
Q. J .  R. Meteorol. Soc. (1997), 123, pp. 1603-1619 

The transient emission of propagating gravity waves by a stably stratified shear 
layer 

By FRANCOIS LOTT' 
Laboratoire de Mtttorologie Dynamique du CNRS, France 

(Received 1 0  April 1996; revised 23 October 1996) 

SUMMARY 
By analysing the transient evolution of an initial perturbation, it is shown that a stably stratified shear layer 

emits gravity waves having well defined dynamical characteristics. For instance, the outgoing waves systematically 
have phase lines tilting against the shear, their vertical momentum flux has a sign opposite to that of the shear and 
their amplitude increases when the flow stability decreases. Those features are commonly observed in numerical 
simulations of gravity waves generated by convection. It is shown that they are related to the singular vectors of the 
system that have fast energy growth and fast energy decay within a finite time. In this work, the singular vectors 
are computed using a linear gravity-wave model, its adjoint and an iterative Lanczos algorithm. For a given shear 
layer, characterized by a minimum Richardson number Ri and a depth d,  these perturbations show that emission of 
gravity waves by a stratified shear layer essentially occurs for waves with horizontal wave number close to a critical 
value k, = a / d .  The importance of the singular vectors on the dynamics of more general initial conditions is 
also tested by making few ensembles of numerical simulations with stochastic initial conditions imposed inside 
the shear layer. The amplitude of the momentum fluxes of the outgoing waves as a function of Ri is also evaluated 
systematically. It gives a relationship between the efficiency of gravity-wave emission and Ri that could be used 
in convective gravity-wave parametrization schemes. 
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1. INTRODUCTION 

Sources of gravity waves in the atmosphere have received much attention because 
they are known to influence local meteorology as well as the large-scale atmospheric cir- 
culation (Holton 1983; Palmer et al. 1986). Important tropospheric sources are believed 
to include topography (Queney 1947; Smith 1979; Lott and Teitelbaum 1993), convec- 
tive and frontal activities (Bretherton and Smolarluewitcz 1989; Shutts and Gray 1994), 
wind shear (Rosenthal and Lindzen 1983; Fritts 1982; Lott et al. 1992) and geostrophic 
adjustment (Rossby 1937; Blumen 1972). In the context of convection, an important re- 
sult supported by the observations and the modelling studies (Clark et al. 1986; Fovell ef 
al. 1992; Alexander et al. 1995; Kershaw 1995) is that the efficiency of wave generation 
depends strongly on the strength of the shear of the horizontal wind. In the presence of 
shear, waves which are generated have phase lines which tilt upstream (in the frame of 
reference moving with convection) with height. For these waves, two important questions 
remain open. What is the fundamental dynamical effect of the shear? Does a selection 
criterion exist for the horizontal wave number of the waves? One motivation of the present 
study is to find whether these questions can be answered in a simpler context than convec- 
tion, when a perturbation is imposed in the shear layer at the initial time and evolves freely 
thereafter. If some well defined perturbations naturally radiate from the shear layer, it is 
likely that in the presence of forcing inside the shear, similar structures will be generated. 

Without forcing, spontaneous wave generation can occur in a stratified flow as a 
result of instability when the mean Richardson number is below 0.25 somewhere in the 
flow (Miles 1961; Howard 1961). In most cases, and when the fluid is unbounded vertically, 
the instabilities are essentially trapped in the shear layer (see for instance Drazin (1958) 
and Smyth and Peltier (1989)), but for some mean-flow profiles resonant over-reflection 
and spontaneous wave generation can occur (Lott et al. 1992; Sutherland et al. 1994). 
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In any case, the limitation of these wave-generation processes to flows with minimum 
Richardson number value smaller than 0.25 is a strong constraint, the Richardson number 
in the atmosphere being generally larger. This predicts that, in the long term, the free 
disturbances decay (Booker and Bretherton 1967). Nevertheless, it has long been known 
that in the stable unstratified Couette flow, inviscid plane waves with phase lines tilting 
in the direction opposite to the shear experience a temporary amplification before dying 
away (Orr 1907). Recently these ideas have been actively revived in the literature, in re- 
examination of barotropic and baroclinic planetary flows (Farrell 1982; Boyd 1983) and 
bounded stratified shear flows (Fanell and Ioannou 1993). Therefore, it seems relevant to 
consider whether similar initial conditions producing growth can explain some aspects of 
the generation of gravity waves by a stratified shear layer. 

Nevertheless, the usefulness of these particular disturbances is also questionable 
(Shepherd 1985). Indeed, in many cases, there are only a few perturbations which lead to 
significant growth within a given time interval. There are at least as many perturbations 
that decay and a lot of perturbations for which the energy does not change significantly 
within the same time interval. Accordingly, it is very unlikely that significant growth can 
occur with arbitrary initial conditions. Nevertheless, these particular disturbances can also 
be viewed as the dynamical patterns that control the reorganization of randomly chosen 
initial conditions towards waves with some well defined characteristics. In this context, it is 
also essential to study how transient growth from these optimal initial conditions persists, 
so that well defined perturbations have a chance to dominate the others in the long term. In 
this respect, the disturbances that decay the most rapidly are also important, they indicate 
which waves are not to be expected. 

In section 2 of the paper the disturbances which grow most rapidly in a finite time 
interval are obtained by calculating the singular vectors of a linear gravity-wave model 
using its direct form, its adjoint form and an iterative Lanczos algorithm (Lacarra and 
Talagrand 1988; Buizza et al. 1993). The characteristics of the most rapidly decaying dis- 
turbances are also discussed briefly. To separate disturbances which can radiate significant 
outgoing waves from those which remain trapped in the shear layer, the optimal singular 
vectors are described for different horizontal wave numbers. In section 3, several ensem- 
bles of simulations are presented at various horizontal wave numbers. In these simulations 
the initial conditions are chosen randomly, over a ‘quasi-orthogonal’ basis which confines 
the initial perturbation inside the shear layer without favouring any growing or decaying 
disturbance. It shows that the singular vectors explain some important aspects of the evo- 
lution of more general perturbations, chosen randomly inside the shear layer. For instance, 
the growing and the decaying singular vectors strongly control the sign and the amplitude 
of the wave-momentum fluxes that radiate away from the shear layer. In the appendices, 
the details of the direct model and of its adjoint are presented. 

2. ESTIMATION OF THE FASTEST GROWING PERTURBATIONS 

(a) Basic equations and models 
In the present paper, the linear evolution of a two-dimensional initial perturbation in 

a stratified shear flow with vertical profiles: 
u 

U r n  = Uo tanh(Y/d) , E2 = No2 , (1)  

is considered, where d is the depth of the shear layer and & is the Brunt-Vaisala frequency. 
In the following, the equations are written in dimensionless form using d,  Uo, d/Uo and 
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No2d as units of length, speed, time and buoyancy force. Within the Boussinesq approx- 
imation the divergenceless perturbation velocity field can be expressed (with the tildes 
dropped in non-dimensional form) in terms of a stream function, +: 

where a; and a, denote a/az and a/ax,  repectively. Introducing p, the dimensionless 
density perturbation, and neglecting the Coriolis force, the linear evolution of a perturbation 
follows the equations: 

where a,, Uzi and a, denote a /a t ,  a2U/az2  and au/az, respectively. The boundary con- 
ditions, @ = 0, p = 0 and A+ = 0, are imposed at the bottom ( z  = - L/2 = -45) and 
at the top ( z  = L/2 = 45) of the model domain. In (3) ,  Ri = No2d2/UO2 is the minimum 
Richardson number of the flow and v is the inverse of the Reynolds number. The coeffi- 
cient a ( z )  is a Rayleigh damping, introduced to absorb the perturbation in the uppermost 
and lowermost layers of depth 5 ,  in order to avoid wave reflection at the boundaries and 
to simulate an infinite domain: 

0.5 { 1 + 
0.5 [ I  - cos { f (40 - Izl)}] if 40 < IzI < 42.5 . 

(lzl - 42.5)) if 42.5 < IzI < 45 I a(z) = 

The mean flow is assumed to be uniform in the horizontal direction and hence the distur- 
bance can be expressed as a sum of independent harmonics with horizontal wave number 
k: 

@(x, z ,  t )  = w$(z, t)e'"l , p ( x ,  z ,  t> = W F ( Z ,  t )e lkx]  , ( 5 )  
for which (3) and (4) become 

a,A$=-ikUA$+ikUrZ$ -ikRip^-aA$ -a ,&$+ vAA$, (6) 
alp^= -ikUp^+ ik$ - ap^+ W A F ,  (7) 

2 2  A = a Z  - k .  

To determine the disturbance evolution, (6) and (7) are discretized in the vertical direction, 
and the vertical derivatives are estimated by centred finite differences. Defining X to be 
the state vector of the discretized system, 

the vertically discretized form of (6) and (7) can be written 

a,X = A X ,  

which gives the forward model definition 

X ( t )  = M(t) X(0). 
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In (9) and (10) A and M are two complex (2M - 4) x (2M - 4) matrices. Writing the 
scalar product between two state vectors as 

2M-4 

( X ;  X') = c Xi"'*, 
where X'j* denotes the complex conjugate of X'j, the adjoint of the model M * ( t ) ,  relative 
to this scalar product satisfies 

(X; M ( t ) X ' )  = ( M * ( t ) X ;  X' )  , (12) 

i.e. it is the complex conjugate transpose of M. The direct model and its adjoint are 
described with further details in the appendices A and B, respectively. In all the simulations 
presented, the vertical grid spacing is dz % 0.02 and the timestep is d t  = 0.05. These values 
were adopted after verification that model convergence was reached. 

(b) Methodology 
The initial conditions that produce a large amplification in a specified time, to ,  are 

found following a procedure proposed by Buizza et al. (1993). To identify the mechanisms 
leading to the growth of perturbations, the inner product associated with the total energy- 
density norm has been adopted. As in the unstratified case, any increases of the total 
perturbation energy density are solely related to a downgradient Reynolds stress UW, since 

[-uwUz1 > 0, (13) 
2n 

where the average operators are: [f] = JLL;2 f(z)dz and 7 = & JOT f(x)dx. This 
follows from the energy density equation which is obtained by integrating (3) and (4) 
multiplied by -@ and Rip, respectively, over the model domain: 

--1, [a + + + + Ri ( g)2 + Ri ( $ ) 2  j 9 

where 

L J 

For a discretized state vector with vertical step dz, the energy-density norm is 

where E is a positive definite matrix. Thus, the energy of a perturbation for a given dis- 
cretization evolves in time following 

e ( t )  =II X ( t >  1 1 2 =  (EM(t)X(O);  M ( t ) X ( O ) )  = (M*( t )EM(t )X(O);  X(0)) , (17) 
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and we search for the singular vectors which satisfy the generalized eigenvalue problem, 

M*(to)EM(fo)X(O) = AEX(O), (18) 

where h characterizes the energy growth (or decay) of a singular vector at to: 11 X(t0) ) I 2 =  
X 1) X(0) ) I 2  . These singular vectors identify an orthogonal basis for the energy norm, 
and evolve into orthogonal patterns at to. This essentially results from the fact that the 
matrices M*EM and E are Hermitian and positive definite. Then, after a suitable coordinate 
transform (2 = E'12X; Buizza et al. (1993)), the eigenvalue problem (18) can be solved 
using an iterative Lanczos algorithm (Lacarra and Talagrand 1988). 

(c) Results 
For a given flow configuration (Ri = 1 and I/ = 0), Fig. 1 shows the largest amplifi- 

cation factor, A, as a function of to and k .  It shows that for to > 10 the maximum energy 
amplification becomes substantial (i.e. of order 10 and more) and the largest growths occur 
slightly above k = 1. For larger wave numbers, the maximum energy amplification slowly 
decays as k increases. For wave numbers < 1, the energy amplification rapidly decays 
as k tends towards 0. Further experiments on the sensitivity to the parameter Ri have 
shown that this pronounced decrease of the optimal growth at small k ,  always occurs when 
k < k, = fi. This is related to the ability of the singular vector to give rise to travelling 
waves in the far field. Indeed, if we consider that the perturbation outside the shear layer 
is composed of waves whose intrinsic frequencies, w,  have a magnitude close to to-', they 
propagate vertically outside the shear layer if their vertical wave number, m(W), is real: 

Ri - + o  
(kU + wI2 

m(W)' = k2 

Equation (19) is the gravity-wave dispersion relation outside the shear layer. Since sig- 
nificant growth generally appears for to > > 1 (i.e. w << l), and since 11 U 11% 1 outside 
the shear, condition (19) reduces to kC2 - k 2  > 0 : initial perturbations lead to significant 
travelling waves when their horizontal wave number is smaller than k, .  

Figure 2 shows the shapes of the stream function and density perturbations asso- 
ciated with the optimal singular vector when to = 10 and k = 0.75. The perturbation is 

Contour intervai: 4 

0 10 20 30 40 
0pt:mization T i T e  

Figure 1 ,  Maximum energy growth as a function of non-dimensional optimization time, to,  and horizontal wave 
number, k.  The flow is configured by the minimum Richardson number Ri = 1 ,  and the inverse of the Reynolds 

number v = 0. 
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Figure 2 .  Development of the optimal perturbation in the x-z plane. The flow configuration is Ri = I ,  u = 0 as 
in Fig. 1, with k = 0.75 and to = 10 (see Fig. 1 for definitions). (a) and (b) show the distributions of the stream 
function, $r, and the density, p. at time t = 0, and (c) and (d) show $r at times t = 10 and 20, respectively. The 
grey lines represent the upper and the lower bounds of the shear layer. Note the change in the vertical scale from 

(a) and (b) to (c) and (d). 

initially confined inside the shear layer and has phase lines which tilt against the shear. 
This indicates an initial downgradient Reynolds stress, as already shown by Farrell and 
Ioannou (1993). The initial inclination of the phase lines, measured by -m/ k ,  is negative 
and has a magnitude close to -to. This means that initially the optimal modes have a 
large vertical wave number, Iml >> Ikl, whose sign is that of k .  After t = to, the optimal 
perturbation is away from the shear layer and is composed of waves which tilt against 
the shear, a feature that is often observed for convective waves (Alexander et al. 1995; 
Kershaw 1995). For short, trapped modes, the same fields show that when t > to the pertur- 
bation remains confined in the shear layer and its phase lines become increasingly inclined 
in the direction of the shear, indicating an upgradient Reynolds stress and energy decay. 
This is confirmed in Fig. 3, which shows that the total energy of short, trapped disturbances 
( k  = 1.25, 1.5 > k, = 1) decays in the long term, while the total energy of the long dis- 
turbances ( k  = 0.50,0.75 < k,  = 1) is more persistent because they are outside the shear 
layer when the decay phase starts. 
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Time 

Figure 3. Evolution of the perturbation energy as a function of wave number, k .  Initial conditions are the optimal 
initial conditions associated with each different wave number. The flow configuration is Ri = 1, v = 0 ,  and to = 10 

(see Fig. 1 for explanation). 

Vertical sections of the stream-function fields are shown in Fig. 4 at various times 
and for different horizontal wave numbers. At small wave number, k = 0.5, the optimal 
disturbance develops spectacular gravity waves propagating away from the shear layer. At 
t = 40, the wave field occupies the whole domain, and its amplitude is everywhere larger 
than that of the initial perturbation. At larger wave numbers, the vertical dispersion of the 
waves becomes less pronounced, because the vertical velocity of the wave fronts, 

Cgz,,, = max m (&) x 0.385&/ k , 

decreases as the horizontal wave number increases. Accordingly, after t = to and for k = 
0.75 and 1 .O, the wave fields have well defined travelling fronts where the amplitude is a 
maximum and beyond which there are no significant perturbations. When k = 1.25, the 
outgoing signal at time t = 40 is small and rather close to the shear layer. The wave-front 
velocity is slow and the signal does not really escape from the shear layer. 

A very similar study to the one presented above has also been done for the singular 
vectors which lead to fast energy decay. Since the basic mechanisms of the decay have 
been described before for trapped disturbances when t > to, only a few remarks are given 
here and further discussion about decaying waves will be given in the next section. As 
was the case for the fastest growing perturbations, the fastest decaying ones are initially 
confined inside the shear layer. This means that the influence of the shear in damping initial 
conditions is also dominant on the time-scales considered in this study. Furthermore, the 
fastest decaying perturbations are initially slightly inclined in the direction of the shear. 
This inclination rapidly increases with time producing large upgradient Reynolds stresses 
that lead to the disturbance decay. In general, the perturbations with k < k, have a smaller 
decay than those with k > k, because they emit a significant number of waves at the 
beginning of their evolution. 

(d) Influence of difusion 
Although the growth of outgoing waves is persistent, it is clear that in the inviscid 

case the largest growths are attained by trapped modes with k > k,. Nevertheless, diffusion 
can limit this effect because it predominantly dissipates the perturbations with large wave 
number. Diffusion is also more efficient on the optimal perturbations at large to since the 
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Figure 4. Evolution of the perturbation stream function, from time t = to to t = 40. The initial conditions in 
(a)-(d) are the optimal initial conditions associated with four different wave numbers, respectively. Ri = 1, v = 0 

and to = 10, as in Fig. 3. 

vertical wave number of the optimal modes increases with to. The combination of these 
two effects means that the maximum energy growth for a given flow configuration (i.e. for 
given Ri and u )  has amaximumvalue. For instance, when Ri = 1 and u = lop4 (Fig. 5 )  this 
maximum occurs close to to FZ 25 and k FZ 0.8 < k,, in a region where significant outgoing 
waves can be expected. Further sensitivity experiments on the diffusion parameter, u ,  and 
on the minimum Richardson number, Ri ,  have shown that the largest growth always occurs 
near k, (slightly below or slightly above) when Ri x 1.  These sensitivity experiments have 
also shown that the maximum optimal growth, maximized over to and k ,  grows when the 
flow stability (Ri) decreases. 

3. STOCHASTIC INITIAL CONDITIONS 

(a )  General considerations 
The fact that the behaviour of optimal singular vectors may overstate the possible 

growth of initially small disturbances in a shear flow was noticed by Shepherd (1985). This 
follows the fact that there are generally only a few initial conditions which give significant 
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Figure 5.  Maximum energy growth as a function of optimization time and wave number, as in Fig. 1 ,  but with 
flow configuration Ri = 1, u = 
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factors are stored in decreasing order. Ri = 1 ,  u = and k = 0.75. See text for explanation. 

energy growth within a finite time. Typically, in the flow configuration described here, when 
Ri = 1 ,  u = and close to the optimal configurations k = 0.8 and to = 25, there are 
no more than 10 singular vectors which lead to energy amplification exceeding a factor of 
2 (Fig. 6). Nevertheless, all this hides the simple fact that the singular vectors indicate how 
the shear layer filters the perturbation field, favouring certain waves and attenuating others. 
To illustrate this and to assess whether the physical mechanisms described in section 2 
are useful for describing the evolution of more general initial conditions, the behaviour 
of different disturbances is analysed when the initial conditions are chosen stochastically 
over a superposition of ‘quasi-orthogonal’ Gabor functions: 

MI MI 
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and where the amplitudes and the phases of the complex coefficients, an and b,, are chosen 
stochastically between [0, 13 and [-n, n], respectively. Furthermore, the truncation MI = 
-Mo = 12 is generally adopted. This approximation reduces the number of degrees of 
freedom to 102 and limits the discussion to perturbations with moderately large vertical 
wave numbers. The degree of orthogonality of this ‘quasi-basis’ is measured by 

This quantity decreases (i.e. the basis becomes more orthogonal) as I increases. In the 
following, the value 1 = 1.8 has been chosen and the degree of orthogonality (22) is 0.13. 
This provides a compromise between the constraint of orthogonality and the desire to 
confine the initial conditions inside the shear layer. 

(b)  Results 
Figure 7 shows the growth of 150 disturbances which are chosen stochastically, with 

k = 0.75, Ri = 1, u = and for various truncation parameters MO and MI. The so-called 
‘favourable’ waves are those for which Mo = 1 and MI = 12. They have positive vertical 
wave numbers, with phase lines inclined in the direction opposite to the shear. It is clear 
that the energy growth, described in section 2 for optimal modes, is found for most of the 
disturbances chosen in this spectral domain. Even if it is not as large as the optimal growth. 
some initial conditions in this ensemble reach a growth close to 13. Since the wave number 
in this ensemble is smaller than k, = 1, the growth is rather persistent, a property that was 
also indicated by the singular vectors. The so-called ‘unfavourable’ waves are those for 
which the vertical wave number is negative, Mo = - 12 and MI = - 1. Unsurprisingly, 
those waves present a rather systematic energy decay. In the last combination, presented 
in Fig. 7, the truncation is Mo = -12 and MI = 12, and growth is often observed, even 

10 

x 
b 

a, 
GI 

0.1 
0 10 20 3 0  4 0  50 

Time 

Figure 7. Evolution of the perturbation energy for 150 different initial conditions; SO ‘neutral’ cases for which 
Mi = -A40 = 12,5O ‘favourable’ cases (against the shear) for which M0 = 1 and M I  = 12 and 50 ‘unfavourable’ 
cases (with the shear) for which A40 = - 12 and M I  = - 1 (see text for full  definitions and explanation). The flow 

configuration is Ri = 1, u = and k = 0.75 (see Fig. 1 for explanation). 
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Figure 8. Evolution of the perturbation energy for 200 different initial conditions and for six different values of 
horizontal wave number, (a)-(f). The flow configuration is Ri = 1, u = (see Fig. 1 for definitions). 

if it is now limited to 6. The decays associated with the initial conditions which are 
unfavourable, balance the energy growths associated with the initial conditions which are 
favourable. Similar experiments, with Mo = -12 and M I  = 12, are shown in Fig. 8 for 
other horizontal wave numbers. These results illustrate how the energy maintenance found 
for the optimal singular vectors in section 3 can have important consequences. The long 
disturbances, with k = 0.25 and 0.5, systematically show a larger growth than the short 
modes with k = 1.25, 1.5. It must be noted that the dispersion of the different ensembles 
of simulations constructed following (21) was very sensitive to the value of the parameter 
1, and to the truncation coefficients Mo and M I .  Indeed, the dispersion of an ensemble, 
with a fixed number of simulations characterized by the variance of the maximum of the 
energy reached within a realization, decreases when M I  = -Mo increases beyond 15. At 
large truncation, more modes with high vertical wave number are introduced, which are 
essentially attenuated by the diffusion. It was also found that the dispersion decreases when 
I increases: the less the initial conditions are confined in the shear layer, the less they feel 
the dynamical impact of the shear. 
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The preceding experiments have shown that positive shear favours the relatively long 
disturbances with positive vertical wave number, and damps those with negative vertical 
wave number. This means that if the disturbance is more or less symmetric initially, the 
shear will make the waves with positive wave number dominate the far field rather rapidly. 
Since waves with positive wave number, rn, have negative momentum fluxes in the far 
field, as 

(23 )  

the shear layer will essentially radiate waves with negative momentum flux. This effect is 
illustrated in Fig. 9, where a scatter plot of the momentum flux, measured above and below 
the shear layer and integrated in time until the wave field has completely disappeared, is 
shown in the case with wind shear and in the case with no wind shear. The initial conditions 
are those of Fig. 8(b), namely Ri = 1, k = 0.5, u = and e(0) = 1. As mentioned 
before, with no shear and for initial conditions chosen randomly, the total wave-momentum 
flux radiating above and below the disturbed area can be either negative or positive and 
its amplitude never exceeds 0.01. The presence of the positive shear always breaks that 
symmetry, damping all the waves with negative vertical wave number and amplifying 
the waves with positive vertical wave numbers. It leads to well defined negative wave- 
momentum fluxes above and below the shear layer. Furthermore, the filtering by the shear 
is so efficient that magnitudes of the momentum fluxes are typically 20 times larger than 
those found without shear. As mentioned in section 2, the optimal disturbance amplification 
with the shear increases when the flow stability decreases. This effect is also found for 
the momentum-flux amplification by the shear in the stochastic context. Indeed, the same 
experiment as that of Fig. 9 has been repeated for many different values of Ri and k. It 
shows that maximum momentum-flux amplification always occurs when k < k,, but is 
not very sensitive to the value of k provided it is smaller than k,, and is very sensitive to 
Ri. By testing its amplitude for 20 different values of Ri with 0.25 < Ri < 10, and for 
different horizontal wave number, it was found that the ratio between the momentum flux 
with shear and the momentum flux without shear, both averaged over one ensemble of 50 

1 hA* ?$* poUW = po-uw = -km- 
2 2 ’  

5 
3 

/’ ’ 0 

-0.1 
-0.015 -0.01 -0.005 0 0.005 0.01 0.015 

Without Shear 

Figure 9. Scatter plot of wave-momentum fluxes with and without shear. The initial conditions are chosen 
stochastically. Diamonds stand for the momentum flux measured above the layer where the initial conditions are 
imposed. Crosses stand for momentum flux measured below the layer where the initial conditions are imposed. The 
flow configuration is Ri = I ,  v = and k = 0.75 (see Fig. 1 for definitions). Lines y = +lox and y = 1t20x 

are also shown. 
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simulations with initial conditions chosen randomly, varies like 

8 
- + 20 - Ri when k < k,. Ri 

The ratio exceeds 50 when Ri = 0.25 and falls to 10 when Ri = 10. Equation (24) is a 
rather simple fit, which was adjusted empirically, and which is 10% accurate over the 20 
different values of Ri which were tested. It is believed that a relationship of this kind should 
be used as a wave-generation efficiency parameter, close to the parameter a! discussed in 
Kershaw (1995), which links the momentum flux of waves and the convective forcing 
in parametrization schemes of gravity waves generated by convection. This relationship 
should nevertheless be used more qualitatively than quantitatively, because it was not tested 
for other flow configurations nor for many different truncation parameters. 

4. CONCLUSIONS 

In this paper, the dispersion of some initial perturbations located in a stably strati- 
fied shear flow has been presented. The fastest growing and decaying perturbations over 
a fixed period of time, to, were identified using a linear finite-difference wave model, its 
adjoint and an iterative Lanczos algorithm. They are the singular vectors of the model with 
the largest and smallest singular values. The simulations show that for all values of the 
minimum Richardson number and for nearly all wave numbers, there exist perturbations 
which lead to large energy growth or to large energy decay within a finite time. Initially 
the growing perturbations are confined inside the shear layer and have phase lines tilted 
against the shear to allow downgradient Reynolds stress and energy transfer between the 
mean flow and the perturbation. After to the phase lines of the trapped, growing distur- 
bances become more and more inclined in the direction of the shear, leading to upgradient 
Reynolds stress, and the perturbation energy decays in the long term. Initially the decaying 
perturbations are also confined inside the shear layer and have phase lines slightly tilted in 
the direction of the shear. For these different initial conditions the confinement persists in 
time if the disturbances have a large horizontal wave number. This often makes the growths 
or the decays more efficient for short, trapped disturbances than for long disturbances. At 
small horizontal wave number, these disturbances emit gravity waves which propagate 
away from the shear layer. Accordingly, below the critical value k, = f i / d  the optimal 
growth decreases rapidly when the horizontal wave number decreases. Nevertheless, the 
fact that the long disturbances propagate away from the shear layer makes their growth 
very persistent. For such disturbances, small initial conditions can lead to very spectacular 
gravity waves going out from the shear layer. It is also noteworthy that in the presence of 
diffusion the largest optimal growth can occur for wave numbers k < k,. In combination 
with the persistence, this effect of the diffusion causes the shear layer predominantly to 
emit outgoing waves, with phase lines tilting upstream and with horizontal wave number 
smaller than k,  = m / d .  

It is clear that the analysis of the singular vectors that lead to the largest perturbation- 
energy growth overstates the ability of the shear layer to spontaneously generate outgoing 
waves from an initially small perturbation. Indeed, there are only a few singular vectors 
that lead to significant energy growth. By analysing ensembles of simulations with initial 
conditions chosen stochastically, but confined in the shear layer, it appears that the pertur- 
bation growth is generally much smaller than that predicted by the largest singular vectors. 
Nevertheless, it appears that the energy persistence found for optimal initial conditions 
at wave number k < k, often leads to significant perturbation growth in the long term 
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when the initial conditions are chosen stochastically inside the shear layer. By contrast, 
the disturbances with large wave number always die away in the long term. 

The fact that decaying and growing waves balance, and that the energy growth in 
general configuration is not as spectacular as that found for the optimal disturbance, hides 
an important filtering property of the shear layer. Indeed, the positive shear amplifies 
disturbances with negative phase-line tilts and damps those with positive phase-line tilts: 
it completely breaks the symmetry of the initial conditions. Here symmetrical means 
that over a large ensemble of initial conditions, there are as many waves with positive 
vertical wave number as there are waves with negative vertical wave number. Comparisons 
between ensembles of simulations with shear and ensembles of simulations without shear 
show that, with positive shear, waves with negative momentum fluxes (i.e. propagating 
downstream) systematically dominate above and below the shear layer. Without shear the 
initial perturbation confined in a narrow region disperses radiating waves with positive 
and negative momentum fluxes isotropically. The resulting momentum fluxes are always 
negative in the case with positive shear, and significantly larger than those found when the 
initial disturbance disperses in a background fluid at rest. This shows that the impact of 
the shear on the outgoing momentum fluxes is systematically significant. 

It is noteworthy that the problem studied has some points in common with the problem 
of waves generated by convection. Indeed, it is well established that the shear has an impact 
on the gravity waves that are generated by convection. With shear, convective waves have 
phase lines which tilt upstream (in the frame of reference moving with the convection) with 
height. The mechanisms described in this paper provide the basic explanation of this wave 
asymmetry. These mechanisms also cause the wave-momentum flux above and below the 
shear layer to have a sign opposite to that of the shear. The flux is also systematically very 
large compared with the wave-momentum-flux amplitude measured without shear. Over a 
rather large ensemble of realizations this amplification always exceeded a factor of 10 when 
Ri < 10. It increases when Ri decreases, and for the simulations presented an approximate 
relationship was given between the amplification and the stability. This relationship is 
only qualitative since the flow configuration adopted is highly idealized. Nevertheless, it 
suggests how amplification factors linking convective forcing and momentum fluxes in 
shear flows should vary with the flow stability for waves forced by convection. 

For more precise applications the approach used in the present paper should be ex- 
tended to more realistic configurations such as a cold-front jet with a ground surface and 
a tropopause. These results should also be extended to a stochastically forced shear layer, 
and to nonlinear configurations. 

APPENDIX A 

Discrete direct model 
The matrix A which represents the discretized evolution equation (9) can be written 

as: 

where the underlined symbols represent the matrices corresponding to the underlined 
operators. The temporal evolution is then estimated by one forward Euler step followed by 
successive leap-frog steps. Furthermore, the signal is filtered every time-step by an Asselin 
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filter with coefficient a = 0.1. Starting from the initial conditions XO at time t = 0, the 
numerical integration of (9) produces the estimate X, at time t = pdt: 

X, = P Lap-' E, D Xo = M(t) Xo, 

transforms the stream function into vorticity [: :) where M(t) is the linear model, D = 

and leaves the buoyancy unchanged in the vector X. The matrix E,, defined by 

calculates XI by one forward Euler step and constructs Y1 by superposition of Xo and XI. 
In this notation, the matrix L,, which evaluates the leap-frog step followed by the Asselin 
filter, can be defined by 

where X, represents Xk corrected by the Asselin filter. Finally, the matrix 

P =  (0 D-') 
inverts the vorticity towards the stream function and projects back the vector Y, onto X,. 

APPENDIX B 

Discrete adjoint model 
The adjoint of the model M*(t), relative to the scalar product in (1 1) can be written 

as 

In (B.l)  the fact that the Laplacian operator is self-adjoint is used, so that the operator D 
is self-adjoint. The other operators in (B. 1) can be written as 

M*(t) = DE,*L,*,-'P*. (B.1) 

Ly 

I - + adtA* 2dtA* 

E,*= 1 I + d t A *  , 0 



1618 

and 

F. LOTT 

With this notation, the adjoint model first defines the vector 

then the operator L,* calculates 

successively for k = p + 1 ,  p ,  ..., 2. The adjoint of the Euler step E,* finally calculates 

Yk-1 = L;Yk 

Xo = X1 + X z  + dtA*X,. 
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