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ABSTRACT

The backward reflection of a stationary gravity wave (GW) propagating toward the ground is examined
in the linear viscous case and for large Reynolds numbers (Re). In this case, the stationary GW presents a
critical level at the ground because the mean wind is null there. When the mean flow Richardson number
at the surface (J ) is below 0.25, the GW reflection by the viscous boundary layer is total in the inviscid limit
Re → �. The GW is a little absorbed when Re is finite, and the reflection decreases when both the
dissipation and J increase. When J � 0.25, the GW is absorbed for all values of the Reynolds number, with
a general tendency for the GW reflection to decrease when J increases. As a large ground reflection favors
the downstream development of a trapped lee wave, the fact that it decreases when J increases explains why
the more unstable boundary layers favor the onset of mountain lee waves. It is also shown that the GW
reflection when J � 0.25 is substantially larger than that predicted by the conventional inviscid critical level
theory and larger than that predicted when the dissipations are represented by Rayleigh friction and
Newtonian cooling.

The fact that the GW reflection depends strongly on the Richardson number indicates that there is some
correspondence between the dynamics of trapped lee waves and the dynamics of Kelvin–Helmholtz insta-
bilities. Accordingly, and in one classical example, it is shown that some among the neutral modes for
Kelvin–Helmholtz instabilities that exist in an unbounded flow when J � 0.25 can also be stationary
trapped-wave solutions when there is a ground and in the inviscid limit Re → �. When Re is finite, these
solutions are affected by the dissipation in the boundary layer and decay in the downstream direction.
Interestingly, their decay rate increases when both the dissipation and J increase, as does the GW absorp-
tion by the viscous boundary layer.

1. Introduction

The conventional linear theory of trapped lee waves
assumes that mountains excite free modes of oscilla-
tions (Scorer 1949). These modes are composed of sta-
tionary gravity waves that are entirely reflected down-
ward at a turning altitude located in the midtropo-
sphere and entirely reflected upward at the ground.
Although this theory is largely supported by observa-
tions, there are situations where the atmospheric con-
ditions aloft are favorable for the low-level trapping of
gravity waves but where lee waves are not observed
(Smith et al. 2002). A plausible explanation is that the

gravity waves (GWs) are absorbed in the boundary
layer (Smith et al. 2006). This process can be very effi-
cient because the wind at the ground is null, so station-
ary gravity waves have a critical level there (Jiang et al.
2006). If the GWs’ critical-level interaction theory ap-
plies in this case (Booker and Bretherton 1967, herein-
after BB67), it is predicted that the GWs can be very
efficiently absorbed if the Richardson number of the
background flow at the ground, J, is larger than 0.25.

Over the last 20 years, numerical simulations have
established that the mesoscale mountain flow dynamics
is substantially affected by the presence of a boundary
layer (Bougeault and Lacarrere 1989; Richard et al.
1989; Georgelin et al. 1994). In these papers, it is shown
that the specification of the surface friction and the
treatment of the turbulent dissipation in the boundary
layer parameterization schemes affect the onset of the
downslope windstorms and the development of moun-
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tain waves. The tuning of these parameters was a pre-
requisite to reproduce the flow observed during the
Momentum Budget over the Pyrénées (PYREX) ex-
periment (Bougeault et al. 1993). More recently, Smith
et al. (2002) have shown that the impact of the bound-
ary layer can become extremely strong, in particular
when the low-level air between the mountain peaks is
stagnant. They have shown, interpreting data from the
Mesoscale Alpine Program (MAP) experiment
(Bougeault et al. 2001), that the stagnant layer can ab-
sorb the downward-propagating waves and inhibit the
development of trapped lee waves. It is in this context
that they have introduced the concept of a reflective
factor of the stationary wave by the boundary layer q:
when the amplitude of this factor is near |q | � 1, the
downward stationary gravity wave is almost entirely re-
flected and trapped lee waves develop over a long dis-
tance downstream of the mountain. When |q | is small,
the downward wave is absorbed and the trapped lee
waves rapidly decay downstream. This factor also turns
out to be efficient in explaining the downstream devel-
opment of trapped lee waves in a quite extensive set of
mesoscale simulations (Jiang et al. 2006). More re-
cently, Smith et al. (2006) simplified the boundary layer
dynamics to bulk formulas for the stresses at the bound-
ary layer interfaces and showed that the frictional
forces at the top and at the bottom of the boundary
layer can shift the disturbance upstream in the bound-
ary layer. This configuration yields to an energy loss,
which explains the absorption of the disturbance by the
boundary layer.

It is quite clear that these papers deepen our under-
standing of the trapped lee-wave dynamics. The dy-
namical interpretation they provide is nevertheless
based on highly simplified mathematical models: in
Jiang et al. (2006) the frictions are represented by linear
dampings, in Smith et al. (2006) they are represented by
bulk formulas for stresses that are applied at the inter-
faces of the boundary layer only. Accordingly, it seems
worthwhile to evaluate q in the case of a stably strati-
fied viscous boundary layer and for smooth background
profiles. The central reason for choosing this particular
setup is that the physics and the dynamics of a viscous
and thermally conducting fluid are not controlled by
arbitrary tuning parameters and are very comprehen-
sive. It also permits one to treat analytically and in a
continuous way the transition from the boundary layer
to the free atmosphere. Nevertheless, in this setup, the
GW absorptions due to a stagnant or to a convectively
well-mixed boundary layer are neglected. Still, in this
setup the influence on the GW absorption of the partial
reflections occurring at the top of the boundary layer

where the wind and stratification vary abruptly is also
neglected.

Although the interaction between GWs and critical
levels has been the subject of many papers during the
last 40 years (see references in Lott and Teitelbaum
1992), little attention has been given to the rather pe-
culiar circumstance where the critical level is exactly
located on a rigid surface. In this case, it is not obvious
that the GW really feels the influence of the critical
level and that the behavior of the solution remains very
sensitive to the value of J. If it is the case, the sensitivity
of the trapped lee waves dynamics to the value of J and
the fact that the critical-level dynamics plays a signifi-
cant role also suggest that there is some correspon-
dence between trapped lee waves and Kelvin–
Helmholtz instabilities.

To emphasize that the problem needs dissipation, it
is important to recall that the inviscid problem is rather
degenerated in the stationary case. In this case, BB67
have shown that the disturbance near the ground is the
combination of two independent solutions in which ver-
tical velocity tends toward zero once it approaches a
critical level [see their Eq. (2.5)]. They both satisfy the
inviscid boundary condition w � 0 when the critical
level is at the ground. This leaves undetermined the
evaluation of the fraction between the two, and it is this
fraction that ultimately controls the disturbance ab-
sorption by the critical level.

The first purpose of this note is to evaluate the frac-
tion between the two inviscid solutions of BB67 when
the critical level is at the ground and by adding a small
dissipation. The case where the dissipation is due to
viscosity and thermal diffusivity is detailed. The case
where it is due to Rayleigh friction and Newtonian
cooling is briefly discussed. The second purpose is to
use this result to evaluate the reflection q of a GW
coming from z → �. The third is to illustrate that there
is correspondence between trapped lee waves and the
Kelvin–Helmholtz instabilities.

The plan of this note is as follows. Section 2 gives the
basic equations and recalls some properties of the two
independent inviscid solutions of BB67. The viscous
solutions in the viscous boundary layer are evaluated in
section 3 and matched with these two inviscid solutions.
Section 4 translates this result in terms of the reflection
of a GW coming from z � �. It also translates it in
terms of trapped-waves solutions. For these purposes,
the classical mean flow profile used by Van Duin and
Kelder (1982, hereafter VK82) to study the absorption
of a GW by a critical level and by Drazin (1958) to
study Kelvin–Helmholtz instabilities is adopted in sec-
tion 4. Section 5 discusses the results obtained in rela-
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tion with our current knowledge of the GWs’ critical-
level dynamics. Their significance for the theory of
trapped lee waves is also presented. The appendix
treats the case where the dissipations are due to Ray-
leigh friction and Newtonian cooling.

2. Basic equations and inviscid solution near the
ground

a. Physical setup and background flow definition

The fluid considered is nonrotating, viscous, and
thermally conducting. Its kinematic viscosity � and its
thermal conductivity � are both constant. In the ab-
sence of perturbations, this fluid has a velocity U(z)
oriented along the horizontal x axis, varying in the ver-
tical direction z and null at the ground (e.g., at z � 0).
Its characteristic amplitude outside of the shear layer is
U0 and the length scale representative of the shear layer
depth is D � U0 /Uz(0). Here the z subscript is for the
vertical derivation. The fluid is also stratified with an
undisturbed density �0(z) decreasing with altitude so
that the Brunt–Väisälä frequency N2 � �g /�0(0) d�0 /
dz is positive. Here g is the gravitational acceleration
and �r is a reference constant. The Boussinesq approxi-
mation is adopted; we will note that N2

0 is the value of
N2 at the ground and take �0(0) � �r.

Although the more general results presented are re-
lated to the dynamics of the GWs inside and just above
the viscous boundary layer, their consequences in the
far field will be illustrated for mean flow profiles that
vary, like

U	z
 � U0 tanh	z �D
, N2 � N0
2 	1


[e.g., that present a smooth transition from the region
near the ground where the wind shear is almost con-
stant (z K D) to large altitudes where the wind is al-
most constant (z k D)].

It is important to note that the background density
profile yielding to N2 in Eq. (1) varies linearly in z, so
that it is an exact solution of the diffusion equation
(e.g., because �0zz � 0). This is not strictly true for the
wind profile U(z), but the error is rather small every-
where at the large Reynolds number. More signifi-
cantly, U(z) is almost an exact solution of the viscous
equation near the ground because it almost varies lin-
early with z when z K D (again because Uzz � 0 there).

The stationary perturbations analyzed have a depen-
dence on x of the form exp(ikx), where k is a real
horizontal wavenumber. Introducing U0, D � U0 /Uz(0),
�rU

2
0, �rU

2
0 /(gD) as scales for the velocities, the length,

the perturbation of pressure, and the perturbation of

density, respectively, the dimensionless form of the
equations for the perturbation are

ikUu � Uzw � ikp � Re�1	uzz � k2u
,

ikUw � pz � � � Re�1	wzz � k2w
,

iku � wz � 0, and

ikU� � JN2w � 	PrRe
�1	�zz � k2�
. 	2


In Eqs. (2), u, w, p, and � are complex dimensionless
functions, representing the perturbations of horizontal
wind, vertical wind, pressure, and density, respectively.
Also in Eqs. (2),

Re �
U0D

�
, Pr �

�

�
, and J �

N0
2D2

U0
2 	3


are the Reynolds number, the Prandtl number, and the
Richardson number at the ground, respectively. Note
also that in Eqs. (2) and from now on, z, k, U(z), and
N(z) are also dimensionless. For this set of equations
the boundary conditions at the ground are

u	0
 � �	0
 � w	0
 � 0. 	4


b. Inviscid solutions

When the Reynolds number is large, the solution is
very well approximated by its inviscid solution (e.g., by
the solution of Eqs. (2) with all terms on the right-hand
sides put to zero). In this limit, Eqs. (2) reduce to the
Taylor–Goldstein equation:

wzz � �JN2

U2 �
Uzz

U
� k2�w � 0. 	5


For small z, BB67 have derived the leading order be-
havior of the solution near z � 0. When J � 0.25 it is
given by

w � Az1�2�i� � Bz1�2�i�, where � ���J �
1
4�

	6


and where A and B are 2 complex constants. When J �
0.25, the same equation applies by changing 
 into i
.

When J � 1⁄4, the momentum flux associated with the
inviscid solution in Eq. (6) is given by

uw* � u*w

4
� �

�

2k
	 |A |2 � |B |2
 � �

� |B |2

2k
	1 � |R |2
,

	7
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where the * superscript is for the complex conjugate,
and R is the fraction between the 2 solutions of BB67:

R � A �B. 	8


When J � 1⁄4, the momentum flux near z � 0 is given by

uw* � u*w

4
�

i�

2k
	A*B � B*A
 � �

� |B |2

k
|R | sin�,

	9


where � is the phase of R: R � |R | expi�.
It is noteworthy that the inviscid solution in Eq. (6)

satisfies the inviscid boundary condition w(0) � 0 for all
values of A and B and does not permit one to evaluate
R; near the ground, it is necessary to solve the viscous
equations and to match the result to the inviscid solu-
tion.

3. Solution in the viscous layer and matching

a. Method

To evaluate the viscous solutions near the ground,
the Eqs. (2) are rescaled using the inner vertical coor-
dinate and the inner variables (Hazel 1967):

z � �z̃, w � k�w̃, u � ũ, p � �p̃,

� � �̃, and where � � 	kRe
�1�3. 	10


Here, � characterizes the depth over which the viscous
effects are important. In the limit of small �, the set of
Eqs. (2) is well approximated by

iz̃ũ � w̃ � ip̃ � ũz̃z̃, p̃z̃ � �̃ � 0, iũ � w̃z̃ � 0, and

iz̃�̃ � Jw̃ � Pr�1�̃z̃z̃. 	11


This set of equations admits six independent solutions;
their asymptotic form for z̃ → � can be found in Bald-
win and Roberts (1970). When J � 0.25 they are given
by

w̃1 � z̃1�2�i�, w̃2 � z̃1�2�i�, w̃3 � z̃�5�4e�	2�3
�iz̃3�2
,

w̃4 � z̃�9�4e�	2�3
�iPrz̃3�2
, w̃5 � z̃�5�4e�	2�3
�iz̃3�2

, and

w̃6 � z̃�9�4e�	2�3
�iPrz̃3�2
. 	12


Because the solutions w̃5 and w̃6 tend exponentially
toward � when z̃ → �, they cannot match the inviscid
solution when z̃ → � (Van Duin and Kelder 1986), so
they have to be dropped from the inner solution:

w̃ � Ãw̃1 � B̃w̃2 � C̃w̃3 � D̃w̃4. 	13


To evaluate the 4 viscous solutions (w̃i, i � 1, 4), the
Eqs. (11) are integrated downward numerically using
the Brankin et al. (1991) Runge–Kutta library subrou-
tine. The integration starts at the altitude z̃ � 5 and
finishes at z̃ � 0 (see also Hazel 1967). For each solu-
tion, the starting values for w̃i and its first five deriva-
tives are deduced from Eqs. (12). For each solution, the
ground values w̃i(0), ũi(0), and �̃i(0) combined with the
three boundary conditions [Eq. (4)] permit one to
evaluate Ã, C̃, and D̃ as a function of B̃. Following Van
Duin and Kelder (1986), this solution is then matched
to the inviscid solution in (6) by taking

A � Ãk�1�2�i�, B � B̃k�1�2�i�. 	14


This matching can also be written

R � ��2i�R̃, where R̃ � �Ã �B̃ 	15


is the “inner” coefficient measuring the fraction be-
tween the two viscous solutions that match the inviscid
solution in Eq. (6).

b. Results

The results of 2 numerical integrations are presented
in Figs. 1a,b, for J � 0.1 and J � 0.5, respectively (for
the other parameters, see the Fig. 1 caption). In these
integrations, B̃ is fixed, the inner solution is evaluated
as described in section 3a giving Ã, and the matching
conditions in Eq. (14) give A and B. The inviscid solu-
tion is then evaluated using Eq. (6). To check that the
viscous and the nonviscous solution recover each other
over a large zone, the viscous equations are also inte-
grated up to z̃ � 10 and the inviscid solution is dis-
played down to z̃ � 1.

The amplitudes of ũ, w̃, and �̃ are shown as a function
of the inner vertical coordinate z̃ in Figs. 1a,b (left pan-
els). Also shown are the corresponding inviscid solu-
tions expressed with the inner variables u, w/(k�), and �
(dashed lines). For these 3 variables, there is a smooth
transition from the full viscous solution to the inviscid
one when 1 � z̃ � 5. Note as well that the full viscous
solutions and the inviscid solutions are almost equal
everywhere between z̃ � 5 and z̃ � 10. It is also inter-
esting to note that the phase of all the variables de-
creases with altitude in both cases considered in Figs.
1a,b (right panels). It means that the perturbations in
the viscous layer are shifted upstream when compared
to the phase of the disturbances above the viscous layer.
As shown by Smith et al. (2006), in another simple
model of the boundary layer, this phase shift is the
fundamental cause of the absorption by the boundary
layer.

To quantify more precisely this absorption, Fig. 2
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gives the value of the coefficient R̃ and for few Prandtl
numbers 0.2 � Pr � 5. When J � 0.25, the amplitude
|R̃ | is always larger than 0.75; it increases monotonically
when J increases and becomes equal to 1 exactly when
J � 0.25. When J � 0.25, |R̃ | decreases as J increases,
going to zero as J → �. �ote that the amplitude |R̃ | in
Fig. 2 is almost insensitive to the value of the Prandtl
number Pr, at least in the domain considered (0.2 �
Pr � 5). The dashed lines in Fig. 2 are for the phase �̃.
When J � 0.25 it is positive and slightly smaller than �,
and its value is insensitive to the value of the Prandtl
number. When J � 0.25, �̃ can take all values between
�� and ��, and it also becomes sensitive to the value
of the Prandtl number.

For the inviscid fraction R, its relationships with R̃ in
Eq. (15) make its amplitude |R | � |R̃ | when J � 1⁄4. This
allows one to rewrite the momentum flux expression in
Eq. (7):

uw* � u*w

4
� �

� |B |2

2k
	1 � |R̃ |2
 � 0. 	16


It is positive because |R̃ | � 1 when J � 1⁄4 (Fig. 2). As
a positive momentum flux corresponds to a downward-
propagating disturbance, Eq. (16) proves that there is
absorption by the viscous layer. Note also that the mo-
mentum flux in Eq. (16) is indicative that the absorp-
tion increases when J increases, because |R̃ | decreases
toward 0 in this case (Fig. 2).

When J � 1⁄4, the matching in Eq. (15) still applies by
changing 
 into i
 so the momentum flux in Eq. (9) can
be written

uw* � u*w

4
� �2�

� |B |2

k
|R̃ | sin�̃ � 0. 	17


It is again positive, but in this case this is due to the fact
that the phase 0 � �̃ � � (Fig. 2). The stationary dis-
turbance is again absorbed by the viscous layer. Note
that in this case, the presence of the very small term �2


in Eq. (17) indicates that the absorption is small when
J � 1⁄4. In particular, in the infinite Reynolds number
limit, � → 0 and the momentum flux in Eq. (17) be-
comes null: the GW is entirely reflected by the ground.

4. Application to a varying background shear

At this stage, to quantify even more precisely the
absorption, it is important to recall that it is not trivial
to relate the solutions of BB67 to upward-propagating
waves in z � �. �n other words, the coefficient B in Eqs.
(16)–(17) is not measuring the amplitude of a GW
propagating toward the surface [except in the slowly
varying limit J k 1; see BB67]. To circumvent this dif-
ficulty, we next adopt the mean flow profiles in Eq. (1).
For these profiles, exact inviscid solutions to the Tay-
lor–Goldstein equation [Eq. (5)] exist (see VK82 or
Lott et al. 1992 for details); when J � 0.25 and J � k2

they are given by

FIG. 2. Fraction R̃ [Eq. (15)] between the viscous solutions that
match the inviscid solutions of BB67 and for 5 different values of
the Prandtl number: Pr � 0.2, 0.5, 1, 2, and 5; amplitude | R̃ | (thin
solid), phase �̃ (thick gray dashed). Note that the horizontal axis
is the logarithm.

FIG. 1. Outer and inner solutions expressed with the inner vari-
ables in Eq. (10) and for Pr � 2, k � 0.1, and � � 10�2 (Re � 107):
(a) J � 0.1 and (b) J � 0.5. Here, ũ (thick solid), w̃ (thick gray
solid), and �̃ (thin solid) are from the Runge–Kutta numerical
integration of the viscous Eq. (11); u (thick dashed), w/(�k) (thick
gray dashed), and � (thin dashed) are from the inviscid solution of
BB67 in Eq. (6). Note that w̃ and w/(�k) have been multiplied by
0.1 for clarity.
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w � Ar1�4�i��2	1 � r
�im�2F �5
4

� i
�

2
� i

m

2
,

�
1
4

� i
�

2
� i

m

2
; 1 � i�; r�

� Br1�4�i��2	1 � r
�im�2F �5
4

� i
�

2
� i

m

2
,

�
1
4

� i
�

2
� i

m

2
; 1 � i�; r�, 	18


where F is the hypergeometric function, r � tanh2z, and
m � �| J � k2 | is the vertical wavenumber of the
disturbance in the limit z → �. �ote that the k2 part of
m is a nonhydrostatic term and that the coefficients A
and B in Eq. (18) are the same as in Eq. (6) [in par-
ticular because F(., .; .; 0) � 1]. Note also that Eq. (18)
still applies when J � 1⁄4 and/or when J � k2 by chang-
ing 
 into i
 and/or m into im. To describe the solution
in the limit z → �, the following linear transformation
formula for F can be used (see, e.g., Oberhettinger
1970):

F 	a, b; c; r
 �
		c
		c � a � b


		c � a
		c � b

F 	a, b; a � b � c � 1, 1 � r


� 	1 � r
c�a�b
		c
		a � b � c


		a
		b

F 	c � a, c � b;

c � a � b � 1; 1 � r
, 	19


where � is the gamma function and a, b, and c are
complex constants. The use of this transformation (19)
in the solution (18) permits one to show that in z → �,

w � Upe�imz � Doe�imz. 	20


Here the sign convention is as in Jiang et al. (2006),
while Up and Do are linear combinations of A and B
with coefficients given by products and fractions of
gamma functions.

a. Propagating solutions: J � k2

When J � k2, the first solution in Eq. (20) is an
upward-propagating GW and the second a downward-
propagating GW. Hence the reflection coefficient is

q � Up �Do. 	21


Its amplitude |q | is shown in Fig. 3 and for a wavenum-
ber k � 10�1, which ensures vertical wave propagation
in z → � for all values of J � 10�2.

As expected from the results in section 3, the incident
wave Do is almost entirely reflected (|q | � 1) when J �
0.25, at least when � is below 10�4 (thin solid lines
corresponding to � � 10�8 and � � 10�4 in Fig. 3).

Some absorption occurs when � increases, but it is small
(thin solid line corresponding to � � 10�2).

When J � 0.25, and for the 3 values of � shown (thin
lines in Fig. 3), the amplitude of the reflection factor |q |
is below 1. In this case and for a fixed �, the values for
|q | vary around |R̃ | when J increases. More precisely,
|q | presents a series of local minima and maxima that
converge toward |R̃ | when J increases. The presence of
these extrema is related to the fact that the matching
condition in Eq. (15) affects the phase of the fraction
between the two inviscid solutions of BB67—(R): when
J increases, the relative phase of the coefficient � i
 that
links R and R̃ in Eq. (15) varies much more over the
same range of 
 when � is small than when it is large.
This explains the larger number of extrema for |q | when
� is small. Note also that the number of extrema when
� � 10�2 is already quite small, which means that this
effect should not be very pronounced for the real at-
mospheric boundary layer.

To provide upper and lower bounds for |q | that take
into account this effect, the thick solid line and the
dotted line in Fig. 3 show the maximum values and the
minimum values of |q | when � varies and when J is
fixed. These curves show that |q | is always below 1 and
never 20% larger than |R̃| , but can be substantially
smaller than |R̃| . Nevertheless, when J � 2 the two
curves almost coincide, making the inner fraction |R̃ | a
good estimate of the GW reflection |q |. Overall, the
monotonic decay of the upper and lower bounds for |q |
when J increases proves that there is a general tendency
for the GW absorption to increase when J increases.

It is important to note that the boundary layer re-
flection of the incident wave is very different from the
reflection due to a full critical-level interaction (e.g.,

FIG. 3. Boundary layer reflection of a GW coming from z � �
and for the full tanh flow profile in Eq. (1), Pr � 2, and k � 0.1:
| q | for three values of � (thin solid), maximum and minimum of
|q | when � varies between 10�8 and 10�2 (or when the Reynolds
number Re varies between 107 and 1025; thick black solid and
thick black dots, respectively), inner fraction | R̃ | (thick gray), and
| q | for a full critical-level interaction (thick gray dashed) (inviscid
values from VK82). Note that the horizontal axis is the logarithm.
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when there is no rigid boundary; see the thick gray
dashed line in Fig. 3). On the one hand, when J � 0.25,
the boundary layer reflection is very near 1, while in the
case of a full critical-level interaction it can become
very large when J → 0. On the other hand, when J �
0.25, the boundary layer reflection is substantially
larger than the full critical-level reflection. Note that
when the dissipations are due to Newtonian cooling and
Rayleigh friction, the reflection is near 1 when J � 0.25,
as in the viscous case, but is substantially smaller than
the viscous boundary layer reflection when J � 0.25
(see appendix). This shows that the use of linear damp-
ings can lead to overestimating the GW absorption near
the surface.

b. Evanescent solutions: J � k2

When J � k2, m is changed into im in Eq. (20), so the
first term on the left-hand side of Eq. (20) is a distur-
bance that decays exponentially with altitude, and the
second becomes infinite when z → �. �ccordingly, the
only acceptable solutions are those for which Do � 0 in
Eq. (20); the disturbance is not excited by an incident
wave coming from �, it is a free mode of oscillation.

To find these solutions, it is essential to recall that for
the profiles in Eq. (1) and for an unbounded domain,
the neutral modes of the Taylor–Goldstein Eq. (5) are
known (Drazin 1958) and only exist when J � 0.25.
When k2 � 0.5, they are given by

w � r1�4���2	1 � r
m�2, 	22


providing that m � 
 � 1⁄2. When k2 � 0.5, they are
given by

w � r1�4���2	1 � r
m�2, 	23


providing that m � 
 � 1⁄2. These two solutions define
the curve J � k2 (1 � k2) that delimits in the J–k plane
the domain where Kelvin–Helmholtz instabilities exist
(Drazin 1958; thick dotted line in Fig. 4).

In the presence of ground, the matching in Eq. (15)
gives R � A/B � 0 when Re → �. �n this case, the
inviscid solution in BB67 [Eq. (6)] reduces to Bz1/2�
.
Hence, as the asymptotic form of the neutral mode in
Eq. (22) near z � 0 is of the same form, this neutral
mode is also a solution (see the thick and solid line in
Fig. 4). This is not the case for the solution in Eq. (23):
its asymptotic form near z � 0 is z1/2�
 and differs from
the inviscid solution of BB67 with A � 0.

When � � 0, we can return to the analytical solution
in Eq. (18) and vary k to find if there are cases where
both the matching conditions and the condition |q | �
|Up /Do | � � are satisfied. If we limit the investigation
to real values for k, this never occurs; one needs to

consider that the inviscid solution above the boundary
layer decays downstream, replacing k by k � iki, where
k is still real while ki is a positive constant characteriz-
ing the decay rate of the trapped solution. Providing
that ki is small (more specifically of the order of ��,
where � is a positive constant), the inner set of equa-
tions in section 3 remain the leading order approxima-
tion of our problem in the viscous layer. In this case, the
results for R̃ in Fig. 2 and the matching in Eq. (15)
remain appropriate, and we can use a complex wave-
number k � iki to treat the inviscid problem in Eqs.
(18)–(20).

The results for k when � � 10�2 and � � 10�4 are
shown by the thick dashed lines in Fig. 4. They show
that the introduction of a viscous boundary layer tends
to increase the horizontal wavelength of the trapped
solutions when compared to the inviscid solutions. Note
also that the decay rate ki (thick gray lines) also in-
creases when the dissipation increases (note that in Fig.
4, the ki’s are normalized by �� for clarity). Finally,
note also that the decay rate ki increases when J in-
creases, which is consistent with the fact that for a fixed
viscous length �, the gravity wave absorption by the
boundary layer increases when J increases (section 4a).

5. Conclusions

The central motivations of this note are in the recent
papers by Jiang et al. (2006) and Smith et al. (2006),
which establish that the downstream development of
trapped lee waves is affected by the absorption of the
stationary GWs by the boundary layer. They managed
to quantify the downstream attenuation of mountain
lee waves using a wave reflection factor by the bound-

FIG. 4. Horizontal wavenumber of the trapped solutions that
exist in the mean flow profile in Eq. (1): k for � � 0 (thick solid),
k and ki /�� for � � 0 (thick dashed and thick gray, respectively).
The dotted lines also show the limit curve for Kelvin–Helmholtz
instabilities, J � k 2(1 � k 2), and the limit curve for GW propa-
gation in z � �, J � k 2.
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ary layer, q. They show that the downstream attenua-
tion of trapped lee waves is controlled by this param-
eter; it is small when the amplitude of q is near 1, and
it is large when the amplitude of q is small. Jiang et al.
(2006) also made the point that the boundary layer can
be a very effective absorber for the stationary GWs,
because the mean wind is very small near the ground, so
the stationary GWs can have a critical level there.
Smith et al. (2006) also proposed that the wave absorp-
tion by the boundary layer is related to the disturbance
energy loss resulting from the fact that the disturbance
in the boundary layer is shifted upstream when com-
pared to the disturbance above it. This note analyzes
these issues in the reference configuration where the
critical-level dynamics and the boundary layer dynam-
ics are viscous.

First we show two examples, illustrating that in the
viscous case the disturbance in the viscous layer is in-
deed in advance of the disturbance above it (see the
phases in the right panels of Figs. 1a,b). This result is
consistent with the wave absorption mechanism pro-
posed by Smith et al. (2006), in which this phase shift is
produced by the turbulent fluxes at the ground and at
the top of the boundary layer.

A more precise evaluation of the boundary layer
wave absorption is given in Fig. 2, which shows the
fraction R̃ between the two viscous solutions that
matches the inviscid solutions of BB67. This fraction
combined with the matching condition in Eq. (15) is of
a general interest: it permits the evaluation of the frac-
tion between the two inviscid solutions of BB67 without
treating again the full viscous problem. It also gives the
main result of this note: there is always absorption by
a viscous boundary layer, it can be very small when
J � 0.25, and it increases with J when J � 0.25 (see
section 3).

As the results in section 3 are based on the analysis of
a boundary layer embedded within a background shear,
the fraction R is not exactly measuring the fraction be-
tween an upward-propagating wave and a downward-
propagating wave [this is particularly evident when J �
0.25; see Eq. (6)]. Hence, to measure precisely how the
viscous layer reflects a stationary GW, we adopt in sec-
tion 4 the background flow profile in Eq. (1). For this
profile, it is found that the reflection of a GW |q | � 1
when J � 0.25 and when the dissipation is small, as
expected from the analysis in section 3 (Fig. 3). When
J � 0.25 it shows that |q | � 1, again as expected from
section 3, but it also shows substantial modulations of
this coefficient that are related to the relative phase of
the 2 inviscid solutions in BB67 at the top of the viscous
layer. Nevertheless, the upper and lower bounds for |q |
when this phase varies indicate that the dominant be-

havior is that the absorption increases (|q | decreases)
when J increases. This is also consistent with the find-
ings by Jiang et al. (2006), who found that the more
unstable boundary layers favor the onset of trapped lee
waves.

Finally, and still for the profile in Eq. (1), we also
found that when J � 0.25, the viscous boundary layer
absorption is substantially smaller than that predicted
by the full critical-level interaction theory, and that it is
also substantially smaller than that predicted using
Rayleigh friction and Newtonian cooling (as done in
Jiang et al. 2006).

To a certain extent the fact that the critical-level dy-
namics in part controls trapped lee waves suggests that
there is some correspondence between trapped lee
waves and Kelvin–Helmholtz instabilities. After all, the
idea that an almost total reflection should exist for
trapped lee waves to develop is quite near the idea that
overreflection should exist for Kelvin–Helmholtz insta-
bilities to exist (Lindzen and Rosenthal 1983). Note
also that in our continuous context, the wave absorp-
tion mechanism proposed by Smith et al. (2006) also
means that the boundary layer forces the disturbances
near the ground to be tilted in the direction of the
shear, which yields to disturbance energy loss according
to the Orr mechanism (see Lott 1997, where this is
analyzed in the context of GWs). According to Lindzen
(1988), this transient Orr mechanism is also controlling
the overreflection of GWs. The analogy is supported
here, where it is shown that some among the neutral
modes for Kelvin–Helmholtz instability can also be
pure trapped waves when the Reynolds number is in-
finite (Fig. 4).

When the Reynolds number is finite, these trapped
waves are modified; their amplitudes decay down-
stream with a decay rate that increases when the dissi-
pation increases and when the Richardson number in-
creases. All those results are consistent with the picture
that the decay rate should increase when the reflective
factor q increases. Note that in the viscous case here,
the dissipation also tends to increase the horizontal
wavelength of the trapped solutions, which is the only
result of this note that contradicts Smith et al. (2006).

It is quite clear that the problem analyzed here is
rather peculiar in the context of the interaction be-
tween GWs and critical levels. The results obtained are
nevertheless in good agreement with the present under-
standing of these interactions. At a large Richardson
number, it is generally admitted that the WKB ap-
proach applies; it predicts that the vertical group veloc-
ity of a GW tends toward zero when it approaches a
critical level. The GW never arrives at the critical level
and is ultimately absorbed. This picture applies here,
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since there is always absorption when J � 0.25 and
this absorption can be very substantial when J � 10
(Figs. 1, 2).

At the Richardson number J � 0.25, the GW loses its
propagating character as it approaches a critical level. It
can then pass through it and interact dynamically with
it (see, e.g., Lindzen 1988). When the critical level is at
the ground, it appears that this dynamical interaction
cannot lead to overreflection because the GW is forced
to stay on one side of the critical level. Nevertheless,
the fact that the GW reaches its critical level means
here that it reaches the ground: this is the mechanistic
reason for which an almost perfect reflection occurs
when J � 0.25 and when the Reynolds number is large.

Acknowledgments. The comments of two anonymous
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APPENDIX

Linear Dampings

To evaluate q in the inviscid case without solving the
viscous problem, it is conventional to introduce a small
linear damping in the Eqs. (2) (see again BB67 where
this approach is presented). In this case, the solution in
Eq. (6) transforms into

w � A�z �
i


k �1�2�i�

� B�z �
i


k �1�2�i�

, 	A1


where � is a positive constant representing Newtonian
cooling and Rayleigh friction. At z � 0, the boundary
condition w � 0 implies

q � ���
i


k ��2i�

. 	A2


In the limit � → 0, this yields to

|q | � 0 when J � 0.25 and

|q | � e��� when J � 0.25. 	A3


The null value for J � 0.25 is like in the inviscid limit in
section 3, while the decay when J increases beyond 0.25
is much faster than in the inviscid limit (not shown but
when J � 0.25 |q | � |R̃ | , so the viscous values of |q | are
also in Fig. 2).

As in section 4, q can be translated in the reflection
of a GW coming from z � �. �his yields to |R | � 1
when J � 0.25, as in the viscous case, and |R | � 1 when
J � 0.25, with a decay when J increases being more
pronounced than in the viscous case. In particular,
when J � 1, |R | becomes very near the reflection coef-
ficient predicted by the full critical-level interaction
theory (see VK82).
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