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SUMMARY

The propagation of inertia–gravity waves (IGWs) through a dynamical transport barrier, such as the Antarctic
polar vortex edge is investigated using a linear wave model. The model is based on the linearized, inviscid
hydrostatic equations on an f -plane. Typical values for the parameters that are appropriate to the Antarctic polar
vortex are given. The background � ow U is assumed to be barotropic and its horizontal shear is represented
by a hyperbolic tangent background wind pro� le. The wave equation that describes the latitudinal structure of
a monochromatic disturbance contains two singularities. The � rst corresponds to the occurrence of a critical
level where the intrinsic wave frequency Ä D ! ¡ kU becomes zero. ! is the absolute wave frequency and k its
longitudinal wave number in the direction of U . The second is an apparent singularity and does not give rise to
singular wave behaviour. It becomes zero whenever the square of the intrinsic wave frequency Ä2 D f .f ¡ Uy /,
f being the Coriolis frequency and Uy the horizontal shear of the � ow. The wave equation is solved numerically
for different values of the angles of incidence of the wave upon the background � ow, of the wave frequency, of
the horizontal wave number and of the Rossby number. Re� ection (jRj) and transmission (jT j) coef� cients are
determined as a function of these parameters. The results depend on whether the � ow is inertially stable or not.
They also depend on the presence and location of the turning levels, where the wave becomes evanescent, with
respect to the location of the Ä-critical levels. For inertially stable � ows, the wave totally re� ects at the turning
level and never reaches the critical level. If the background � ow is inertially unstable, turning levels can disappear
and the wave can now reach the critical level. Then over-re� ection, over-transmission and absorption can occur.
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1. INTRODUCTION

The dynamics of the Antarctic polar vortex in the lower and middle stratosphere
have been much studied during the last 20 years (e.g. Schoeberl and Hartmann 1991;
Randel 1993; McIntyre 1995). They follow early studies by, for example, Juckes and
McIntyre (1987) and McIntyre (1989) which have shown that such a vortex behaves
like a dynamical barrier for atmospheric minor constituents.

The Antarctic polar vortex is characterized by a strong gradient in potential vortic-
ity (the vortex edge) which is nearly impermeable to transports induced by large-scale
motions (e.g. Bowman 1993; Chen 1994; Öllers et al. 2002), but can be more porous
to transports related to smaller-scale inertia–gravity waves (IGWs) (McIntyre 1995).
Nevertheless, very few studies have actually addressed how IGWs dynamically interact
with such a vortex. Dunkerton (1984) investigated the propagation and refraction prop-
erties of stationary IGWs in zonal-mean � ows in the stratosphere using a ray-tracing
technique. Pierce et al. (1994) performed Lagrangian material line calculations and
investigated the impact of an idealized IGW � eld on irreversible mixing and stretch-
ing of material lines near the Arctic and Antarctic vortex edges. More fundamentally
but still in the context of wave–barrier interaction, Staquet and Huerre (2001) anal-
ysed the breaking of IGWs in a rotating barotropic � ow with horizontal shear near
an N -critical level, where the intrinsic wave frequency (Ä) equals the Brunt–Väisälä
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2496 M. C. ÖLLERS et al.

frequency (N ), by using a three-dimensional Boussinesq fully nonlinear model. The in-
teraction between oceanic internal gravity waves and barotropic background � ows with
horizontal shear has been studied by Ivanov and Morozov (1974), Olbers (1981) and
Basovich and Tsimring (1984). Basovich and Tsimring (1984) showed, using the lin-
earized Boussinesq equations, that, depending on speci� c wave and background � ow
characteristics, a wave may be partially absorbed (wave energy is released into the
background � ow), totally re� ected (no energy exchange) or over-re� ected (the wave
extracts energy from the background � ow) at N -critical levels (Ä D N ) or Ä-critical
levels (Ä D 0). These types of critical levels have not been studied much in the past
for IGWs propagating towards a barotropic � ow. A plausible reason for this is that in
most circumstances the critical levels are preceded by turning levels where Wentzel,
Kramers, Brillouin (WKB) theory predicts total re� ection. Depending on whether the
Coriolis frequency f is assumed to be constant or changing with latitude, waves can,
respectively, be absorbed (Jones 1967) or re� ected (e.g. Kitchen and McIntyre 1980) at
Jones critical levels (Ä D f ).

Although the interaction of IGWs with a barotropic jet is little studied, the propa-
gation of internal gravity waves in background � ows with vertical shear has been exten-
sively studied since the seminal paper of Booker and Bretherton (1967). In the presence
of an Ä-critical level the value of the Richardson number plays a key role in the stability
of the � ow and determines whether waves will be absorbed (Booker and Bretherton
1967) or over-re� ected at the critical level (Jones 1968; Acheson 1976; van Duin and
Kelder 1982).

In the present study, the interaction between monochromatic IGWs and a barotropic
background � ow is studied in a linear hydrostatic model. The background � ow is
represented by a hyperbolic tangent pro� le. The same qualitative behaviour, with respect
to the re� ection and transmission properties, is found for jet-type pro� les mimicking, for
example, the Antarctic polar vortex edge.

From the basic model equations a wave equation is derived that describes this
interaction. The wave equation that describes the disturbance � eld is the f -plane version
of Laplace’s tidal equation with shear in the zonal background � ow in the latitudinal
direction (Flattery 1967; Longuet-Higgins 1968). It contains two singularities that are
of different natures. One is similar to that found by Booker and Bretherton (1967).
The second one is decribed by Boyd (1978) and Dunkerton (1990) for the case when
the background � ow has merely latitudinal shear, by Yamanaka and Tanaka (1984) for
the case of a vertically sheared background � ow, and the combined case of latitudinally
and vertically sheared background � ows is described by Kitchen and McIntyre (1980).
This singularity, denoted as A here or ¡1 in Boyd (1978) and Dunkerton (1990), occurs
whenever the square of the intrinsic wave frequency Ä equals f .f ¡ dU=dy/, dU=dy
is the shear of the background � ow U in the latitudinal direction. It has been shown by
Boyd (1976) that the zeroes of A are apparent singularities. No jump in the momentum
� ux is associated with these apparent singularities.

The parameters are chosen to compare with the Antarctic polar vortex. Re� ection
and transmission coef� cients are determined for waves incident upon the background
� ow as a function of several characteristic parameters, and are discussed with regard to
the degree of inertial instability, which is measured here by a Rossby number.

Although our model is used to study the basic interactions between IGWs and
the Antarctic polar vortex, its range of application is much wider and may also be
used to study the interaction between IGWs and horizontally sheared background � ows
on an f -plane in more general conditions such as at midlatitudes and the tropics
(e.g. Dunkerton 1990 and references therein).
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This paper should be considered as a � rst approach to understanding the basic
mechanisms of the interaction between IGWs and strong barriers like the Antarctic polar
vortex edge and their effect upon its permeability.

The paper is organized as follows. In section 2 the mathematical background of
our model is presented. In section 3 some details are given on the numerical integration
procedure. The choice of typical values for the parameters are outlined and the main
numerical results are at the end of section 3. In the � nal section we summarize our
major results.

2. MODEL FORMULATION

(a) Basic model equations
The linearized equations in log-pressure coordinates for hydrostatic perturbations

in a horizontal shear � ow U.y/ are,
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where u; v and w are latitudinal, longitudinal and vertical velocity perturbations,
respectively, Á corresponds to the geopotential, f is the Coriolis frequency and H is
the vertical scale height. In Eq. (3) N 2 D .g=µ0/ dµ0=dz is the Brunt–Väisälä frequency,
where g is the gravitational acceleration and µ0 is the background potential temperature.
Hereafter, it is assumed that N 2 is constant, which is a reasonable approximation since
in the lower and middle stratosphere µ0 is a nearly linear function of height (Andrews
et al. 1987). The assumption of hydrostatic equilibrium is justi� ed here since we are
primarily interested in low-frequency IGWs with horizontal scales much larger than the
vertical scales. Thus, the possibility that N -critical levels occur is excluded.

Finally, U.y/ is the background � ow, which is assumed to be independent of z and
to have a barotropic shear in the horizontal y-direction only. In the following, U.y/ will
be modelled by a hyperbolic tangent or transitional pro� le,

U.y/ D
U0

2
f1 C tanh.y=2L/g: (5)

In Eq. (5), U0 is a characteristic maximum velocity of the background � ow and L
is a measure of the shear layer width.

Assume now wave-like disturbances ³.x; y; z; t/ D b³ .y/ efi.!t¡kx¡mz/Cz=2H g,
where ³ is a general notation for u; v; w and Á . After substitution in Eqs. (1) through
(4), the following wave equation for bÁ can be derived
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i ; 32 D N 2=.1=4H 2 C m2/: (7)
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In Eq. (7) !2
i is de� ned as

!2
i D f .f ¡ dU=dy/: (8)

Equation (6) becomes singular whenever the intrinsic wave frequency Ä is equal to
zero. In that case the horizontal phase speed of the wave equals that of the background
� ow. Note that this type of singularity is similar to the classical Booker and Bretherton
type singularity for internal gravity waves propagating in a horizontally uniform wind
� eld with vertical shear (Booker and Bretherton 1967). However, the Ä-singularity in
our case is a logarithmic singularity (see appendix), whereas the Booker and Bretherton
type singularity is non-logarithmic. Note that A D 0 will not give rise to singular
behaviour in bÁ, since A is an apparent singularity. We note that the background � ow
becomes inertially unstable if !2

i
< 0 for certain values of y.

Equation (6) can be written into its normal form using bÁ.y/ D A1=2bÃ.y/, i.e.
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Turning levels occur at locations where Q.y/ D 0. Note that Q.y/ will become
singular if Ä D 0 and A D 0.

(b) Conservation of momentum � uxes
Equation (6) can be rewritten in the form
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Now, multiply Eq. (10) by ibÁ¤ yielding
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where the asterisks indicate complex conjugation. It now follows that

C D Re
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which does not depend on y as long as Ä 6D 0. Also, the quantity in Eq. (11) is closely
related to a momentum � ux. From Eqs. (1) and (2) it can be derived that the momentum
� ux

¿ ´ h½0uvi D ½0 Re

³
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A

dbÁ
dy

´
; (12)

where ½0 corresponds to the background density of air and hi denotes an average over a
wave cycle.

An IGW incident upon the transitional wind pro� le (Eq. (5)) from y ! ¡1 gives
rise to a re� ected wave there and transmitted wave at y ! 1. The solution for y ! ¡1
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reads
bÁ.y/ D exp.¡il¡1y/ C R exp.il¡1y/; (13)

the amplitudes of the incident and re� ected waves being 1 and R, respectively. l¡1
corresponds to the horizontal wave number in the y-direction evaluated at y D ¡1 and
is de� ned by

l¡1 D
³
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For y ! 1 the solution takes the form

bÁ.y/ D T exp.¡ilC1y/; (15)

where T is the amplitude of the transmitted wave and lC1 is de� ned by
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and means the value l takes as y ! 1. In case Eq. (6) has no real singularities (Ä 6D 0),
we have

C¡1 D CC1; (17)
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Using the results Eqs. (13) through (18) one derives for the hyperbolic tangent
pro� le (Eq. (5)) that

jRj2 C
lC1
AC1

A¡1
l¡1

jT j2 D 1: (19)

For IGWs incident upon a symmetrical jet-type wind pro� le we would have that
A¡1 D AC1 and l¡1 D lC1 , resulting in

jRj2 C jT j2 D 1: (20)

If Ä does become zero (i.e. Ä-critical levels are present) for particular values of
y between y D ¡1 and y D C1, it is expected that the quantity C in Eq. (11) is
discontinuous at these locations (critical levels). In that case Eq. (19) should ful� l

jRj2 C
lC1
A¡1

AC1
l¡1

jT j2 D 1 C
A¡1
l¡1

.CC1 ¡ C¡1/: (21)

Equation (21) shows that the sum of jRj2 and .l=A/1.A= l/¡1jT j2 may differ
from 1 depending on the magnitude of the jump .A¡1= l¡1/.CC1 ¡ C¡1/ in passing
critical levels. Whenever Ä becomes zero somewhere between y D ¡1 and y D C1,
the momentum � ux ¿ in Eq. (12) will jump in passing these Ä-critical levels. Analytical
expressions for such jumps are given in the appendix. There it is shown that the sign
of .CC1 ¡ C¡1/ depends upon the sign of .d2U=dy2/=.dU=dy/jyDyc , where yc is
the location of the Ä-critical level. If .d2U=dy2/=.dU=dy/jyDyc is negative, that is in
our case yc > 0, .CC1 ¡ C¡1/ > 0 resulting in over-re� ection and over-transmission.
For yc < 0, .d2U=dy2/=.dU=dy/jyDyc is positive and .CC1 ¡ C¡1/ < 0, implying
resonant absorption of wave energy at the Ä-critical level.
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3. NUMERICAL RESULTS

For k 6D 0, the singular wave equation in Eq. (6) seems too complicated to allow
for any analytical solutions. Therefore, Eq. (6) is integrated numerically. Re� ection and
transmission coef� cients are then calculated for several values of the wave parameters.

(a) Numerical solution method
Equation (6) is solved numerically using a 7–8th-order Runge–Kutta algorithm.

The step size is automatically reduced when the desired accuracy is not found. An imag-
inary component of about 10¡8 for the wave frequency ! is introduced, which acts as
a small linear Rayleigh damping. As a consequence, the singularities are then shifted
off the real y-axis which enables integration along this axis. The integration is started
for large positive values of y with a transmitted wave. Equation (6) is then integrated
backwards along the y-axis to large negative values of y where the solution is split into
an incident and a re� ected wave.

The ability of the numerical code to integrate across regions where singularities
occur is tested in two ways. First, Eq. (6) with k D 0 and for a hyperbolic tangent
pro� le (Eq. (5)) is integrated numerically and re� ection and transmission coef� cients
are computed. Analytical expressions for re� ection and transmission coef� cients are
also derived by solving Eq. (6) in terms of hypergeometric functions. The numerical
and analytical results are compared and the difference is less than 0.005%. Note that for
k D 0, Eq. (6) contains no Ä-type singularity but only an apparent A-type singularity.
The code integrates through regions where A D 0, but as expected, no singular behaviour
is observed in the solution bÁ.

Another test for the code is provided by the analytical results of van Duin and
Kelder (1982). Their Eq. (2.1) is integrated using the Runge–Kutta code, after which
re� ection and transmission coef� cients are determined. The numerical results are com-
pared with their analytical expressions for the re� ection and transmission coef� cients
(their Eqs. (4.11) and (4.12)). The differences between the numerical and analytical
results are of the same order as above.

(b) Choice of parameters
Realistic values, that are appropriate to the austral winter and early spring polar

vortex, are chosen for the parameters f , N , L and U0. The value of the Coriolis
parameter is calculated at 65±S yielding ¡1:3 £ 10¡4 s¡1. 65±S corresponds roughly
with the average location of the polar-vortex edge derived from European Centre for
Medium-Range Weather Forecasts analyses for August 1998. From these same analyses,
maximum zonal wind speeds in the Antarctic polar-vortex edge are found to be around
60 m s¡1, and the width of the polar-vortex edge is estimated to be of the order
5 £ 105 m. The Brunt–Väisälä frequency N in the lower stratosphere is of the order
2 £ 10¡2 s¡1 (Pfenninger et al. 1999; Yoshiki and Sato 2000). The scale height H is
taken to be 7 km. The Rossby number (Ro) is de� ned as Ro D U0=jf jL. Hereafter,
Ro is set to 1.0 for inertially stable � ows and for inertially unstable � ows Ro is kept
constant at 4.5. The horizontal wavelength, corresponding to k, will vary between
approximately 100 and 1000 km and the horizontal wavelength in the y-direction,
corresponding to l¡1, is taken to be approximately 314 km. The vertical wavelength
is taken to be 5 km. An IGW incident upon a background � ow will be determined by
its wave frequency ! and its parallel, transverse and vertical wave numbers k; l and m,
respectively. We assume an IGW incident from y D ¡1 having a real transverse wave
number l¡1 > 0, to ensure propagation toward the shear layers, onto the background
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Figure 1. Locations of the turning levels and Ä-critical levels as a function of the angle of incidence ¯ .
The background � ow is inertially stable.

� ow. The subscript ‘¡1’ in l¡1 indicates the value of l at y D ¡1. Then two angles
of incidence can be de� ned for an IGW incident upon a background � ow viz.

® D arctan

³
m

l¡1

´
; ¯ D arctan

³
k

l¡1

´
: (22)

Using the parameter values above, ® is then equal to and taken to be constant at
approximately 89 degrees. The angle of incidence ¯ will vary. Typical values for the
wave frequency ! are between 1 and 5 times the Coriolis frequency f . Overall these
values are in good agreement with recent observations made by Guest et al. (2000) for
IGWs in the southern-hemisphere lower stratosphere.

(c) Results

(i) Inertially stable background � ow. In Fig. 1 the locations of the turning levels and
Ä-critical levels (Ä-CLs hereafter) are plotted as a function of the angle of incidence ¯ .
From this � gure, the following four cases can be distinguished for increasing ¯:

1(a) No turning levels and no Ä-CLs.
2(a) One turning level and no Ä-CLs.
3(a) One turning level followed by one Ä-CL.
4(a) One Ä-CL surrounded by two turning levels.

For ¯ larger than 22 degrees, the Ä-CL gradually shifts towards negative values
of y, but is always surrounded by two turning levels. In fact, close inspection of the
behaviour of Q in Eq. (9) shows that a third turning level is present in the � ow which
nearly coincides with the Ä-CL. However, the distance between this turning level
and the Ä-CL is much smaller than the wavelength. Therefore, this turning level will
not have any signi� cant effect on the propagational behaviour of the wave and will
be excluded from any further discussion below. In Fig. 2 re� ection and transmission
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Figure 2. Re� ection and transmission coef� cients as a function of the angle of incidence ¯ . The background
� ow is inertially stable.

coef� cients are plotted for the same values of ¯ as in Fig. 1. For all values of ¯ in
Fig. 2, jRj2 C .l=A/1.A=l/¡1jT j2 D 1. This may appear rather surprising, since one
might expect over-re� ection, over-transmission or absorption to occur in the presence
of an Ä-CL (see appendix). However, for the inertially stable � ow it is always found
that the distance between the � rst turning level and the Ä-CL is so large, that the
wave has become evanescent (bÁ D 0¤) by the time it reaches the Ä-CL. Note that
jRj2 C .l=A/1.A= l/¡1jT j2 D 1 is also found for other values of ® and ¯ .

If there are no turning levels and no Ä-CLs in the � ow (case 1(a)), then we have,
for the parameters considered, jRj D 0 always.

For a small range of values of ¯ , we have one turning level and no Ä-CLs
(case 2(a)). In these cases we have jRj D 1. An example of this is shown in Fig. 3 for the
inertially stable � ow (!2

i
=f 2 > 0 for all y=L). The angle of incidence ¯ D 11 degrees.

The turning level (indicated as ‘TL’) occurs where Q D 0. Note that QN2=f 2L2

becomes singular where A D 0 in agreement with Eq. (9). The wave (Re.Á/) is totally
re� ected (jRj D 1) by the turning level. Since there is only one turning level, the wave
becomes evanescent at y D C1, which explains jT j D 0.

For ¯ larger than approximately 13 degrees, we have a situation in which there is
one turning level followed by one Ä-CL in the � ow (case 3(a)). In these cases we have
jRj D 1. An example of such a situation is shown in Fig. 4. The parameter values are the
same as in Fig. 3, except that ¯ D 17 degrees. The � ow is inertially stable (!2

i /f 2 > 0
for all y=L). As the wave propagates towards the background � ow, it � rst encounters
the turning level (Q D 0) and then the Ä-CL (Ä D 0). Similarly to Fig. 3, QN2=f 2L2

becomes singular where A D 0, but also where Ä D 0. Note that the wave is again
completely re� ected. At the turning level the wave becomes evanescent and by the time
it reaches the Ä-CL, its amplitude is insigni� cantly small (Re.Á/ D 0). As mentioned
above, the distance between the turning level and the Ä-CL is so large, that the Ä-CL
has no signi� cant effect on the propagation properties of the wave.

¤ Hereafter we will omit the superscript b for convenience.
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Figure 3. Situation with one turning level and no Ä-critical levels (Ä2=f 2 > 0) for a stable background � ow
(!2

i =f 2 > 0). The wave � eld is represented by Re(Á). The turning level (‘TL’) occurs at the location where Q D 0.
QN 2=f 2L2 becomes singular where A D 0, which follows from Eq. (9). The angle ¯ is equal to 11 degrees, the

re� ection coef� cient jRj D 1, and the transmission coef� cient jT j D 0. See text for further information.
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Figure 4. Similar to Fig. 1, but now there is one turning level and one Ä-critical level (‘Ä-CL’) (Ä D 0) present
in the � ow. Note that QN 2=f 2L2 now becomes singular at locations Ä D 0 and A D 0. The angle of incidence
¯ D 17 degrees, the re� ection coef� cient jRj D 1, and the transmission coef� cient jT j D 0. See text for further

information.
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Figure 5. Locations of the turning levels and Ä-critical levels as a function of the angle of incidence ¯ .
The background � ow is inertially unstable.

A situation in which the Ä-CL is surrounded by two turning levels (case 4(a)) is
reached for ¯ larger than approximately 20 degrees. As can be seen from Fig. 2, we
have then jRj D 1 and jT j D 0 always. The wave is, similarly to the case with one turning
level and one Ä-CL, totally re� ected. The distance between the (� rst) turning level and
the Ä-CL is in this case also so large that the wave has become evanescent when it
reaches the Ä-CL. As a consequence, the wave behaviour is not signi� cantly in� uenced
by the presence of the Ä-CL.

(ii) Inertially unstable background � ow. The background � ow becomes inertially
unstable, around the in� ection point y D 0, for Rossby numbers larger than 4.0.
Now re� ection and transmission coef� cients can become larger or smaller than 1, indi-
cating exchange of momentum and energy between the wave and the background � ow.
In Fig. 5 the locations of the turning levels and the Ä-CLs are plotted as a function of
the angle of incidence ¯ . From this � gure, six different cases can be identi� ed:

1(b) No turning levels and no Ä-CL.
2(b) One turning level and no Ä-CL.
3(b) One turning level followed by one Ä-CL.
4(b) One Ä-CL followed by one turning level.
5(b) No turning levels and one Ä-CL.
6(b) One Ä-CL surrounded by two turning levels.

Similarly to the inertially stable case, turning levels are also present very close to
the location of the Ä-CLs. For the same reasons as in the inertially stable case, we
will not discuss these turning levels further. Re� ection and transmission coef� cients
are plotted in Fig. 6 for the same values of ¯ as in Fig. 5. Note from Fig. 5 and
Fig. 6 that over-re� ection and over-transmission occur in the case when the location
of the Ä-CL yc=L > 0, and that absorption occurs in the case when the location of
the Ä-CL yc=L < 0. In the appendix it is shown that the location of yc=L, is related
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Figure 6. Re� ection and transmission coef� cients as a function of the angle of incidence ¯. The background
� ow is inertially unstable. The range of values of ¯ where over-re� ection and over-transmission (jRj2 C
.l=A/1.A=l/¡1jT j2 > 1) and absorption (jRj2 C .l=A/1.A= l/¡1jT j2 < 1) occurs is also indicated. See text

for further information.

to the sign of ¡.d2U=dy2/=.dU=dy/ at the location of the critical level. The sign of
¡.d2U=dy2/=.dU=dy/ at the critical level determines, in its turn, the sign in the jump of
the momentum � ux. For example if yc=L > 0, then ¡.d2U=dy2/=.dU=dy/ > 0 yielding
a positive jump in the momentum � ux. From Eq. (A.8) and Eq. (21) it can then be
seen that a positive jump in the momentum � ux corresponds to over-re� ection and
over-transmission. A similar reasoning can be followed to explain the occurrence of
absorption in case yc=L < 0.

Based on the different cases above it can be seen that in case 1(b), jRj is nearly zero
and jT j is approximately between 0.6 and 1.0 and jRj2 C .l=A/1.A=l/¡1jT j2 D 1.

In cases 2(b) and 3(b) we have jRj D 1 and jT j D 0 always, as in the inertially stable
case.

Over-re� ection (jRj > 1) and over-transmission (jT j > 1) occurs for ¯ between ap-
proximately 4 and 5 degrees. Note from Fig. 6 that over-re� ection and over-transmission
is most pronounced in the case when there is only one Ä-CL followed by a turning level
(case 4(b)) or in the case when there is one Ä-CL only (case 5(b)). An example in which
spectacular over-re� ection occurs is shown in Fig. 7, with jRj D 3:304, jT j D 0:906
and jRj2 C .l=A/1.A= l/¡1jT j2 D 12:689. Note that the Ä-CL is located in the region
where the � ow is inertially unstable (!2

i
=f 2 < 1 for certain values of y=L).

For ¯ between approximately 5 and 14 degrees absorption with jRj < 1 and jT j < 1
is dominant (cases 5(b) and 6(b)). An example of this is shown in Fig. 8 for ¯ ¼
5:7 degrees with jRj D 0:448, jT j D 0:891 and jRj2 C .l=A/1.A=l/¡1jT j2 D 0:991.
There is only one Ä-CL located in the � ow and no turning levels. Similarly to Fig. 7,
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Figure 7. An example of over-re� ection with jRj D 3:304, jT j D 0:906 and jRj2 C .l=A/1.A= l/¡1jT j2 D
12.689. The plotted quantities are equal to those in Fig. 1 and Fig. 2. The � ow is inertially unstable (!2

i < 0)
between approximately ¡1 < y < 1. Singular behaviour in QN 2=f 2L2 occurs at locations where Ä D 0.

The angle of incidence ¯ ¼ 4:5 degrees. See text for further information.

the Ä-CL is located in the region where the � ow is inertially unstable (!2
i
=f 2 < 0 for

certain values of y=L) and QN2=f 2L2 becomes singular at the Ä-CL.
Another example of absorption is shown in Fig. 9 for ¯ ¼ 10 degrees.

Here jRj D 0:912, jT j D 0:379 so jRj2 C .l=A/1.A= l/¡1jT j2 D 0:886. Now we have
one Ä-CL that is surrounded by two turning levels. The quantity QN2=f 2L2 shows
singular behaviour at the Ä-CL and where A D 0 (see Eq. (9)). It is interesting to note
that the Ä-CL is now located just outside the region where the � ow is inertially unstable
(!2

i
=f 2 < 0).
For values of ¯ larger than approximately 14 degrees, the distance between the � rst

turning level and the Ä-CL increases, so we � nally recover that jRj ’ 1 and jT j ’ 0.
This is in agreement with the results for the stable background pro� le. As soon as the
distance between the � rst turning level and the Ä-CL becomes too large, the wave has
become completely evanescent when it reaches the Ä-CL. The Ä-CL will then have an
insigni� cant effect on the wave behaviour.

The fact that the Ä-CL in Fig. 7 and Fig. 8 is located in the region where the
background � ow is inertially unstable is not directly related to the occurrence of over-
re� ection, over-transmission and absorption. This is con� rmed by Fig. 9 where an
example of absorption is shown, but where the Ä-CL is located outside the region where
the background � ow is inertially unstable. The location of the Ä-CLs and turning levels
is determined by ¯ and by Q in Eq. (9). Nevertheless, from Eq. (9) it can be seen
that the sign of !2

i
=f 2 does, to some degree, in� uence the behaviour of Q. However,

the actual occurrence of over-re� ection, over-transmission and absorption is determined
by the location of the Ä-CL in the � ow, which determines the sign of the jump in the
momentum � ux (appendix), and by the distance between the � rst-occurring turning level
and the Ä-CL.
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Figure 8. An example of an inertially unstable background � ow, with one Ä-critical level and no turning levels.
The plotted quantities are equal to those in Fig. 1 and Fig. 2. The re� ection coef� cient jRj is equal to 0.448 and
jT j is equal to 0.891 and jRj2 C .l=A/1.A=l/¡1jT j2 D 0:991. Singular behaviour in QN 2=f 2L2 occurs at the

location where Ä D 0. The angle of incidence ¯ ¼ 5:7 degrees. See text for further information.
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Figure 9. An example of absorption with jRj D 0:912, jT j D 0:379 and jRj2 C .l=A/1.A= l/¡1jT j2 D 0:886.
The plotted quantities are equal to those in Fig. 1 and Fig. 2. Singular behaviour in QN 2=f 2L2 occurs at locations

where Ä D 0 and A D 0. The angle of incidence ¯ ¼ 10 degrees. See text for further information.
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Other experiments with different values for ® and Ro (> 4:0) do not signi� cantly
alter the results presented above.

4. CONCLUSIONS

In this study a linear model is presented describing the propagation of IGWs on an
f -plane in a vertically homogeneousbackground� ow with shear in the latitudinal direc-
tion. The resulting wave equation contains two types of singularities. One corresponds
to the occurrence of a critical level in the � ow when the intrinsic wave frequency Ä is
equal to zero, here referred to as the Ä-CL. This singularity is similar to the classical
Booker and Bretherton type of singularity for horizontally homogeneous background
� ows with vertical shear. The other type of singularity is an apparent singularity and has
been discussed in the literature in different contexts.

Numerical integration of the singular wave equation enables the calculation of
re� ection and transmission coef� cients for a wide range of parameter values and for
two angles of incidence ® D m=l¡1 and ¯ D k=l¡1.

The main results can be summarized as follows:

² The following distinction can be made for an inertially stable background � ow:

– jRj D 0 and jT j < 1 in cases when there are no turning levels and no Ä-CLs.
– jRj D 1 and jT j D 0 when the wave encounters one turning level only.
– jRj D 1 and jT j D 0 when the wave � rst encounters a turning level followed

by an Ä-CL.
– In all cases above jRj2 C .l=A/1.A=l/¡1jT j2 D 1.

Also, in all cases considered for the stable background � ow where jRj D 1 and
jT j D 0, the distance between the (� rst) turning level and the Ä-CL played an
important role. When the wave passes the turning level it becomes evanescent and
its amplitude has become insigni� cantly small when reaching the Ä-CL. The wave
re� ects completely at the turning level and the Ä-CL has no signi� cant effect on
the wave propagation. This explains the robust result jRj D 1 and jT j D 0.

² For inertially unstable background � ows the following distinction can be made:

– jRj D 0 and jT j < 1 when there are no turning levels and no Ä-CLs.
– jRj D 1 and jT j D 0 when the wave encounters a turning level only.
– In the two cases above we have jRj2 C .l=A/1.A= l/¡1jT j2 D 1.
– Over-re� ection (jRj > 1) and over-transmission (jT j > 1) occurs mostly in

the case when there is only one Ä-CL in the � ow. In a few cases this Ä-CL
is followed by a turning level.

– Absorption (jRj; jT j < 1) occurs mostly in the case when one Ä-CL is
surrounded by two turning levels. As the distance between the � rst turning
level and the Ä-CL increases for increasing ¯ , � nally jRj ’ 1 and jT j ’ 0.

– The sign of ¡.d2U=dy2/=.dU=dy/ at the location of the Ä-CL determines
the sign of the jump in the momentum � ux, which in its turn determines
whether over-re� ection/over-transmission or absorption occurs.

An important � nding in this study, is the fact that in inertially stable � ows the
wave will always totally re� ect at the turning level and never reach the critical level.
In inertially unstable � ows the turning level can disappear and the wave can reach the
critical level. At the critical level over-re� ection, over-transmission and absorption can
then occur.
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In this study we have not accounted for the effects of wave saturation and eventually
wave breaking, processes that may signi� cantly contribute to the exchange across the
vortex edge. Nevertheless, our results show a wide range of behaviour that may occur
when IGWs propagate in shear � ows like the polar vortex edge.
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APPENDIX

Jump in momentum � ux across the Ä-critical level
In section 2(c) it is shown that whenever Ä becomes zero somewhere between

y D ¡1 and y D C1, the momentum � ux in Eq. (12) can jump in passing critical
levels. These jumps are related to logarithmic singularities that are analysed below.

At the critical level y D yc where Ä.y/ D 0, a Taylor expansion of Ä.y/ around
ey D y ¡ yc can be made i.e.

Ä.y/ D Ä1ey C Ä2ey2 C ¢ ¢ ¢ (A.1)

where Ä1 D Äey.0/ and Ä2 D 1=2Äfyy.0/.
In a similar way the Taylor expansion for A.y/ around ey D 0 is given by

A.y/ D A1.ey/ C A2.ey/2 C ¢ ¢ ¢ (A.2)

where A1 D Aey.0/ and A2 D 1=2Afyy.0/. We note that the expansion coef� cients Ä1,
Ä2; : : : ; A1; A2; : : : are all related to the Taylor expansion coef� cients of the back-
ground � ow U.y/.

Application of the method of Frobenius to Eq. (6) and use of Eqs. (A.1) and (A.2)
yields Frobenius exponents 0 and 1. The � rst solution reads

bÁÄ1.ey/ D ey
1X

nD0

cneyn; c0 6D 0; where ey D y ¡ yc; (A.3)

and a second linearly independent solution is given by

bÁÄ2.ey/ D bÁÄ1.ey/.BÄ1 ln ey C BÄ2ey
¡1/ C bÁÄ1.ey/

1X

nD2

dn

n ¡ 1
eyn¡1; (A.4)

where BÄ1 and BÄ2 are constants de� ned as

BÄ1 D
A1

a2
0

¡
2a1

a3
0

A0; BÄ2 D ¡
A0

a2
0

: (A.5)

The solution can again be written as a linear combination of Eqs. (A.3) and (A.4),
i.e.

bÁÄ.ey/ D FÄ
bÁÄ1.ey/ C GÄ

bÁÄ2.ey/: (A.6)



2510 M. C. ÖLLERS et al.

Recalling Eq. (11), the jump across Ä-critical levels can now be determined from

1 Re

³
ibÁ¤

A

dbÁ
dy

´
D 1 Re

»
i
A

³
jF j2ÄbÁ¤

Ä1

dbÁÄ1

dy
C jGj2ÄbÁ¤

Ä2

dbÁÄ2

dy

C F ¤
ÄGÄ

bÁ¤
Ä1

dbÁÄ2

dy
C FÄG¤

Ä
bÁ¤

Ä2

dbÁÄ1

dy

´¼
: (A.7)

All terms in Eq. (A.7) give zero contributions at ey D 0, except the term proportional
to jGj2Ä. After some algebra Eq. (A.7) takes the form

CC1 ¡ C¡1 ´ 1 Re

³
ibÁ¤

A

dbÁ
dy

´
D jGj2Ä1 Re.iJÄ ln ey/; (A.8)

where JÄ is given by

JÄ D
2a1jA0j2 ¡ a0A1A¤

0

a0A0ja0j2
: (A.9)

Evaluating A0, A1, a0 and a1 in terms of the Taylor expansion coef� cients of
the background � ow U.y/, reveals that the sign of JÄ is determined by the sign of
¡.d2U=dy2/=.dU=dy/ at the location of the critical level y D yc.

From Eq. (12) the momentum � ux can be written as

1¿ D ½0kjGj2Äh1 Re.iJÄ ln ey/i; (A.10)

for real k. Obviously the sign of the jump is determined by the sign of JÄ. For the
hyperbolic tangent pro� le this means that we have a positive jump in the momentum
� ux for yc > 0 and a negative jump for yc < 0.
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