2.9)

where ŵ
0
(k, l, z9) is the amplitude of the normal mode

and W(j) is its vertical structure. Note that this expansion

describes the part of w9 slaved to the PV: an additional

continuum of singular modes, representing free sheared
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GWs, would need to be added to the expansion to solve

an arbitrary initial-value problem.

The velocities u9 and y9 and the potential temperature u9

have expansions analogous to (2.9), with ŵ0 replaced by û0,

ŷ0, and û0, and W replaced by U, V, and Q, respectively.

Introducing these expansions into (2.1a)–(2.1e) and choosing

û0 5 i
L

f
ŵ0, ŷ0 5 2

L

f
ŵ0, and û0 5 i

urL
2

fg
ŵ0

(2.10)

gives

U 5
j 2 in

j(1 1 n2)
W

j
1

n2

j(1 1 n2)
W,

V 5
1 2 inj

j(1 1 n2)
W

j
1

in

j(1 1 n2)
W, and (2.11a)

Q 5
1 2 inj

j2(1 1 n2)
W

j
1

"
in

j2(1 1 n2)
1

J

j

#
W,

(2.11b)

where n 5 l/k. We now introduce (2.10)–(2.11), into

the expressions (2.3) and (2.7) for the PV. Choosing the

vertical-velocity amplitude

ŵ0(k, l, z9) 5 2i
rrg(1 1 n2)

urL
2

q̂0(k, l, z9) (2.12)

then leads to the differential equation

1 2 j2

j2

� �
W

jj
2

2

j3
2

2in

j2

� �
W

j

2

�
(1 1 n2)J

j2
1

2in

j3

�
W 5 d(j), (2.13)

for the structure function W(j). Note that W depends on

J and n in addition to j, and that we use the notation

W(j) as a shorthand for the more complete but more

cumbersome W(J, n; j).

In appendix A, we follow Yamanaka and Tanaka

(1984), Plougonven et al. (2005), and LPV10 and solve

this equation exactly using a change of variable that

transforms the homogeneous part of (2.13) into the hy-

pergeometric equation. The solution satisfies

W(j) ; Ej1/21i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)21/4
p

as j / 1‘, and

(2.14)

W(j)5 W*(2j) for j , 0, (2.15)

corresponding to an upward (downward)-propagating

GW as j / 1‘ (j / 2‘). An explicit expression for

the amplitude E of this GW is given in (A.13).

c. WKB approximation

In the limit J� 1, it is possible to derive an approxi-

mation to W(j) using a WKB approach. This approxi-

mation, which we now derive, is more transparent than

the exact solution in terms of hypergeometric functions

and proves remarkably accurate for moderately large J.

We focus on the region j . 0 since the solution for j , 0

follows immediately from (2.15). The WKB approximation

does not provide a single solution that is valid uniformly in

j . 0; instead, four regions, which we label (i)–(iv), need to

be distinguished. The form of the solution in each of these

regions, given below, is derived in appendix B.

In region (i), close to the PV anomaly and specifically

for j 5 O(J21/2) � 1, the quasigeostrophic (QG) ap-

proximation applies, leading to

W(i)(j) ; A(i)

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

q
j 1 1

�
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

j

1 B(i)

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

q
j 2 1

�
e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

j. (2.16)

One solution is exponentially decaying away from the

PV anomaly, consistent with the expectation from the

QG approximation. The other, an exponentially grow-

ing solution, is absent in the standard QG approxima-

tion but will need to be retained in order to derive the

EP flux between the inertial levels, as discussed below.

In region (ii), between the PV anomaly and the inertial

level, and more precisely where j 5 O(1) and j , 1,

W(ii)(j) ;
j

(1 2 j)1/42in/2(1 1 j)1/41in/2

3 [A(ii)e2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

sin21j 1 B(ii)e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

sin21j].

(2.17)

In region (iii), close enough to the inertial level that

jj 2 1j5 O(J21), the solution is expressed in terms of the

scaled variable z 5 J(1 1 n2)(j 2 1) as

W(iii)(j) ; zin/2[A(iii)H
(1)
in (

ffiffiffiffiffi
2z

p
) 1 B(iii)H

(2)
in (

ffiffiffiffiffi
2z

p
)],

(2.18)

where H
(1)
in and H

(2)
in are Hankel functions (Abramowitz

and Stegun 1964).

Finally, in region (iv) above the inertial level where

j 5 O(1) and j . 1, the solution is

W(iv)(j) ;
j

(j 2 1)1/42in/2(j 1 1)1/41in/2

3 [A(iv)ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

ln(j1
ffiffiffiffiffiffiffiffi
j221
p

)

1 B(iv)e2i
ffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

ln(j1
ffiffiffiffiffiffiffiffi
j221
p

)]. (2.19)
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The eight constants A(i)���B(iv) are fixed by imposing a

jump conditions at j 5 0 given in (A.1), a radiation con-

dition as j / ‘, and continuity of the solution across

the four regions. Starting with the radiation condition,

we obtain from (2.14) and (2.19) that

A(iv) 5 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

E and B(iv) 5 0. (2.20)

Matching between regions (iv) and (iii) then gives

A(iv) 5 21/21in/2p21/2[J(1 1 n2)]21/4 1 in/2enp/2e2ip/4A(iii)

and B(iii) 5 0 (2.21)

(see appendix B for details).

Some care needs to be exercised when matching from

region (iii) to region (ii). Standard matching as carried

out in LPV10 gives B(ii) 5 0, in agreement with the ex-

pectation from quasigeostrophic theory of a solution

that decays exponentially with altitude above j 5 0. This

solution is not entirely satisfactory, however, in that it

fails to capture the feedback that radiation (as j / ‘)

has on the solution in regions (ii) and (i). In particular,

a single exponentially decaying solution [in regions (i)

and (ii)] has a zero EP flux, inconsistent with the non-

zero flux from the exact solution. To resolve this ap-

parent difficulty, we need to recognize that B(ii) 5 0 is

only an approximation. In fact, B(ii) takes an exponen-

tially small, nonzero value, which can be captured using

the more sophisticated matching procedure applied in

appendix B. This procedure yields

A(iii) 5 221/22in/2p1/2[J(11n2)]1/42in/2e2p/2
ffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

2npA(ii),

(2.22)

B(ii) 52ie2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)
p

p cosh(np)A(ii). (2.23)

Equation (2.23) implies that the exponentially decaying

solution of quasigeostrophic theory in regions (i) and (ii)

is always accompanied by an exponentially growing so-

lution. The amplitude of this solution is exponentially

small in region (ii) but becomes comparable to the de-

caying solution as j / 1. This combination of expo-

nentially growing and decaying solutions is enforced by

the radiation condition and is consistent with the con-

sequent nonzero EP flux. By retaining the exponentially

small B(ii) [in spite of the neglect of much larger O(J21/2)

terms in the dominant solution], we capture this im-

portant part of the physics of the problem. A compara-

ble situation arises for the Schrödinger equation in

quantum mechanics, in the semiclassical study of wave

propagation through a potential barrier (e.g., Bender

and Orszag 1999). In this context, a wavelike solution

radiating outside the barrier is associated with a combi-

nation of exponentially decaying and exponentially

growing solutions inside the barrier. While the solution

that decays toward the interior of the barrier (and cor-

responds to B(ii) in our problem) is usually neglected

(Bender and Orszag 1999), it can be retained (e.g., to

obtain a direct estimate of the so-called decay width;

Shepard 1983).

The WKB solution is completed by matching regions

(i) and (ii) to obtain

A(ii) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

q
A(i) and B(ii) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

q
B(i).

(2.24)

Taking (2.15) into account and applying the jump con-

ditions (A.1) at j 5 0 yields

A(i) 5
1

2[J(1 1 n2)]3/2
, (2.25)

when neglecting an exponentially small term against

O(1) terms. It then follows that

B(i) 5 2
i

2[J(1 1 n2)]3/2
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

p cosh(np), (2.26)

which provides the amplitude of the exponentially growing

solution in the quasigeostrophic region.

The amplitude of the GW radiating at j / 6‘ will be

found by combining (2.20), (2.21), (2.22), and (2.25). It is

given by

jEj ;
e2np/2

2J(1 1 n2)
e2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

/2. (2.27)

This large-J approximation will be compared with the

exact solution in section 3 and found to provide a rea-

sonable estimate for J as small as 1.

d. EP flux

An important property of (2.13) is the conservation of

the EP flux (Eliassen and Palm 1961), or pseudomo-

mentum flux. Multiplying (2.13) by J3/2(1 1 n2)W* and

integrating by parts results in a conservation for the

nondimensional EP flux,

F 5
J3/2(11n2)3/2

2
Re i

1 2 j2

j2
W

j
W* 2 n

WW*

j2

� �
5 const,

(2.28)

that is valid away from j 5 0, 61. The scaling factor

on the left of the real part symbol is introduced so that

F coincides with the conventional definition
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rr 2u9w9 1 f
y9u9

u0z

 !
(2.29)

of the EP flux (e.g., Andrews et al. 1987) up to the J-

independent dimensional factor (1.2).

Using the fact that W ; Ej
1/21i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)21/4
p

for j / ‘

and the asymptotics in (A.14a) and (A.14b) for j� 1 gives

F 5
J3/2(11n2)3/2

2

3i(BA* 2 B*A)jEj2/2 for jjj, 1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1n2) 2 1/4

p
jEj2 for jjj. 1,

,

(

(2.30)

where A, B, and E are given explicitly in terms of G

functions in appendix A. A more convenient expression

is obtained by using the WKB form of W. To computeF
below the inertial level, we introduce (2.16), (2.25), and

(2.26) into (2.28); to compute F above the inertial level

we introduce (2.27) into (2.30). The result is the large-J

approximation

F ; e2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p cosh(np)/4 for jjj,1,

e2np/8 for jjj. 1.

�
(2.31)

Note that the expression for jjj , 1 relies on our esti-

mate (2.26) of the exponentially small constant B(i).

Equation (2.31) shows that inertial-level absorption

results in a jump in the EP flux such that

F (11)

F (12)
;

1

1 1 e2np
. (2.32)

This formula extends LPV10’s result, which showed that for

n 5 0 half of the EP flux is deposited at the inertial level.

3. Results for W(j)

In this section we examine the structure of W(j) and

compare the exact solution with the WKB approximation.

a. Vertical structure

The four panels in Fig. 1 show W(j) for J 5 4 and for

four different orientations of the horizontal wave vector

k 5 (k, l) 5 K(cosu, sinu), with u 5 2458, 2158, 2158,

458, that is for n 5 21, 20.267 . . . , 0.267 . . . , 1 and J 5 4.

In all cases, the real part of W is approximated by its

geostrophic estimate W (i) in (2.16) some distance away

from the neighborhood of j 5 0 where it is strictly valid.

The imaginary part of W is substantially smaller than the

real part, in particular near and around j ’ 0 where the

quasigeostrophic approximation predicts a purely real

W(i). The real and imaginary parts of W only become

comparable near the inertial levels, where balanced

approximations do not apply.

Between (and away from) the inertial levels j 5 61,

Im(W) follows in quadrature Re(W) when n , 0, but

precedes Re(W) in quadrature when n . 0. As discussed

in the next subsection, this behavior implies that the

solutions always tilt along the isentropes in the (y, z)

plane. Note that this behavior is well captured by the

WKB solution in (2.17) but that can also be captured

by correcting the QG solution to higher order as in

Plougonven et al. (2005). Beyond j 5 61 the solution

almost behaves as a pure gravity wave solution, in agree-

ment with the asymptotic approximation in (2.14). The

real part of the latter is shown by the gray dots in Fig. 1.

The most striking feature in Fig. 1 is the strong sen-

sitivity of W to n. According to the WKB estimates, n

affects the amplitude of W in three ways. First near j 5

0, W, decreases with increasing jnj, according to the ap-

proximation W(0) 5 W(i)(0) ; [J(1 1 n2)]23/2/2 obtained

from (2.16) and (2.25). Second, the decay rate of W in re-

gion (ii), is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

p
[see (2.17)] and thus in-

creases with jnj. Third, the amplitude of W in the GW

region (iv) depends strongly on n through the factor e2np/2

in (2.27). The first two effects explain the decrease in W

between j 5 61 from Figs. 1a,d to Figs. 1b,c. The third

effect depends on the sign of n; this introduces a meridional

asymmetry and explains the changes from Fig. 1a to Fig. 1d

and from Fig. 1b to Fig. 1c. We discuss this effect further in

the next section.

b. Meridional asymmetry and valve effect

A strong meridional asymmetry in absorption was

highlighted by Grimshaw (1975) and Yamanaka and

Tanaka (1984) in their studies of GWs propagating up-

ward toward a critical level surrounded by two inertial

levels. The latter authors showed that there is a very

strong absorption at the lowest inertial level if nL , 0. If

nL . 0, the wave crosses the first inertial level with little

attenuation, but it is almost entirely reflected downward

at a turning point located between the critical level in

j 5 0 and the lowest inertial level in j 5 21. The re-

flected wave is then strongly absorbed as it returns to

the lowest inertial level. Even though in both scenarios

the initial upward GW is ultimately absorbed at the

lowest inertial level, this potential intrusion of the GW

signal between the inertial levels is quite remarkable

and was referred to as a ‘‘valve’’ effect by these authors.

This effect was interpreted heuristically by Yamanaka

(1985), who analyzed with detail the behavior of two

independent solutions near the lowest inertial level. He

pointed out that the phase lines of one of the solutions

change direction rapidly around the inertial level, and lie

between the horizontal plane and the isentropes in a

narrow region. Applying a static-stability method to an-

alyze the stability of the air parcels displaced along phase
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lines leads to the conclusion that, for this solution, the

region is baroclinically unstable (Pedlosky 1987).

A similar heuristic argument can be invoked to ex-

plain why the absorption at the inertial levels is much

stronger for Ln . 0 than Ln , 0 (recall that we assume

L . 0). If we follow Yamanaka and Tanaka (1984) and

translate their description of the valve effect in our

context, this sensitivity is related to the mathematical

fact that around the inertial level in j 5 1, the two in-

dependent solutions of (2.13),

W
(1)
1 5 (1 1 j)2inF(a, b; a 1 b 1 1 2 c; 1 2 j2) and

(3.1a)

W
(2)
1 5 (j 2 1)1inF(c 2 b, c 2 a; c 2 a 2 b 1 1; 1 2 j2),

(3.1b)

behave very differently. The first changes smoothly

through j 5 1 whereas the second varies sharply and

jumps by a multiplicative factor equal to enp at j 5 1 [see

the analytical continuation in (A.8)].

Following Plougonven et al. (2005), a good way to

assess the significance of these two solutions is to visu-

alize them in the (y, z) plane (Figs. 2b,c,f,g). Figure 2b

indicates that the smooth solution always tilts in the

direction of the isentropes. In contrast, the other so-

lution also tilts in the direction of the isentropes for

j , 1 but tilts in the other direction for j . 1.

The structure of the upward waves above j 5 1, namely

j1/21imeily, also tilts in the direction of the isentropes

when n , 0 but in the opposite direction when n . 0

(Figs. 2a,e). It is therefore not a surprise that the smooth

solution plays the greater role to match the PV anomaly

and the upward wave when n , 0, and that the other,

FIG. 1. Structure function W(j) associated with a monochromatic PV distribution pro-

portional to d(j) for a Richardson number J 5 4, and for different values of the wavenumber

angle u 5 tan21(n): (a) 2458, (b) 2158, (c) 158, and (d) 458. The thick black curves and thick

dashed curves show the real and imaginary parts of W(j), respectively. The gray dotted curves

show the real part of the far-field gravity wave approximation Ej1/21im, and the thick gray

curves show the quasigeostrophic approximation W (i). The location of j 5 0 and of the inertia

levels j 5 61 is also indicated.
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rapidly changing solution plays the greater role when n .

0. Of course this can be checked analytically since

the parameters a9 and b9 in (A.6b) exactly control the

role of the rapidly changing and of the smooth solution

in the connection through the upper critical level, re-

spectively. It turns out that ja9/b9j 5 enp, consistent with

our argument.

Interestingly, the structures of the rapidly changing

and smooth solutions are not much different well below

j 5 1 (e.g., cf. Figs. 2b and 2g between j 5 0.4 and j 5

0.6). In fact, the two solutions have the same Taylor

expansion near j 5 0 up to O(j3). According to (A.14a),

this means that as j / 0 both can equally be used to

produce the d-PV anomaly, which is consistent with the

fact that the exact solutions around and above j 5 0 are

not much sensitive to the sign of n (see Figs. 2d,h).

c. GW amplitude and EP flux

The combined effect of the two parameters J and n on

the GW emission is shown in Fig. 3, which compares the

exact values of the GW amplitude jEj with the WKB

approximation (2.27). For a fixed value of n, jEj decreases

with J as in LPV10. For fixed values of J, the cases with

n . 0 and n , 0 need to be distinguished. For n . 0 and

increasing, jEj decreases monotonically as a result of in-

creasing exponential decay in region (ii) and increasing

inertial-level absorption. When n , 0 those two effects

oppose: increasing jnj increases the exponential decay

but decreases the inertial-level absorption. Accordingly,

jEj is maximized for some n(J) , 0. Importantly, the

WKB approximation (2.27) provides a good approxima-

tion for jEj for J * 1, well beyond the theoretical range of

validity J� 1 of the asymptotics.

The EP flux within and outside the inertial levels are

shown in Figs. 4a and 4b, respectively. The exact and

WKB solutions (2.31) are compared. Figure 4a indicates

that the EP flux between the inertial levels is only weakly

sensitive to the angle u 5 tan21n of the wave vector. It

remains almost constant, for instance, for 2458 & u & 458

when J ’ 3, or for 2308 & u & 1308 and J ’ 10. For

larger values of u, however, the EP flux decreases rapidly

and vanishes for u 5 6p/2. An important aspect of

Fig. 4a is that the EP flux between the inertial levels is

symmetric about the axis u 5 0.

FIG. 2. Meridional structures of various solutions and approximations used to analyze W(j)

at the transition through the inertial level, for J 5 2, and n 5 60.5: (a),(e): GW asymptotics

Ej1/21imeily, (b),(f) smooth solution (3.1a) W
(1)
1 (j)eily, (c),(g) sharp solution (3.1b) W

(2)
1 (j)eily,

and (d),(h) exact solutions (A.12). The contour intervals are arbitrary but are identical in (d) and

(h). In all panels, the slope of the isentropes is indicated by the gray dashed lines.
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This symmetry is broken outside the inertial levels

(i.e., for jjj. 1) as a result of the asymmetric absorption

at the inertial levels. This is clear from Fig. 4b: when u &

2308 the EP fluxes for jjj . 1 are almost equal to the

fluxes for jjj, 1, but they are much smaller for u * 308.

This is well captured by the WKB approximation (2.31),

which again provides a good estimate for J * 1 both for

jj j, 1 and jjj. 1. In particular, it leads to the prediction

nM ’ 2
1ffiffiffi
J
p , (3.2)

for the value of n for which F is maximum for jjj . 1.

The corresponding angle uM is shown as a dotted line

in Fig. 4b.

4. Application to localized PV distributions

a. Horizontally localized d-PV

To gauge the significance of the directional effects

discussed above on the structure of the GWs associated

FIG. 3. Amplitude jEj of the GW associated with a mono-

chromatic Dirac PV anomaly as a function of J and (a) n 5 l/k or (b)

u 5 tan21n. The exact solution (solid) is compared with the WKB

approximation (dashed).

FIG. 4. EP flux associated with a monochromatic Dirac PV

anomaly for (a) jjj , 1 and (b) jjj . 1. The exact solution

(solid) is compared with the WKB approximation (dashed). The

dotted line in (b) shows the WKB prediction of the angle

maximizing F .
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with a 3D PV anomaly, we first consider the case of an

infinitely thin PV distribution with Gaussian distribution

in the horizontal direction:

q90(x, y, z) 5 szqre2(x21y2)/(2s2
H )d(z), (4.1)

where sH gives the characteristic horizontal width of the

PV anomaly, qr is its characteristic amplitude, and sz is

its characteristic depth. The introduction of the scale sz

naturally follows from the fact that d(z) scales as an in-

verse length. For such a distribution, the vertical velocity

field in (2.9) reads

w9(x, y, z) 5 sz

ð‘

0

ð2p

0
ŵ0(K, u)ei(kx1ly)W u;

kLz

f

� �
K du dK 5 szw90(x, y, z), (4.2)

where for clarity we have made explicit the dependence

of W on u, and where

ŵ0(K, u) 5 2i
rrg(1 1 tan2u)

urL
2

qrs2
H

2p
e2(K2s2

H )/2, (4.3)

according to the scaling in (2.12) and introducing the

Fourier transform of (4.1). Note that w90 is defined in

(4.2) to simplify the notation in the full 3D case treated

at the end of the section.

To evaluate the double integral in (4.2) we next pro-

ceed numerically by tabulating in the vertical direction

the structure function W(u; j) for 180 discrete values of

u. This yields an angular resolution Du 5 28. We also

consider 50 discrete values for the horizontal wave-

number K, with a resolution DK 5 p/(10sH). For the

physical grid we take for both horizontal directions the

resolution Dx 5 Dy 5 0.2sH.

In the following, we express our results in dimensional

form. We consider a sz 5 1-km-thick layer of strato-

spheric air entering in the troposphere. We therefore

take a PV amplitude of rrqr 5 1 potential vorticity units

(PVU; 1 PVU [ 1 3 1026 K kg21 m2 s21) and assume

sH 5 55 km. Assuming that this air enters the tropo-

sphere at midlatitudes, we take rr 5 1 kg m23, N 5

0.01 s21, ur 5 300 K, f 5 1024 s21, and J 5 4.

b. Vertical velocity field

The vertical velocity calculated from (4.2) is shown in

Fig. 5 for six different altitudes. Near the PV anomaly

[i.e., for z 5 0 km (Fig. 5a)], the vertical velocity is

positive to the east of the positive PV anomaly and

negative to the west. This is of course consistent with the

balanced picture that the meridional geostrophic winds

are toward the north on the eastern flank of a positive

PV anomaly, and to the south on the western flank (not

shown). As the advective terms are very small in the

thermodynamic equation (2.1d) at this altitude, the

vertical velocity balances the meridional advection of

the background potential temperature ( fLy9 ’ N2w9).

At the higher altitude z 5 1 km (Fig. 5b), the signal in

vertical velocity decays in magnitude and spreads in

horizontal scale, consistent with the QG predictions that

all wavelengths decay exponentially with altitude, with

the long wavelengths decaying less rapidly than the short

ones. Note, however, the two large-scale lobes of op-

posite sign of the vertical velocity that have moved

slightly to the north, which is a first sign that the QG

prediction starts to break down (the QG prediction is

insensitive to the sign of n; see appendix B). At z 5 2 km

(Fig. 5c), the signal in vertical velocity has decayed

further in magnitude and spread farther horizontally

(note the contour interval decrease between Figs. 5b and

5c), again somehow in agreement with the QG predic-

tion. Nevertheless, the two large-scale lobes of vertical

velocity start to be modulated by a smaller-scale oscil-

latory signal, clearly apparent aloft the PV disturbance.

Higher up in altitude this oscillatory signal entirely dom-

inates the response; its lines of constant phase make

a positive angle with the longitude axis because the waves

with n , 0 are less absorbed at the inertial levels than

those with n . 0. Note also that the amplitude between

z 5 3 and 10 km increases in agreement with the z1/2

dependence predicted in (2.27). Because of the super-

position of wavenumbers, the transition between decay-

ing and wavelike perturbation does not occur sharply

at a single inertial level but rather smoothly across an

inertial-layer region. The altitude of the center of this

region is given by the estimate sHf /L ’ 1.1 km, consis-

tent with Fig. 5.

c. EP-flux vector

The EP flux in (2.29) is significant because its vertical

derivative gives the x component of the force exerted by

the GWs on the (transformed Eulerian) mean flow

(Andrews et al. 1987). Because our model (2.1) is both x

and y independent and the GWs are plane waves in both

directions, the two horizontal components of the force

can in fact be obtained from the EP-flux vector (or, up to

a sign, vertical pseudomomentum-flux vector)
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2 u9w9 2 f
y9u9

u0z

, y9w9 1 f
u9u9

u0z

 !
(4.4)

[see Bühler (2009, section 8.2) and the discussion on

the angular momentum flux in Jones (1967)]. The two

components of this EP-flux vector are in proportion to

k and l, since these are the proportion of the x and y

components of the corresponding pseudomomentum

density (Bühler 2009). The nondimensional EP-flux

vector can therefore be written as (1, l/k)F .

This can be made transparent using Bretherton’s

(1969) interpretation of the EP flux as the wave stress

exerted by pressure force on undulating isentropes:

F 5
1

2s 2
H

ð ð
p9$h9 dx dy 5

2p2

s2
H

ð ð
2ikp̂ĥ* dk dl, (4.5)

FIG. 5. Vertical velocity at various altitudes above a PV anomaly with a Gaussian distribution in

the horizontal and Dirac distribution in the vertical. Solid (dashed) contours correspond to positive

(negative) values. The gray shading indicates that the disturbance PV rrq09(x, y) . 0.2 PVU.

2144 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



where h9 denotes the vertical displacement satisfying

Dth9 5 w9, and the factor 1/(2s2
H) is introduced in the

definition of the average so that F has the dimension of

a pressure. Using ikLzĥ 5 ŵ and the disturbance equa-

tions (2.1), we obtain

2ikp̂ĥ* 5 2rr ûŵ* 2 f
ŷû*

u0z

, ŷŵ* 1 f
ûû*

u0z

,

 !
(4.6)

in agreement with (4.4). Using the scaling in (2.10) and

the structure function (2.11a), this relation leads to the

EP-flux vector of a single plane wave,

2ikp̂ĥ* 5
k

k

rrL

f

s2
zjŵ0j

2

1 1 n2
i
1 2 j2

j2
W

j
W* 2 n

WW*

j2

� �

5
rrL

4s2
zjŵ0j

2

N3f (1 1 n2)2

k

K
F , (4.7)

where F is as in (2.28). For the localized PV distribution

(4.3) the EP-flux vector then becomes

F 5 F0

ð‘

0

ð2p

0
s2

Hke2K2s2
HF u,

kLz

f

� �
du dK. (4.8)

The scaling factor F0 is given in (1.2) and is exactly the

same as in LPV10. For the parameters chosen, it is about

F0 5 10 Pa (4.9)

and directly gives the amplitude of the EP-flux vector

since the double integral in (4.8) is nondimensional.

The exact results for the EP-flux vector in (4.8) are

shown in Fig. 6 for two different values of J. When J 5 4,

F at z 5 0 is purely zonal, with a magnitude near 5 mPa.

The zonal orientation follows from the symmetry of the

PV distribution about the x axis. At higher altitudes, F

decreases in amplitude and changes direction. These two

effects result from the absorption of an increasingly

large portion of the wave spectrum at inertial levels,

and from the fact that waves with n , 0 are much less

absorbed than those with n . 0. When J 5 4, F as z / ‘

makes an angle close to u ’ 2308 with the x axis, almost

the angle for which the normalized EP flux has a max-

imum according to (3.2) (see also Fig. 4b). For J 5 10

(Fig. 6b), F in the far field has an amplitude that is

about half that at z 5 0, and it makes an angle with the x

axis that is close to u ’ 2158, a value again consistent

with (3.2).

For practical purposes it is useful to estimate the EP-

flux vector near the PV anomaly and in the far field using

the WKB form for F in (2.31). Introducing (2.31), (4.8)

becomes

F(01) ’
F0

4

ðp/2

2p/2
cosux̂e2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

2npdu, (4.10a)

F(‘) ’
F0

8

ðp/2

2p/2
(cosux̂ 1 sinuŷ)e2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p

2npdu,

(4.10b)

where x̂ and ŷ are the zonal and meridional unit vectors.

Since the WKB approximation assumes J � 1 is large,

these expressions can be further simplified using Laplace’s

method to obtain

F(01) ’
F0

2
ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
J
pp e2p

ffiffi
J
p

x̂,

F(‘) ’
F0

4
ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
J
pp e2p

ffiffi
J
p

(x̂ 2 J21/2ŷ). (4.11)

These formulas give very good approximations for the

EP-flux vector for z � 1 and z � 1 when J � 1 as in

Fig. 6b, but they underestimate it by a factor of almost 2

when J ’ 1.

Comparing (4.11) to the 2D results in LPV10 [see also

(1.1) and (1.2)] shows that the orders of magnitude of F

are comparable in 2D and 3D (the F0 term), and that in

both cases about half of the EP flux in the direction of

the shear is deposited in the inertial layer. The most

remarkable difference is that the EP-flux vector rotates

with altitude. Consider, for example, a westerly shear in

the Northern Hemisphere: the EP-flux vector tends, for

large z, to an angle close to uM 5 21/
ffiffiffi
J
p

to the right of

the shear. As a consequence, the disturbance produced

FIG. 6. EP-flux vector as a function of altitude for the PV dis-

tribution used in Fig. 5 for (a) J 5 4 and (b) J 5 10. The dashed lines

represent the vector every 200 m typically; the thick vectors cor-

respond to the altitudes indicated in (a).
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by the PV anomaly exerts a southwestward drag on the

large-scale flow in the upper inertial layer and, assuming

dissipation at high altitude, a northwestward drag in the

far field aloft. Both drags are almost equal in the direction

of the shear (as in the 2D case) and opposite in the trans-

verse direction. More generally, the transverse component

of the drag in the inertial layers is to the right of the wind

(e.g., northward at the lower inertial layer in the above

example), and to the left in the Southern Hemisphere.

d. Horizontally localized, finite depth PV

The PV distributions used so far were infinitely thin

and thus neglected the effect of the vertical shear on the

PV distribution itself and consequent time evolution of

the wave field. As this aspect has been detailed in the 2D

case by LPV10, we only describe it briefly here. As in

LPV10, we consider a PV distribution at t 5 0 that is

separable in the horizontal and the vertical directions

and that has the same vertical integral as (4.1):

q90(x, y, z) 5 qre
2(x21y2)/2s2

H
cos2[pz/(2sz)] for jzj, sz
0 for jzj. sz

.

�
(4.12)

To compute the vertical integral in the response at a low

numerical cost, we take full advantage of the preceding

calculations and discretize q90 as

q90 ’ qre2(x21y2)/2s2
H �

M21

2M11

cos2[pzm/(2sz)]Dzd(z 2 zm),

(4.13)

where zm 5 mDz and Dz 5 sz/M. In this case, the ver-

tically discretized equivalent of the vertical velocity in

(2.9) reduces to

w9(x, y, z, t) ’ �
M21

2M11

cos2 pzm

2sz

Dz

 !
w90(x 2Lzmt, y, z2 zm),

(4.14)

where w90 is the function introduced in (4.2). Because x and

t enter (4.14) only in the combination x 2 Lzmt, the

computation of the sum over the indices m involves

straightforward vertical and horizontal translations of w9
0
.

Figure 7 shows the evolution of the integral of the

disturbance PV,
Ð1‘

2‘
q9(x, y, z, t) dz, and of the vertical

velocity at the altitude z 5 10 km, for sz 5 1 km and J 5

4. All of the other parameters are as in the previous

sections. The solution is only shown for negative values

of t: for positive t it is almost symmetric to that at neg-

ative t. The background velocity shears the PV whose

horizontal extent therefore decreases with time until t 5

0 before increasing again. When it is more spread out

horizontally (that is at large negative or positive time),

its vertical integral is also relatively small compared to

its value at t 5 0. As a result, the vertical velocity in-

creases as t increases toward 0.

Comparing the four panels in Fig. 7 to the time-

independent disturbance produced by the d-PV of Fig. 5

indicates that the amplitude of the GW patterns are

comparable at t 5 0 and 66 h but substantially smaller

at t 5 612 and 618 h. Accordingly, it is only in time

intervals of half a day or so that the values for GWs

emission and for the associated EP flux given in the

previous sections apply.

5. Conclusions

The linear motion associated with 3D localized po-

tential vorticity (PV) anomalies in the presence of an

unbounded vertical shear L has been analyzed in the

linear approximation. Exact and approximate solutions

were obtained analytically for PV anomalies that are

monochromatic in x and y, and vary as a Dirac delta

function d(z) in the vertical. Combinations of these yield

solutions for more general PV anomalies.

A PV anomaly of horizontal scale sH at z 5 0 induces

two inertial critical layers at z 5 6sHf/L. Through these

levels, the intrinsic frequency of the disturbance in-

creases from subinertial to superinertial. Correspond-

ingly, there is a transition from balanced near z 5 0 (where

the solutions can be described as quasigeostrophic) to

sheared GW for jzj . sHf/l. The amplitude of the GW is

approximately

exp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

q
p/2 2 np

�
/J/(1 1 n2),

where J 5 N2/L2 is the Richardson number and n 5 l/k is

the ratio of the y and x components of the wave vector.

As previously noted (LPV10), these waves can be sub-

stantial for moderate Richardson numbers, say J be-

tween 1 and 10. The present analysis reveals a new,

remarkable result: the emitted waves have a strong

meridional asymmetry, with larger amplitudes for waves

with n , 0. For example, in a westerly shear in the

Northern Hemisphere, waves aloft having their wave

vector pointing to the southeast will be larger than

waves with their wave vector pointing to the northeast

(see Figs. 5 and 7). Using the exact analytical solutions

we show how this asymmetry, in a symmetric back-

ground flow, is related to the meridional slope of the
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isentropes (see Fig. 2). This asymmetry has been iden-

tified previously in studies of gravity waves propagating

toward critical levels in a constant shear (the valve ef-

fect) (Yamanaka and Tanaka 1984).

One implication is a strong sensitivity to orientation

(i.e., to n) of the absorption of the Eliassen–Palm flux

through the inertial levels: there is almost no jump when

n is large and negative, in contrast to nearly complete ab-

sorption when n is large and positive [see (2.31) and (2.32)

and Fig. 4]. Hence the drag due to the waves absorbed

within the upper inertial layer has a substantial component

oriented to the right of the shear in the Northern Hemi-

sphere (southeast in the above example). The WKB solu-

tions provide simple expressions for the fluxes, the angle

maximizing them, and the drag, in very good agreement

with the exact analytical solutions (see Fig. 4).

The relevance of this emission in real flows remains to

be assessed. Nonetheless, two points are worth noting: first,

it has been noted from satellite observations (Wu and

Eckermann 2008) and from high-resolution numerical

weather prediction (NWP) models (Shutts and Vosper

2011) that gravity waves in the midlatitudes have a favored

orientation: phase lines with a northeast-to-southwest tilt

in the Northern Hemisphere, and with a northwest-to-

southeast tilt in the Southern Hemisphere. Waves with these

orientations are conspicuous in the stratospheric polar night

jets of both hemispheres (i.e., in regions with strong positive

vertical shear). The reasons for this favored orientation are

not clear.1 It is noteworthy that this orientation is consistent

with that expected in the case of emission from sheared PV

anomalies. Whether this emission is occurring or this is only

a coincidence due to a more fundamental property of GW in

shear remains to be investigated. Second, at smaller scales,

we can expect this mechanism to play a role where the

breaking of intense orographic gravity waves produces

small-scale PV anomalies (Plougonven et al. 2010).

As discussed in LPV10, our results could be used for

parameterizations in GCMs of GW emission by fronts at

the tropopause (Charron and Manzini 2002; Richter

FIG. 7. Vertical velocity at z 5 10 km above a PV anomaly with a Gaussian distribution in the

horizontal and a finite depth in the vertical. Solid (dashed) contours correspond to positive

(negative) values. The three shades of gray indicate vertical integrals of the PV disturbance

greater than 0.1, 0.45, and 0.9 PVU km.

1 Shutts and Vosper (2011) suggested that this tilt could be tied

to the orientation of surface cold fronts, but gravity waves gener-

ated in idealized baroclinic life cycles (O’Sullivan and Dunkerton

1995; Plougonven and Snyder 2007) show the opposite tilt.
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et al. 2010), where substantial intrusion of stratospheric

air occurs and where strong shears are common. In this

context the predictor given in LPV10 seems adapted,

providing we add the transverse component of the EP

flux as in (4.11). The factor 1/4 for the flux emitted by

2D PV disturbance in (1.1) should more accurately be

1/(2
ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
J
pp

) [see (4.11)], but they should probably be

replaced by a tuning factor of order 1. In all cases the

along-shear component of the EP-flux vector should

decrease by a factor of 2 at the inertial levels and the

transverse component in the far field should be oriented

to the right of the shear with magnitude 1/
ffiffiffi
J
p

times the

along-shear component.

The present paper has shown that the formula given in

LPV10 and recalled here in (1.1) and (1.2) applies quite

well in the 3D case. To take directional effects into ac-

count one should use (4.11) rather than (1.1), keeping

unchanged the dimensional factor (1.2).
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APPENDIX A

Exact Solution for W(j)

To find a solution to (2.13), we first derive its homo-

geneous solutions for j . 0 and impose a radiation con-

dition for j � 1 to obtain a solution that represents an

upward-propagating GW. We deduce from this a solution

valid for j , 1 that represents a downward-propagating

GW for j � 21. The amplitudes of these two solutions

are then chosen to satisfy the jump conditions

[W]01

02 5 0 and

�
W

j

j2

�01

02

5 1. (A.1)

a. Homogeneous solution for j . 0

The changes of variables W 5 (1 1 j)2in and h 5 j2

transform (2.13) into the canonical form of the hyper-

geometric equation [(15.5.1) in Abramowitz and Stegun

(1964), hereafter AS]:

h(1 2 h)Y
hh

1 [c 2 (a 1 b 1 1)h]Y
h

2 abY 5 0,

(A.2a)

where a 5 2
1

4
2

i

2
n 1

i

2
m, b 5 2

1

4
2

i

2
n 2

i

2
m,

c 5 2
1

2
, and (A.2b)

m 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2) 2 1/4

q
. (A.2c)

For j . 1 the two solutions of the hypergeometric

equation (A.2a) are given by (15.5.7) and (15.5.8) in AS.

We retain the second solution

W(u)(j) 5 (1 1 j)2in
j22bF(a9, b9; c9; j22), (A.3)

where F is the hypergeometric function and a 5 a9, b9 5

b9 2 c 1 1, c9 5 b 2 a 1 1, because its asymptotic form,

W(u)(j) ; j1/21im as j / ‘, (A.4)

corresponds to an upward propagating GW (Booker and

Bretherton 1967).

For 0 , j , 1 the solution to (A.2a) is best written as

a linear combination of the two independent solutions

(15.5.3) and (15.5.4) in AS:

W(u)(j) 5 (1 1 j)2in[AF(a, b; c; j2)

1 Bj3F(a0, b0; c0; j2)], (A.5)

where a0 5 a 2 c 1 1, b0 5 b 2 c 11, c0 5 2 2 c, and A

and B are two complex constants.

To connect (A.5) to (A.3), we use the transformation

formula for F [(15.3.6) in AS] and obtain the asymptotic

approximations

W(u)(j) ; a9(j 2 1)in
1 b9 as j / 11, (A.6a)

W(u)(j) ; (aA 1 a0B)(1 2 j)in

1 bA 1 b0B as j / 12. (A.6b)

In these expressions,

a5 2inG(c)G(a 1b 2 c)

G(a)G(b)
and b 5

G(c)G(c 2 a 2 b)

G(c 2 a)G(c 2 b)
,

(A.7)

where G is the gamma function (AS, chapter 6). The

other coefficients (a9, b9) and (a0, b0) are defined by the

same formulas with (a, b) replaced by (a9, b9) and (a0,

b0), respectively.

To continue the solution (A.6a) below the inertial

level at j 5 1, we follow Booker and Bretherton (1967)

and introduce an infinitely small linear damping that

shifts the real j axis into the lower half of the complex

plane so that

j 2 1 5 (1 2 j)e2ip for j , 1. (A.8)

Thus, (A.6a) matches (A.6b) provided that
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aA 1 a0B 5 a9enp and bA 1 b0B 5 b9. (A.9)

This determines A and B and completes the evaluation

of W(u)(j).

b. Solution over the entire domain

The solution for j , 0 can be deduced from W(u)(j) by

noting that (2.13) applies to W* when j is changed in 2j.

A possible solution is simply

W(d)(j) 5 W(u)(2j)*. (A.10)

This satisfies the radiation condition for j / 2‘ since

W(d)(j) ; jjj1/22im, (A.11)

which represents a downward-propagating GW.

The two solutions W(u) and W(d) can be combined to

obtain a solution valid over the entire domain that sat-

isfies the jump condition (A.1). This is given by

W(j) 5
EW(u)(j) for j . 0

E*W(d)(j) for j , 0
,

(
(A.12)

where the constant E is found by imposing the jump

condition (A.1) and given by

E 5
A*

3(AB* 1 A*B)
. (A.13)

To verify this, we note that when jjj � 1, the upper and

lower solutions in (A.12) have the asymptotic expansions

EA

�
12 inj 2

m2

2
1

1

8

� �
j2 2 in

n2

3
2

m2

2
1

5

24

� �
j3

�
1EBj3,

(A.14a)

E*A*

�
1 2 inj 2

m2

2
1

1

8

� �
j2 2 in

n2

3
2

m2

2
1

5

24

� �
j3

�

2 E*B*j3 (A.14b)

for j . 0 and j , 0, respectively. For the value of E in

(A.13), EA is real, which implies that the first terms on

the left-hand sides of (A.14a) and (A.14b) are identical,

ensuring that [W]0 1

0 2 5 0 and they do not contribute

to the jump [W
j
/j2]

0 1

0 2
5 1 in (A.1); the second terms

combine so that Wj/j
2 jumps by 1 at j 5 0 as required.

Note also that near jjj 5 0, W(j) approaches the value

W(0) 5
A*A

3(AB* 1 A*B)
. (A.15)

APPENDIX B

WKB Approximation

In this appendix, we derive the WKB approximations

(2.16)–(2.19) for W in regions (i)–(iv) and provide de-

tails of the matching procedure.

For region (i), we introduce z 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(1 1 n2)

p
j 5 O(1)

into (2.13) to obtain at leading order the geostrophic

approximation

W
zz

z2
2 2

W
z

z3
2

W

z2
5

d(z)

[J(1 1 n2)]3/2
. (B.1)

The solution is readily found and given in terms of j .

0 by (2.16).

For regions (ii) and (iv), the standard WKB expansion

W(j) 5 (W0 1 J21/2W1 1 � � � )e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p Ð j

f(j9)dj9

(B.2)

gives at O(J) and O(J1/2)

f 5
61ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 j2
p and W0 5

j

(j 2 1)1/42in/2(j 1 1)1/42in/2
,

(B.3)

respectively. The forms (2.17) and (2.19) of the solution

follow immediately.

For region (iii), finally, we introduce the variable z 5

J(1 1 n2)(j 2 1) 5 O(1). To leading order (2.13) then

reduces to

2zW
zz

1 2(1 2 in)W
z

1 W 5 0, (B.4)

whose solution is given in terms of Hankel functions in

(2.19). The following asymptotic equations [(9.2.3) and

(9.2.4) in AS] are needed to match this solution to the

solutions in regions (ii) and (iv):

H
(1)
in (x) ;

ffiffiffiffiffiffi
2

px

r
enp/2ei(x2p/4) as jxj/ ‘ for

2p , argx , 2p, and (B.5)

H
(2)
in (x) ;

ffiffiffiffiffiffi
2

px

r
e2np/2e2i(x2p/4) as jxj/ ‘ for

22p , argx , p. (B.6)

Using these, we find from (2.18) that
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W ;
21/4ffiffiffiffi

p
p

z1/42in/2
[A(iii)enp/2ei(

ffiffiffiffi
2z
p

2p/4)

1 B(iii)e2np/2e2i(
ffiffiffiffi
2z
p

2p/4)] (B.7)

as j / ‘. Matching with the limiting behavior of (2.16)

as j / 1 gives (2.21).

To match the solutions between regions (ii) and (iii),

we need to consider the limit of the Hankel functions for

z 5 jzje2ip with jzj/ ‘, in accordance with the analytic

continuation (A.5). Proceeding in similar fashion as

above using (B.5) yields relation (2.22) between A(ii) and

A(iii), but B(iii) 5 0. As mentioned, B(ii) 5 0 is incon-

sistent with the nonzero EP flux expected because of the

wave radiation as jzj/ ‘. To resolve this difficulty, we

need to employ a more sophisticated matching that

recognizes that B(ii) takes in fact a nonzero exponen-

tially small value and provides an estimate for this value.

The nonzero value of B(ii) arises as a result of a Stokes

phenomenon (e.g., Ablowitz and Fokas 1997): the line

z , 0 (arg z 5 2p) is a Stokes line, where one solution

(here multiplied by A(ii)) is maximally dominant over

the other, recessive solution (multiplied by B(ii)). Across

this Stokes line, the dominant solution switches on the

recessive solution with an amplitude given by an expo-

nentially small Stokes multiplier. Thus, below the Stokes

line the amplitude B(ii) 5 0, and above it B(ii) 6¼ 0 is given

by the Stokes multiplier; on the Stokes line itself, B(ii) is

half the Stokes multiplier (Berry 1989). To obtain the

Stokes multiplier, we need a large jzj formula for (2.18)

that is valid for 23p , argj , 2p so that it holds im-

mediately above the Stokes line and also on the anti-

Stokes line argz 5 22p where the two solutions have

the same order and hence can be identified un-

ambiguously. Such a formula is obtained using the

connection equation [(9.1.37) in AS] to obtain

H
(1)
in (

ffiffiffiffiffi
2z

p
) 5 2 cosh(np)H

(1)
in (eip

ffiffiffiffiffi
2z

p
)

1 enpH
(2)
in (eip

ffiffiffiffiffi
2z

p
). (B.8)

For 23p , argz , 2p, 2p/2 , arg(eip
ffiffiffiffiffi
2z
p

) , p/2, and

(B.5) and (B.6) can be applied to obtain the large-jzj
asymptotics

H
(1)
in (

ffiffiffiffiffi
2z

p
) ;

21/4ffiffiffiffi
p
p

z1/4
enp/2[2 cosh(np)e23ip/4e2i

ffiffiffiffi
2z
p

1 e2ip/4ei
ffiffiffiffi
2z
p

]. (B.9)

Introducing this into (2.18) with B(iii) 5 0 and using that

j 5 J (1 1 n2) (1 2 j)e2ip leads to

W ;
21/4enp[J(1 1 n2)]21/41in/2ffiffiffiffi

p
p

(1 2 j)1/42in/2
A(iii)[e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p ffiffiffiffiffiffiffiffiffiffiffi

2(12j)
p

2 2i cosh(np)e2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(11n2)
p ffiffiffiffiffiffiffiffiffiffiffi

2(12j)
p

]. (B.10)

Matching with the limit of (2.17) as j / 1 gives (2.22),

and (2.23) on taking into account that Stokes multiplier

on the Stokes line is half its value away from it.

The matching between regions (i) and (ii) yielding

(2.25) and (2.26) is straightforward.
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