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Summary

Using the NCAR/NCEP reanalysis data, we analyze the atmospheric angular momentum M
response to torques T in the 1–25 day spectral band. At these periodicities, the variations in M are
equally distributed between variations in wind angular momentum MR and mass angular momentum
MΩ. They are driven by mountain torques TM which are substantially larger than boundary layer torques
TB . This equipartition between MR and MΩ occurs because the response to TM in most case satisfies
the geostrophic balance, and because the major mountain ranges are located in the mid-latitudes. At
these latitudes, an external positive zonal mean zonal force is in good part equilibrated by a flux of mass
equatorward through the Coriolis force, a process that increases MΩ. In geostrophic balance with this
mass redistribution, the zonal mean zonal wind increases where the force is applied and MR increases
as well. This process leads to MR ≈ MΩ for parameters representative of the Earth’s atmosphere.

This explanation of the equipartition between MΩ and MR is confirmed by two pieces of independent
evidence. The first is based on the reanalysis data, in which we evaluate the contribution of six non-
overlapping latitudinal sectors to TM hence varying the importance of the Coriolis force. When the
mountain torque TM is produced by mountains located in the Arctic and Antarctic sectors, the changes
in MΩ dominate those in MR. It is the other way round when TM is produced by mountains located in
the Equatorial sector and MΩ ≈ MR when TM is due to mountains located in the subtropics or in the
midlatitudes.

The second is based on results from a one layer shallow water axisymmetric model on a sphere,
where zonal body forces centered at different latitudes are specified. The latitudinal dependence of the
repartition between MR and MΩ found in the data is reproduced by the model with MΩ ≈ MR when
the force is centered in the mid-latitudes.

The Arctic Oscillation (AO) pattern being associated with substantial MΩ, the significance of
these results for the atmospheric circulation variability is also discussed. In the 1-25 day band, the
AO variations are very significantly related to MΩ variations driven by TM . This result suggests that in
this band the mountain ranges substantially affect the AO variability.
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1. Introduction

Variations of the atmospheric axial angular momentum (AAM, or M in
equations) are known to occur at time scales from daily to inter-annual (Rosen
and Salstein 1983). In fact, they are associated with dynamical processes having
different characteristic timescales, such as the El-Niño-Southern oscillation (Chao
1989; Wolf and Smith 1987), the 40–60-day intraseasonal tropical oscillation
(Madden 1987), and the 15–35-day intraseasonal mid-latitudes oscillations (Lott
et al. 2003). At smaller periodicities they are also associated with traveling
Rossby waves (Lejenäs and Madden 2000) and synoptic scale midlatitude systems
(Iskenderian and Salstein 1998).

The exchange of angular momentum with solid Earth is achieved by the
friction torque TB and the mountain torque TM (Starr 1958) whose relative
importance depends on the timescale. The mountain torque is generally weaker
than the friction torque on inter-annual and seasonal timescales (Newtown 1971)
with the possible exception of periods of El-Niño events (Wolf and Smith 1987).
The friction torque also seems to produce the AAM changes that occur during the
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intraseasonal tropical oscillation (Madden 1987). Nevertheless, there are examples
of intraseasonal tropical oscillations during Northern Hemisphere winter where
the mountain torque drives substantially the AAM changes while the friction
torque damps them (Weickmann and Sardeshmuck 1994). This fact becomes
even more valid as the timescale decreases below the intraseasonal tropical
oscillations periodicities of 40–60-day (Dickey et al. 1991, Lott et al. 2001). At
even smaller periods the mountain torque clearly drives the changes in AAM
(Swinbank 1985; Iskenderian and Salstein 1998). These results are in agreement
with Rosen’s (1993) conclusion that the friction torque dominates the changes in
AAM on timescales of months, whereas on timescales shorter than several weeks
the mountain torque is dominant.

Although the relative importance of mountain torques and friction torques
in producing the AAM changes has been often discussed, there are comparatively
few studies that document the relative importance of the mass angular momen-
tum MΩ and of the wind angular momentum MR for the AAM itself. This is
due to the fact that MΩ makes a rather small contribution to M , the changes in
MΩ being only comparable to those in MR at periodicities ω−1 <25 day (Lott et
al. 2003, ω being the frequency in cycle/day). At larger periodicities the spectra
of the MR tendency is much larger than that of the MΩ tendency. In this case the
tropical regions largely control the AAM changes through the Pacific Ocean fric-
tion torques associated with convective fluctuations over the Indo-Pacific warm
pool (Madden 1987; Hendon 1995).

The equipartition between MR and MΩ can be as a first guess though as due
to a simple dynamical origin. When a positive torque TM is due to a mountain
range located in the extratropics, providing we can neglect its effect over long
distances through traveling Rossby waves, it accelerates the zonal mean flow in the
extratropics. The positive barotropic zonal wind this torque produces (producing
positive MR) is affected by the geostrophic balance. Thus, this torque also induces
changes of zonal mean mass to the north and to the south of the central latitude
of the mountain range (producing MΩ). Hence this torque naturally affects both
MΩ and MR but in a fraction that remains to be evaluated. Note as well that this
fraction has to vary with the latitude of the mountains that produce TM , because
the Coriolis parameter and the distance to the earth axis vary with latitude.

It is important to emphasize that analyzing the response in MΩ to mountain
torques is not only relevant to understand the AAM budget closure at high
frequencies. It is also interesting in addressing the role of mountains on the
general circulation of the atmosphere. Indeed, there are increasing evidences
that AAM budget studies can help to isolate to which extent the atmospheric
variability in the midlatitudes is driven by mountains (Lott et al. 2004). In
this context, Lott et al. (2004) found that changes in the Arctic Oscillation
(Wallace 2000) in the 20–30-day band are preceded by a small but significant
signal in the mountain torque. This relationship is mainly due to the fact that
the Arctic Oscillation pattern corresponds to a redistribution of mass from the
polar latitudes to the midlatitudes, hence giving a substantial contribution to MΩ.
These findings are supported by von-Storch (1994, 1999) who found in a coupled
GCM that two among the three dominant modes of large scale variability are
associated with larger MΩ than MR. For completeness, note as well that Kang
and Lau (1994) related the principal modes of atmospheric circulation variability
to AAM fluctuations but limited their analysis to changes in MR.
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The first purpose of the present study is to analyze the repartition between
mass and wind angular momentum due to mountain torques at periodicities
for which the friction torque makes a small contribution to the AAM budget.
The second purpose is to interpret this repartition as a natural consequence
of the geostrophic equilibrium that takes place in the mid-latitude, that is
at the latitudes where the mountains mainly affect the zonal mean flow. The
third is to suggest, using different diagnostics than in Lott et al. (2004), that
mountain torques drive in part the changes in the Arctic Oscillation that occur
at periodicities ω−1 < 25 day, because they modify the mass angular momentum.

In section 2, we present the data used and recall briefly some spectral analysis
results that motivate the present work. In section 3, we focus on the AAM budget
in the 1–25 day band and look at the real atmosphere response to torques due
to mountains located in different latitude bands. In section 4, we analyze the
geostrophic adjustment to mountain torques using a zonally-averaged barotropic
shallow-water model on the sphere. Section 5 gives some conclusion.

2. Data description

(a) AAM budget and AO

We use 40 years (1958–1997) of the NCEP/NCAR reanalysis (Kalnay et
al. 1996) to extract the daily averages of the surface pressure field Ps, the sea-
level pressure field Pm, the zonal wind u at the 17 pressure levels given by the
analysis, and the daily average of the boundary-layer stress τB issued from 6-hour
forecasts. From this set of data we evaluate the global tendency budget of the
atmospheric angular momentum M :

dM

dt
=

d (MR + MΩ)

dt
= TM + TB, (1)

where MR, MΩ, TM , and TB are the wind angular momentum, the mass
angular momentum, the torque due to the mountains, and the torque due to
the boundary-layer stress, respectively. These four quantities are computed as

MR =

∫

V
ρr cos θu dV , MΩ =

∫

V
ρΩr2 cos2 θ dV , (2)

TM = −
∫

S
Ps

∂Zs

∂λ
dS , and TB =

∫

S
r cos θ τB dS . (3)

In Eqs. 2–3
∫

V dV is the integral over the volume atmosphere,
∫

S dS is the integral
over the earth surface. ρ is the density, λ is the longitude, θ is the latitude, r is
the radius of the Earth, Ω is the angular velocity of Earth’s rotation, and Zs is
the topographic height.

In our calculation the AAM budget is well balanced: the correlation between
d(MR + MΩ)/dt and TM + TB in Eq. 1 is close to r = 0.85 (Lott et al. 2003). Note
that the contribution of the NCEP model’s parameterized mountain gravity waves
drag was not included to the mountain torque, because it degrades the balance
between the global AAM tendency and the torques (Huang et al. 1999).

The dominant large-scale atmospheric pattern that accompanies changes in
MΩ is displayed in Fig. 1a. To reduce the influence of the annual cycle and to
focus on the NH, it is computed as winter (DJF) regression of the sea surface
pressure field onto MΩ (Von Storch and Zwiers, 1999). Figure 1a shows that
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Figure 1. DJF regression of sea-level pressure maps Pm on a) the mass angular momentum MΩ (Contour
Interval 0.5hPa) and b) the Arctic Oscillation index, or PC–1 of DJF Pm daily variability (Contour

Interval 1hPa).

the Northern Hemisphere (NH) changes associated with positive MΩ are first
due to a redistribution of mass from the polar latitudes to the midlatitude ones.
The geostrophic balance implies that they are associated to changes in the mid-
latitude and polar jet, with a reinforced jet over the north east and central Pacific
as well as over the central eastern North-Atlantic.

From this set of data, we also compute the Empirical Orthogonal Functions
(EOFs, Preisendorfer 1988) of the sea surface pressure Pm daily variability
over the Northern Hemisphere and during winter months (DJF). The first EOF
(EOF 1) accounts for 9.3% of the daily DJF variability. The DJF regression of the
sea level pressure Pm onto its PC 1, shown in Fig. 1b, is strongly reminiscent of the
Arctic Oscillation (Thomson and Wallace 1998): it is strongly zonally symmetric
and associated with reinforced jets over the north east and central Pacific, as well
as over the central eastern North-Atlantic. Consequently, the Arctic Oscillation
index used in the rest of this paper will be the Pm PC 1. It is important to
emphasize here that the two maps in Fig. 1a and Fig. 1b have a pattern correlation
above 0.6, when evaluated north of 30oN. This good correlation is at the basis of
the lead-lag relationships between mountain torque, mass AAM and the AO in
the 20–30-day band, found in Lott et al. (2004).

(b) Spectral analysis

To illustrate the relevance of the high-pass ω−1 <25 day window, Fig. 2
presents the spectra of each term in the AAM budget (Eqs. 1–3), as well as
the coherence between the global AAM M and both torques TM and TB. To
highlight high frequency contributions, the spectra in Figs. 2a–b are presented
in the linear-log energy-conserving representation. Both spectra of MR tendency
(black solid in Fig. 2a) and MΩ tendency (grey solid in Fig. 2a) present a flat
background of nearly equal intensity for ω−1 <20 day. At longer periodicities, the
contribution of MR exceeds that of MΩ, with the latter becoming less than half
the former for ω−1 >25 day. For the torques, the spectra in Fig. 2b show that
at periodicities typically above 30-40 days, the contributions of TM (black solid)
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Figure 2. Spectral analysis of different terms in the AAM budget Eqs. (1)–(3). a) Spectra (S) of the
MR tendency (black solid) and the MΩ tendency (grey solid). b) Spectra of TM (black solid) and TB

(grey solid). c) Coherency (upper panel) and phase (lower panel) between the global AAM M and (i) TM

(black solid) and (ii) TB (grey solid). d) Coherency (upper panel) and phase (lower panel) between the
AO and MΩ. All curves in a), b), c), and d) are built in 3 steps. First the series are tapered by a 3-day
box car average and sampled every 3 days. Second, their Fourier coefficients are evaluated to produce
the periodograms needed for (a) and (b) and the cross-periodograms needed for (c) and (d). The spectra
and cross-spectra are then extracted smoothing the (cross-)periodograms by a 30 points (33%)-cosine
window, yielding a resolution of 6.2 10−3 cy/day. In d) a median level (grey solid) and a 1% significance
level (grey dashed) have also been added. They are evaluated by a Monte-Carlo procedure that apply the
cross-spectral analysis to 100 pairs of AR-1 uncorrelated series whose variance and lag-one correlation
fit the series of NH-PC 1 and MΩ both with annual cycle subtracted (see Appendix for the extraction

of the series with no annual cycle)

and TB (grey solid) are comparable, while at ω−1 <25 day the mountain torque
clearly dominates the friction torque TB.

The coherences and phases of the cross-spectra between the global AAM M
and the torques TM and TB in Fig. 2c are also instructive. The rather large
coherence for both torques in the upper panel of Fig. 2c is a sign that the
AAM budget is well closed when using the NCEP reanalysis data. The lower
panel, shows that at nearly all periodicities, the mountain torque TM leads M
by almost a quarter of period, hence driving the changes in the latter (thick
solid, lower panel in Fig. 2c). This lead quadrature is nearly exact at periodicities
ω−1 <25 day, that is when TM dominates TB according to Fig. 2b. The phase of
TB is intermediate between being in opposition and in lead-lag quadrature with
M (thick grey, lower panel in Fig. 2c). On the one hand, the phase opposition
implies that large TB are associated with smaller than usual zonal winds (and
hence MR); on the other hand, the lead lag quadrature implies that TB drives M
changes through Eq. 1. Thus, TB has a complex and dual relationship with M ,
but it remains small compared to TM (Fig. 2b).

The importance of this frequency band for the links between the mass AAM
and the AO is proved in Fig. 2d which shows a cross spectral analysis between
MΩ and the AO index. The coherence between the two series is often above 0.5
for ω−1 <25 day while significantly below that value for ω−1 >30 day. For all
periodicities the series are nearly in phase (lower panel in Fig. 2d). It is also
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TABLE 1. Standard deviation of the differ-
ent filtered series of AAMs, torques, and AO

index used in the paper.

all year no annual ω−1 <25 day

M 275 Hd 92 Hd 45 Hd
MR 263 Hd 80 Hd 33 Hd
MΩ 67 Hd 45 Hd 31 Hd
TM 20 H 19 H 18 H
TB 10 H 8 H 6 H
AO 67 Hd 59 Hd 47 Hd

Units: Hadleys day, 1 Hd = 8.64 1022 kg m2s−1

; Hadleys, 1 H = 1018 kg m2s−2. Note that the
AO index is expressed in term of Hd instead of Pa.
To do this conversion we first normalize the PC-1
values by their DJF standard deviation. Second, we
multiply them by the mass angular momentum MΩ

related to the PC-1 regression pattern in Fig. 1b
using Eq. 2.

important to emphasize that the coherence values for ω−1 <30 day are nearly
always significant at the 1%-level (grey dashed in Fig. 2d) and rarely significant
for periodicities between 30 and 100 day. The coherence values are also largely
above the median value of 0.17 (solid grey line) to be expected for uncorrelated
series when using our conventional spectral analysis method (see Fig. 2 caption).
Note also that the same analysis applied to MR and the AO index, near never
give significant coherencies for periodicities below 100 day (not shown).

As noted in the introduction and from the literature on this topic, none of
the results presented in Figs. 2a–d are really novel. Nevertheless, they illustrate
the specificity of the 1–25 day band, on which we will concentrate in the rest
of the paper. To summarize, in this band, M changes are little damped and
predominantly driven by the mountain torque; the changes in M are almost
equally distributed between MΩ and MR and the changes in MΩ are significantly
correlated with those in the AO.

3. AAM budget composites keyed to 1–25 day series

In this section, we use the fact that all the terms in the AAM budget Eq. 1
are linear, and consequently Eq. 1 remains valid when each series of AAM and
torques are filtered by a non-recursive high pass filter. Hence, we build series of
AAM and torques with substantial spectral power for periodicities, ω−1 <25 day,
and very low power for ω−1 >35 day. In the rest of the paper, we will refer to these
series as 25-days series; details on the filter used are in Appendix. Their standard
deviations are given in Table 1. They are compared to the standard deviations of
the corresponding unfiltered series and to those of the corresponding series with
annual cycle subtracted (see Appendix).

The values given in Table 1 clearly show that the high-pass 25 day filter keeps
almost all the standard deviation of the unfiltered mountain torque and reduces
by a factor around 2 the standard deviation of the boundary layer torque TB. The
filter also keeps half the variance of the unfiltered mass angular momentum, but
strongly attenuates the standard deviation of the wind angular momentum MR,
which possesses a strong annual cycle. The 25-days series of MR nevertheless
accounts for more than 40% of the standard deviation of the MR series with
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Figure 3. Composites of TM (black solid), TB (black dashed), MΩ (grey solid), and MR (grey dashed)
keyed to 25-days series of: a) total AAM (M), b) mountain torque (TM ), c) boundary layer torque (TB),
d) mass AAM (MΩ), e) wind AAM (MR), and f) Arctic Oscillation (NH DJF PC-1). The number N
of cases used to build the composites are given in parenthesis on the right of each panels. The black
(grey) bar in each panel indicates 1% confidence level from a Monte Carlo test that uses 100 means of
TM (MΩ), each means being made with N values of 25-days TM (MΩ) taken at random. In f) the black

squares are for the tendency of the MΩ composite.

annual cycle subtracted. Note as well that the standard deviation of the 25-days
MΩ and 25-days MR are comparable in amplitude, while the 25-days standard
deviation of TM is 3 times larger than the 25-days standard deviation of TB.

It is important to emphasize that our 25-days series are never small compared
to the unfiltered ones. As the fifth row in Table 1 shows, this is also true for
the AO. Finally, it is also important to note that the 25-days series close the
AAM budget as well as the raw series do: the correlation between the AAM
tendency and total torque both evaluated using 25-days series is above r = 0.88.
It is r = 0.85 when only the contribution of the mountain torque to the 25-days
total torque is taken into account.
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(a) AAM budget composites

Figures 3a–e show composites of mountain torque (TM black solid), boundary
layer torque (TB black dashed), mass angular momentum (MΩ grey solid), and
wind angular momentum (MR grey dashed) that are associated with different
25-days series, each indicated on the right of the panels. In the first panel for
instance (Fig. 3a), the composites are built from 25-days series of TM , TB,
MΩ and MR selected each time the 25-days AAM M exceeds a given positive
threshold M+ or is below a given negative threshold M−. At zero lag, the TM

composite is the mean of the 25-days TM values corresponding to the N+ dates
where M exceeds M+, minus the mean of the 25-days TM values corresponding
to the N− dates where M is below M−. At non-zero lag, the composites are
built using the same procedure, but with TM values corresponding to dates at
fixed lag from the N = N+ + N− local extrema identified before in the 25-days
M . The threshold values are arbitrary, and the number N of dates included in a
given composite decreases when M+ (M−) increases (decreases). We have verified
though, that the composite curves are not very sensitive to moderate changes in
the thresholds. The threshold values M+ = 115.75Hd and M− = −124.5Hd are
used in Fig. 3a. They are about 1.5 times the standard deviation of M with
annual cycle subtracted (Table 1). In this case, N+ = 36, N− = 35 so N = 71. For
the following composites curve (Figs. 3b–e and latter in Figs. 4a–f) the threshold
values for the series to which the 25-days AAM budget is keyed are always chosen
to ensure N+ ≈ N− and 60< N <80, and the value of N is given in parenthesis in
all panels. Finally, note that we verified that all composite curves in Figs. 3 and
Figs. 4 close well, and within the error bound for the mountain torques composite
provided, the AAM budget Eqs. 1.

The MΩ and MR composites keyed to the 25-days M in Fig. 3a present
substantial maxima of comparable amplitude at zero lag. “Substantial” means
comparable with the standard deviation of the unfiltered MΩ series given in
Table 1. As suggested by the spectral analysis in Section 2, this follows from the
fact that in the 1–25 day band both MR and MΩ make comparable contributions
to the global AAM. The black line in Fig. 3a, shows that the M positive anomaly
at zero lag is preceded by a substantial positive mountain torque anomaly
(Table 1) that is above 15H for lags −7d < l < 0d, and followed by a subsequent
negative mountain torque anomaly that is below −15H. This composite map thus
strongly suggests that the AAM changes in the 1–25 day band are driven by the
mountain torque and divided between mass and wind angular momentum. This
conclusion is supported by the fact that the composite of the 25-days TB keyed
to the 25-days M (black dashed in Fig. 3a) is very small compared to the TM

composite and is in phase opposition with the MΩ and MR composites at nearly
0 day lag. This corroborates the cross-spectral results in Fig. 2c, where in the
1–25 day band the mountain torque drives the M changes.

To support this point even further, Fig. 3b presents composites according
to the 25-days TM . The TM (black solid) composite presents a substantial spike
which lasts less than 5-6 days typically and which maximum value is almost 60H.
It is associated with rather abrupt increases in MΩ and MR centered at zero lag,
that are almost identical in phase and amplitude.

To support the hypothesis that the boundary layer torque damps the AAM
anomalies, we also made composites along the 25-days TB (Fig. 3c). The MΩ

(grey solid) and MR (grey dashed) composites are nearly in phase with each
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other but almost in phase opposition with the composite in TB. Also in this case
the composite of the mountain torque seems to remain the driver (black solid in
Fig. 3c).

The next panel in Fig. 3d, tests what can cause changes in MΩ only: again
the mountain torque (black solid) is the driver. Conversely, Fig. 3e tests what can
cause changes in MR only, giving very similar conclusion: the mountain torque
again.

Finally, Fig. 3f presents composites keyed to the 25-days AO. At zero and
small negative lag the AO is associated with a substantial positive anomaly in
mass AAM (MΩ, grey solid) whose maximum is at l = −1d. It is preceded by
an extrema in TM (black solid) close to 9H at l = −3d lag and followed by a
minimum in TM close to −14H at l = 1d lag. Since these extrema in TM are
significant (black arrow) and quite substantial (Table 1), the maximum in MΩ is
likely to be largely driven by the mountain torque. This point is confirmed by the
fact that the tendency of the MΩ composite (black squares in Fig. 3f) is very near
the composite in TM . The only fact that can complicate this interpretation is that
the wind angular momentum MR (grey dashed) varies quite substantially during
the 25-days cycle of the AO shown in Fig. 3f. The changes in MR at negative
lag 10d < l < 0d seems in opposition with those in MΩ, suggesting that there are
torque-free exchanges between MR and MΩ during the AO-cycle. Nevertheless,
we verified that these changes in MR have moderate impacts onto the global
composite M tendency which stays very near the black squares in Fig. 3e. It thus
remains true that the AAM anomalies associated with the AO are essentially due
to changes in MΩ, which are themselves driven by the mountain torque.

(b) Mountain torques evaluated over different latitude bands

As noted in the Introduction, the fact that the AAM response to mountain
torques is equally distributed between mass and wind angular momentum can
simply result from the geostrophic balance and from the fact that the major
mountain ranges are located in the midlatitudes. If such an explanation is relevant
to the real atmosphere, the balance between MΩ and MR must vary when the
central latitude θ0 of the mountain ranges that produce the torque varies, simply
because the Coriolis parameter varies in sin θ0 and because the distance to the
rotation axis varies in cos θ0.

To check if this is the case, we evaluate the contribution of six different
non-overlapping latitudinal sectors to the mountain torque. For this, we limit
the TM integration in Eq. 3 to the latitude band of interest. Among the sectors
selected, two cover the polar regions, the Arctic (60oN–90oN) and the Antarctic
(60oS-90oS), one covers the Equatorial band (15oS-15oN) and three cover the
mid and subtropical latitudes, one the Southern Hemisphere (15oS-60oS), one the
subtropical northern hemisphere (15oN-35oN), and one the midlatitude northern
hemisphere (35oN-60oN). The choice of these different latitude bands is somewhat
arbitrary. It is motivated by the fact that the latitudinal bands need to be
sufficiently large to provide substantial contributions to the mountain torque.
For instance, this constraint makes that we have grouped together the sub-
tropical and midlatitudes SH: at these timescales the Andes make a rather small
contribution to TM compared to the Rockies and the Himalayas. On the other
hand, because the mountain ranges in the NH are very large, we can distinguish
in the NH the subtropical and the mid latitude regions.
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composites are given on the right of each panel. Same conventions and parameters as in Fig. 3 except

that the dashed black lines are for the composite of the sectorial mountain torques.

Once these series of torque have been built, they are again filtered in the
1–25 day band and composites of the AAM budget are constructed according to
each of them. The composites according to the 25-days TM in the Arctic region
are displayed in Fig. 4a. The global 25-days TM composite (black solid) presents a
significant spike that peaks at 20H at zero lag, and that lasts around 3 days. It is
largely due to the Greenland (not shown), so the sectorial torque (black dashed)
almost identifies with the total mountain torque (black solid). In correspondence
with this spike the mass angular momentum composite varies substantially from
below −14Hd to 9Hd (grey solid), while the wind angular momentum varies
comparatively less (grey dashed). Away from this 3-days lag-window, none of the
values of torque and AAM are significant (black and grey arrows in Fig. 4a).

A rather comparable behavior can be seen when the contribution of Antarc-
tica to the torque is considered (Fig. 4f). It is important to note that in both
Figs. 4a and 4f the extrema of mass AAM obtained at small negative and positive
lags are only marginally significant. Although this can reduce the explanatory
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power of our interpretation, one remark can be made. The change of MΩ from
a significant negative value at small negative lag to a significant positive one at
small positive lag (Figs. 4a–4f) indicates rather strong tendencies (not shown)
which are far more significant than the anomalies of MΩ themselves.

If we now turn to the contribution of the Equatorial band to the mountain
torque in Fig. 4d, we find a behavior that is nearly opposite to that found in
the polar regions: a lag zero peak close to 15H in TM lasting nearly 6 days
(black solid), corresponds within the same period to an abrupt and significant
increase in the wind AAM MR (grey dashed) while the mass AAM MΩ varies
moderately (grey solid) during the same interval. Note nevertheless that in this
case the sectorial torque (black dashed) is significantly smaller that the total
torque (black solid) indicating contributions from extra-tropical latitudes to the
results in Fig. 4d that may explain the changes in MΩ.

When we look at the midlatitude and subtropical sectors (Figs. 4b 4c and 4e),
significant peaks in mountain torques lasting few days (black solid) are associated
with subsequent increased MR (grey dashed) and MΩ (grey solid). For all these
three sectors the increases in MΩ compare, within error bounds, in phase and
amplitude with those in MR. Again, some small but significant discrepancies
between sectorial mountain torques (black dashed) and global mountain torques
(black solid) are present in Figs. 4b and 4c. These indicate the limit of our
approach, because the major mountain ranges are not necessarily well embedded
within the latitudinal sectors that we chose.

When comparing the amplitude of the TM composites in each panel of Fig. 4,
it is clear that the subtropical and midlatitudes make the largest contributions
to the mountain torque. This explains why the same balance holds for the global
mountain torque anomalies in Fig. 3b since the subtropics and midlatitudes
induce changes in M where MR ≈ MΩ.

4. Shallow water model for the partition between MΩ and MR

In this part, we present results in a very simple dynamical context to
understand more precisely the partition between mass AAM and wind AAM. We
study the zonal mean flow response to a body force acting on a zonally symmetric
shallow water flow on a sphere. We furthermore assume that this body force is
not modulated by the axisymmetric flow, which excludes that it can be due to
frictional effects. This force only mimics mountain torques, the latter being due to
circulation patterns that are not axisymmetric, within a good approximation (see
Fig. 2 in Lott et al. 2004). Accordingly, our model is only adapted to interpret
the actual AAM budget for situations where the boundary layer torque plays a
minor role, which is the case for the 25-days series used in Section 3. The set of
equations used are similar to Gill (1982, p.431):

(

∂

∂t
+

v

r

∂

∂θ

)

u −
(

2Ω +
u

r cos θ

)

v sin θ =
F

h
, (4)

(

∂

∂t
+

v

r

∂

∂θ

)

v +
(

2Ω +
u

r cos θ

)

u sin θ = −
g

r

∂h

∂θ
, (5)

∂h

∂t
+

1

r cos θ

∂hv cos θ

∂θ
= 0 . (6)
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In Eqs. 4–6, u, v, and h are the zonal wind, the meridional wind and the fluid
depth, respectively; g is the gravity constant; F is a body force that varies in
time and latitude. Linearized around a state of rest with constant depth H0, the
Eqs. 4–6 correspond to the Laplace tidal equation for zonal wavenumber zero
(Longuet-Higgins 1968).

The set of Eqs. 4–6 satisfies an AAM budget of the form

d

dt
(MR + MΩ) = TF , (7)

where the wind AAM, the mass AAM, and the torque due to F are

MR = 2πr3

∫ +π/2

−π/2
hu cos2 θdθ , MΩ = 2πr4Ω

∫ +π/2

−π/2
(h − H0) cos3 θdθ , and

(8)

TF = 2πr3

∫ +π/2

−π/2
cos2 θFdθ . (9)

(a) approximate analytical solutions

The fact that the wind AAM and the mass AAM are linked with each other
via the geostrophic balance can be illustrated by two approximate solutions of
the set of Eqs 4–6. In the first, the atmosphere response to the force F after its
end, is assumed to be a uniform constant zonal wind, U , that is equilibrated by
a surface elevation,

H = H0 +
rUΩ

g

(

2 cos θ −
π

2

)

, (10)

through the Coriolis force:

2Ω sin θ U = −
g

r

∂H

∂θ
. (11)

The solution in Eq. 10 is such that H and H0 correspond to the same total mass.
For this solution, and using Eqs. 8, the fraction between mass AAM and wind
AAM is

MΩ

MR
=

r2Ω2

6gH0
, (12)

For parameters representative of the Earth troposphere, g=9.81 m s−2, H0=8 km,
r=6400 km, and Ω =7.27 10−5s−1 this ratio is near 0.45. Eq. 12 predicts well that
geostrophy implies that M must be proportionately distributed between MΩ and
MR but the fraction MΩ/MR is underestimated by a factor around 2 compared
to the equipartition found in Figs. 3a,b. We attribute this mismatch to the fact
that the major mountain ranges are located off the Equator, inducing changes in
25-day winds that are not uniform over the entire atmosphere.

In a second approximate solution, we try to account for this geographical
effect and assume that the force F applies to the flow within a very thin latitude
band with width δθ << 1 centered at a latitude θ0. Assuming that after the
force ends, the wind response U is constant in this band and null elsewhere, that
the height response H equilibrates U in this band via the Coriolis force and is
constant elsewhere and that H and H0 correspond to the same total mass, the
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fraction between mass AAM and wind AAM is given by

MΩ

MR
=

r2Ω2

gH0

2

3
sin2 θ0 . (13)

This ratio is null at the equator, approximately equal to 1.84 at the poles and
to 0.95 when θ0 = ±45o. This expression thus recovers at least qualitatively the
latitudinal dependence between MR and MΩ found in the observations in Fig. 4.

(b) numerical time-dependent model

Although relevant for our study, the approximate ratios in Eqs. 12–13 rely
on assumptions about the spatio-temporal structure of U and H that are highly
idealized. Furthermore they do not allow us to describe the transient dynamics
underlying the redistribution between mass and momentum that leads to such
ratios. To evaluate these ratios in a more complete dynamical context, and for
different forcings F , we solve the set of Eqs. 4–6 with a finite difference model
that uses the transformed latitude coordinate µ = sin θ and the set of variables
h, hu cos θ, and hv cos θ. In this coordinate system the model grid is staggered,
with h evaluated at M + 1 gridpoints that are equally spaced and that include
both poles, while hu cos θ and hv cos θ are evaluated at the M gridpoints centered
between the h-gridpoints. In all the experiment presented M = 1000 points are
used, a value for which convergence is achieved and the AAM budget (Eq. 7) is
perfectly closed. In space, all the differentiations in Eqs. 4–6 are estimated with
centered finite differences. In time, the integration is made by successive explicit
Leapfrog steps followed by an Asselin filter (Haltiner and Williams 1980).

Except when specified, all the experiments presented last 30 days and have
a timestep dt=10 s. The forcing F is always centered on a latitude θ0 and covers
a latitude band of width δθ = 10o. In time, it starts from 0 at t=0, reaches a
maximum amplitude at t=τF and returns to zero at t=2τF . Accordingly, it is
null at all times for θ > θ0 + δθ/2 and θ < θ0 − δθ/2, and it is null everywhere for
t> 2τF . For θ0 − δθ/2 < θ < θ0 + δθ/2 and 0 < t < 2τF it is given by

F = F0
4

δθ2

(

θ − θ0 +
δθ

2

) (

θ0 +
δθ

2
− θ

) (

1 − cos2
(

πt

2τF

))

. (14)

In all experiments the value of F0 is taken so that the maximum of the
torque reaches TF (τF ) = 10H. In most experiments, we will also take the forcing
timescale τF =2.5 day, a value which ensures that the timescale of the response is
large compared to that of the planetary gravity modes. In non-dimensional form
this condition becomes

(ΩτF )2 = 225 >>
rΩ√
gH0

= 1.66 . (15)

For this value of τF we can expect that the response of the rotational modes far
exceeds the gravity modes, i.e, the situation is adjusted.

Nevertheless, and for completeness, we will discuss as well the response when
F varies rapidly and take in one case τF =0.25 day. In this case (ΩτF )2 = 2.8 ≈

rΩ√
gH0

= 1.66, a situation that sometime occurs in General Circulation Models if

not in reality, and in response to gravity waves parameterizations (Egger 2003).
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Figure 5. Shallow water model results, forcing F centered at θ0 = 45◦N . a) Slowly varying case
2τF =5 days: Flow profiles of h − H0 (solid) u (dashed) and v (dot) at t=3d (grey) and t=6d (black). b)

Rapidly varying case 2τF =12 hours: h − H0 every days.

(c) results

Fig. 5a shows the flow response in the slowly varying case τF =2.5 day, and
when the forcing F is centered at the latitude θ0 = 45oN . The response in Fig. 5a
is shown at two different instants, one chosen when the force F is non-zero
(t=3 days, grey lines in Fig. 5a) and one after the force has stopped (t=6 days,
black lines in Fig. 5a). At t=3 days, the positive force F essentially produces
a meridional ageostrophic negative velocity v (grey dotted line) that presents
a minimum near θ0 where it does equilibrate F via the Coriolis force. This
southward velocity is associated with a southward flux of mass whose minimum
is near θ0 as well. Accordingly, the surface elevation increases to the south of θ0

and decreases to the north of it (grey solid). In geostrophic equilibrium with h,
the zonal wind (grey dashed) presents a pronounced positive zonal jet u (grey
dashed) in the area where F is non-zero and where the elevation h shows a strong
negative gradient (between θ0 − δθ/2 = 40oN and θ0 + δθ/2 = 50oN). Away from
that area the gradient of h is everywhere positive and by geostrophy u is negative
in the northern Hemisphere and positive in the southern hemisphere. Note that
the final profiles of h and u differ substantially from the idealized case considered
in Eq. 13, which assume constant height and zero velocity at all locations apart
from the narrow latitude band θ0 − δθ/2 < θ < θ0 + δθ/2.

Such a balanced description of the flow evolution remains valid as long as F
is non-zero, and the force keeps deepening the trough in h north of θ0 and raising
the high south of it. Hence the zonal flow u keeps increasing in amplitude around
θ0. For t > 2τF , F = 0 and the ageostrophic velocity it induces v=0 as well (black
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Figure 6. AAM and torque evolutions in the shallow water model, forcing F centered at θ0=37.5N:
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.

dotted line). At this time, the profiles of h (black solid) and u (black dashed) no
longer evolve, and they keep the values they reached at t = 2τF .

The fact that the flow no longer evolves after the forcing ends reflects the
fact that the dynamics is essentially linear and balanced. Indeed, for all the waves
that could exist after the forcing ends, the dispersion relationship of the balanced
ones degenerate into ω = 0 (for a rigorous derivation of the rotational modes in
the context of tides with zonal wavenumber 0 see Tanaka and Kasahara (1992);
but this is a classic behavior, see for instance the k = 0 axis of the tropical wave
dispersion relationship given in Gill 1982).

In contrast, when the forcing varies rapidly (τF =6hours, Fig. 5b) the response
never reaches a steady state and some of the gravest gravity modes are sub-
stantially excited. After the forcing ends, they induce planetary scale oscillations
(Fig 5b) that modulate the surface elevation around the steady response depicted
in Fig. 5a.

(d) Angular momentum budget

The evolution of the angular momentum in the slowly varying and in the
rapidly varying cases described above are presented in Fig. 6a and 6b respectively.
In both cases the torque TF (thin solid) reaches a maximum value of 10H at
t = τF and induces an increase in total AAM M (thick solid) that lasts 2τF . After
the torque returns to 0 (t > 2τF ) M stays constant. In the slowly varying case
(Fig. 6a), and at all time during the simulation, M is equally distributed between
MΩ (grey solid) and MR (grey dashed). In this case, the change in distribution of
mass seen in the profile of h (black solid in Fig. 5a) is associated with an increase
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in MΩ that equals the increase in MR associated with the zonal wind u (black
dashed in Fig. 5a) in geostrophic balance with h.

When the force varies rapidly, the partition between MR and MΩ never
reaches a constant value (Fig. 6b). At the very beginning for instance, the
force varies so fast that it induces a zonal wind acceleration instead of being
equilibrated by a meridional velocity via the Coriolis force and MR increases first
(grey dashed in Fig. 6b). Rapidly, and within a time scale that compares with
the inertial oscillation periodicity, MΩ starts to increase as well to become twice
larger than MR at t = 2τF = 12h (grey solid). Thereafter, the presence of gravity
wave modes in the system makes both MΩ and MR oscillate with a periodicity
which in that case is slightly below 1 day. For both MR and MΩ these oscillations
take place around a mean value that is close to M/2 and have an amplitude that
approaches as well M/2.

Since the dataset derived from the NCEP/NCAR reanalysis cannot properly
sample oscillations with periods close to 1 day we will focus next on sensitivity
tests to the forcing location rather than duration. We assume that the balance
dynamics at work in Fig. 5a are good enough in reality to explain our composite
results in section 3, so we take 2τF = 5 days.

Figure 7a presents the ten profiles of F that have been used to test the
sensitivity of our results to the latitude. Figure 7b presents the final values of



Mass and wind AAM responses to mountain torques 1499

MR and MΩ corresponding to these ten forcings. First, in all ten experiments,
the final value of the AAM is MR+MΩ=25 Hd, which follows that TF is not
changed from one experiment to the other. Second, the latitudinal dependence to
the forcing found in the dataset in section 3 is well reproduced by the model. In
particular, when the forcing is centered at the equator (θ0 = 0) it only induces a
zonal wind acceleration as the Coriolis force is very small and the AAM is almost
entirely due to MR.

As the forcing moves off the Equator, it induces meridional ageostrophic cir-
culations whose importance increases as a function of latitude. As this meridional
circulation directly affects the surface elevation, the importance of MΩ compared
to that of MR in the budget of M increases. When the force is centered at
midlatitudes, MΩ and MR are approximatively equal. When F is centered at
northern and polar latitudes, MΩ exceeds MR substantially.

The results in Fig. 7 compare also rather well with the theoretical result in
Eq. 13 (black solid line and black dashed line in Fig. 7b) at least in the tropics
and in the midlatitudes. The skill of Eq. 13 nevertheless degrades north of 45oN.
At 80oN for instance the ratio MΩ/MR ≈ 4.4 in the numerical simulations while
Eq. 13 gives MΩ/MR ≈ 1.8.

For completeness, we have also made sensitivity tests of the results in Fig. 7
to the model parameters g and H0. When those parameters vary, the qualitative
behavior of Fig. 7 remains the same. The importance of MΩ increases as the
forcing moves toward the pole. The central latitude for which MΩ ≈ MR is
nevertheless quite sensible to these two parameters: it moves toward the pole
as

√
gH0 increases. This behavior is also predicted by Eq. 13.

5. Conclusion

(a) Summary

This study seeks to identify the relative importance of wind AAM (MR)
versus mass AAM (MΩ) in the high frequency (ω−1 625 day) fluctuations of
global AAM (M), identify the dynamical origin of this balance, and isolate one
mechanism that drives high frequency fluctuations in the Arctic Oscillation. We
find that the mountain torque TM is producing the AAM fluctuations, the friction
torque TB being much smaller and essentially damping them. Composite anoma-
lies of the AAM budget keyed to the 25 day TM reveal that the characteristic
M response to mountain torques is equally distributed between MΩ and MR.
We interpret this result as a signature of the balanced dynamics affecting the
atmospheric response to mountain torque anomalies at periodicities above 1 day.

To corroborate this interpretation we present composite anomalies of the
AAM budget keyed to mountain torques evaluated over different latitudinal
sectors (hence changing the Coriolis force). For TM anomalies produced in the
polar regions, the response in MΩ exceeds that in MR while it is the other
way around when the mountain torque is produced in the tropics. When TM

is produced in the subtropics and in the midlatitudes the response in M is
equally distributed between MR and MΩ. Since these sectors also contain the
major mountain ranges, this explains why the same balance holds for the global
mountain torque. The dependence on the latitude of the forcing is the first
confirmation that the geostrophic balance controls the distribution of M between
MR and MΩ, as expected from simple theoretical considerations.
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A second evidence is provided by a one layer shallow water model for zonal
flow on a rotating sphere. In this model, positive forces lasting a finite amount of
time and centered at different latitudes are specified and the adjustment of the
system to these forces is analyzed. When the forcing varies sufficiently slowly so
that the response is devoid of large scale gravity modes, the model reproduces
qualitatively the observational results. In particular, MR ≈ MΩ when the force is
centered around 45oN, while MR → 0 when the force is moved toward the poles,
and MΩ → 0 when the force is moved toward the Equator. When the forcing varies
sufficiently fast so that large scale gravity modes are excited, steady values for
MR and MΩ are never obtained. MR and MΩ present substantial oscillations but
their time-mean values retains the ratio predicted in the slowly varying context.

(b) Bearings on the AO

The fact that the AO can be affected during the exchanges of momentum
between the solid earth and the atmosphere that occur in the polar and mid-
latitude is quite an interesting result in itself. This is due to the fact that the
AO pattern is associated with substantial mass AAM, as it corresponds to a
redistribution of mass from the polar latitude to the mid latitudes. This suggests
that the mountain torque could be used as one of the predictors of its changes as
already found by Lott et al. (2004) in the 20–30-day band. On top of the spectral
coherency between the AO and MΩ given in Fig. 2d, more quantitative arguments
to support this finding are also given here. One of them is little discussed in the
text but is implicit in Table 1, where the AO standard deviation is expressed in
Hd. The conversion is done by using the surface pressure map regressed onto the
DJF PC 1 (Fig. 1b) into the mass angular momentum (Eq. 2). In amplitude, the
AO standard deviation compares well with that of MΩ (Table 1) which means
that mountain torques are large enough to drive AO changes, at least in part. This
is of course confirmed by the composites of the AAM budget keyed to the 25-days
AO in Fig. 3f: they present substantial variations in MΩ driven in good part by
the mountain torque TM . Another argument refers to the model in Section 4: if we
transform the surface elevation in the model into surface pressure, the variations
of 20m due to a 10H torque that lasts 5 days (seen in Fig. 5) correspond to surface
pressure variations close to 2hPa. For torque values close to 50H (consistent with
the values of the composites in Figs. 3-4), the surface pressure signature can easily
reach more than 10hPa. This value is close to the largest pressure difference in
the AO regression map in Fig. 1b.

These findings can be useful in the context of mountains representation in
General Circulation Models (Lott 1999, Webster et al. 2003). As mountains affect
substantially at least one of the dominant modes of atmospheric variability, it is
clear that the way they are taken into account should be tested against the AAM
budget issued from reanalysis data. In this context, it is noteworthy that the
subgrid-scale orographic representation scheme that have been validated at best
against field data (Lott and Miller 1997) should also be validated globally, and
designed to improve the spectra of the different term of the AAM budget, at least
at periodicities ω−1 <25 day.

Appendix

Filtered series
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Figure 1. Transfer functions of the two filters used to build the 25-days series (solid) and the series
without annual cycle (dashed).

To focus on the 1–25 day band revealed by the spectral analysis in section 2,
a high pass non-recursive filter is applied to the AAM budget series. This
filter uses a Kaiser window with parameters adjusted to minimize Gibbs effects
(Hamming 1983; Scavuzzo et al. 1998). Its transfer function (solid line in
Fig. 1) has its half power point at ω−1 =30 day, is close to zero at periodicities
ω−1 >40 day, and is close to one for ω−1 < 25 day. Also note that we applied a
comparable filter with half power-point at 120-day to the series when needed
(essentially in Table 1). This filter attenuates strongly the annual and semi-
annual cycles: its transfer function (dashed line in Fig. 1) is close to zero, for
ω−1 > 180 day and close to one for ω−1 < 90 day.
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