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Recent work has shown that the parameters controlling parametrizations of the physical
processes in climate models can be estimated from observations using filtering techniques.
In this article, we propose an offline parameter estimation approach, without estimating
the state of the climate model. It is based on the Ensemble Kalman Filter (EnKF) and an
iterative estimation of the error covariance matrices and of the background state using a
maximum likelihood algorithm. The technique is implemented in a subgrid-scale orography
(SSO) parametrization scheme which works in a single vertical column. First, the parameter
estimation technique is evaluated using twin experiments. Then, the technique is used
with synthetic observations to estimate how the parameters of the SSO scheme should
change when the resolution of the input orography dataset of a general circulation model is
increased. Our analysis reveals that, when the resolution of the orography dataset increases,
the scheme should take into account the dynamical sheltering that can occur at low levels
between mountain peaks located within the same gridbox area.
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1. Introduction

Numerical models, including atmospheric/oceanic general
circulation models (GCMs) and current earth system models,
contain several physical parametrizations with a large number of
parameters. Climate predictions using these numerical models
are sensitive to the large set of parameters that are present in
the physical parametrizations (cf. Stainforth et al., 2005). Most
of these unknown physical parameters can not be determined
directly from observations and are generally manually tuned.
This subjective approach is excessively time demanding and does
not give optimal results. Moreover, if the horizontal resolution of
the model or of an input dataset is increased or a parametrization
scheme is changed, the physical parameters need to be re-
evaluated. To address these issues, several authors (e.g. Jackson
et al., 2004; Severijns and Hazeleger, 2005) propose estimating the
physical parameters objectively, defining a cost function based
on the root mean square error (RMSE) criterion. The idea is to
find the optimal set of parameter values that gives the minimum
RMSE and produces the lowest model error. However, nonlinear
model responses may produce multiple local minima in the cost
function (cf. Posselt and Bishop, 2012), and thus sophisticated
optimization algorithms are required to find the global minimum
corresponding to the optimal parameters. Such optimization

algorithms are usually too expensive computationally to be
employed in sophisticated models. An alternative consists of
supposing that the parameters are stochastic and of estimating
them using filtering techniques (e.g. Annan and Hargreaves,
2004; Posselt and Bishop, 2012; Ruiz et al., 2013; Schirber et al.,
2013). The basic idea to estimate the parameters is based on an
augmented state composed of both the state of the system and the
physical parameters in a nonlinear Gaussian state-space model.
This online estimation is a tough problem in practice. Even
a simple linear state equation with multiplicative parameters
behaves nonlinearly for parameter estimation (Yang and Delsole,
2009).

Another approach consists of estimating the physical
parameters independently of the state of the system. The
particular advantage of using an offline estimation technique
is that the control space is reduced from 107 to just a few
dimensions. This drastic reduction in size permits us to conduct
several model/parametrization evaluations as is often needed in
parameter estimation. One disadvantage of offline techniques is
that they cannot take into account the feedback of the changes
that the parametrization produces onto the parametrization itself.
Nevertheless, for a subgrid-scale orography (SSO) scheme, this
issue should not be too critical, since most of the flow changes
produced are advected downstream (for instance in the form
of potential vorticity banners; Figure 13(c) in Lott, 1995).
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Accordingly, the feedback can be neglected if the mountains
considered are not close to the lee of other mountains.

In order to conduct an offline estimation of physical
parameters, the parametrization should be compared to
observations, for instance the Pyrenees Experiment (PYREX)
campaign, in which surface drag and momentum fluxes were
measured over a transect of the Pyrenees mountains (cf. Bougeault
et al., 1990). In this case, the mountain massif can be considered
to be entirely located within a model gridbox area of a climate
model, so drag and momentum flux can be directly compared to
the same quantities predicted by the scheme over the same area.
Therefore, we can validate SSO schemes using a single vertical
column. This approach is often used prior to the implementation
of the schemes in GCMs (e.g. the offline tests of the scheme in
single vertical columns using the PYREX data in Lott and Miller,
1997).

Pulido and Thuburn (2005, 2008) showed that a four-
dimensional variational data assimilation technique can be
used to estimate the missing momentum forcing due to the
unresolved/subgrid-scale gravity waves in the stratosphere. This
missing momentum forcing was used to estimate optimal
parameters of a non-orographic gravity wave parametrization
in Pulido et al. (2012). Using twin experiments, they showed that
the variational data assimilation technique does not converge
towards the optimal parameters because of the nonlinear
response of the parametrization to parameter perturbations.
They employed a time-demanding genetic algorithm to overcome
these difficulties. In the present work, we propose a similar offline
parameter estimation procedure, but using a ensemble-based data
assimilation technique to estimate the optimal parameters of a
SSO scheme.

The technique presented here uses the Ensemble Kalman
Filter (EnKF) and Ensemble Kalman Smoother (EnKS) which are
reviewed in detail in Evensen (2009). In this work, we do not use
an augmented state to estimate parameters of GCMs, as is usually
done for online estimation (Annan and Hargreaves, 2007; Ruiz
et al., 2013); instead the state variables for the EnKF are only
the physical parameters in this offline parameter estimation. As
we do not have any knowledge of their temporal evolution, the
state model is supposed to follow a random walk. In this way,
we assume a non-negligible model error. An innovative part of
our technique is that we also estimate the statistical parameters
of the EnKF: (i) the covariance matrices of the Gaussian errors
that control the weight of the state and the observation equations
and (ii) the background state of the filter, typically an a priori
knowledge of the physical parameters. Generally, these statistical
parameters of the EnKF are prescribed values chosen by the
user. In practice, this manual tuning does not ensure the filter
convergence to the state of the system. To overcome this problem,
the standard implementations of the EnKF use an inflation factor
for the forecast and/or observational-error covariance matrices
to avoid filter divergence. However, the main problem of this
approach is the choice of the covariance inflation (additive or
multiplicative) and the amplitude of the inflation. Several studies
propose to estimate the inflation factors using the first moment
estimation of the squared innovation (e.g. Wang and Bishop,
2003; Li et al., 2009; Liang et al., 2011), Bayesian approaches
(e.g. Anderson, 2007; Miyoshi, 2011), or the second-order least-
squares statistic of the squared innovation (Wu et al., 2013).
The technique presented in this article does not need to use
any inflation factor since the statistical parameters are non-
deterministic values. Here, as the estimation is offline in a
low-dimensional system, we estimate directly the entire error
covariance matrices and the background state of the EnKF
using a maximum likelihood approach. In particular, we use the
iterative and efficient Expectation–Maximization (EM) algorithm
introduced by Dempster et al. (1977). To our knowledge, the
implemented technique in this work based on the combination
of an ensemble Kalman filter with the EM algorithm has not been
proposed previously in data assimilation.

The novel estimation technique is applied to the SSO scheme
described in Lott and Miller (1997) and revised in Lott (1999).
This SSO scheme computes the wind tendencies due to the
subgrid-scale orography and is implemented in three GCMs:
that of the Laboratoire de Météorologie Dynamique (LMDz),
the ECHAM model which is the atmospheric component of the
Earth System Model of the Max Planck Institute (MPI-ESM),
and that of the European Centre for Medium-Range Weather
Forecasts (ECMWF). It is known that weather forecast and
climate models are sensitive to the physical parameters of SSO
schemes (e.g. Palmer et al., 1986; Lott et al., 2005; Sigmond
et al., 2008). Currently, this issue is still important since climate
models now extend to the middle atmosphere where mountain
gravity waves significantly affect the Brewer–Dobson circulation
(McLandress and Shepherd, 2009). This circulation seems to
intensify with climate change (Li et al., 2008). These results call
for a re-evaluation of the SSO schemes in the middle-atmosphere-
resolving models and in particular of the set of parameters used
in the schemes. An optimization of the SSO schemes can help to
evaluate better the potential effects of the orographic gravity wave
drag on the westerlies in midlatitudes.

This article is organized as follows. First, we describe the SSO
scheme and the datasets it uses in section 2. Then, in section 3,
we present the statistical model used to estimate the physical
parameters of the SSO scheme. The details of the estimation
technique based on the EnKF, EnKS and the EM algorithm are
explained in section 4. The estimation technique is applied to a
column version (not a 3D version) of the subgrid-scale orography
scheme. We then use two synthetic cases (i.e. without using
real observations): an identical-twin experiment and a situation
in which the horizontal resolution of the orography dataset is
changed. We show the results in section 5. Conclusions are drawn
and future work is outlined in section 6. In general, the unified
notations of data assimilation given in Ide et al. (1997) are used
here.

2. Data and model

2.1. General circulation model data

To conduct our offline estimation we used daily data from a
simulation done with the LMDz GCM (Hourdin et al., 2006) using
a horizontal resolution of 3.75◦ × 2.5◦ and 50 vertical levels with
a model top at 5 hPa. We have extracted from this model the SSO
scheme we want to optimize. To conduct the optimization, we
limit ourselves to a one-month period, July 2000. The exact year
itself is of little importance, since the run considered has a spin-
up of several years, and was not constrained by forcings other
than the sea-surface temperature and the land–sea ice cover.
The particular month chosen is in midwinter in the Southern
Hemisphere, when high wind speed conditions prevail over the
southern Andes.

The SSO scheme we use represents mountain gravity wave drag
and blocked flow drag following Lott and Miller (1997). It also
introduces lateral lift to take into account the fact that narrow
valleys are partially sheltered from the large-scale winds in the
free troposphere (cf. Lott, 1999). The scheme was extended to the
stratosphere in Lott et al. (2005) and this is the version we use. For
completeness, the salient features of scheme are described here.

Before launching a simulation, subgrid-scale orography
parameters are calculated in each model gridbox: the mountain
minimum, mean, and maximum elevations, and the mountain
departure from the mean is then characterized by its anisotropy,
its orientation angle, its slope and its standard deviation. As we
will see, when we change orography datasets these parameters
change significantly and the most dramatic changes concern the
evaluation of the slope. We will adress these issues in section 5.2
and evaluate the changes to be done to the SSO scheme used in
LMDz, when we make a transition from the 10 min of resolution
US Navy orography dataset used in most current applications, to
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Table 1. Physical parameters (defined in the text) of the SSO scheme, their
assigned true values and their corresponding physical range.

Physical parameter True value Range

G 1 (0, 1.5)
Cd 1 (0, 1.5)
Cl 1 (0, 1.5)
HNC 1 (0, 1.5)
β 0.5 (0, 1)
Ric 0.25 (0, 2)

a more refined 2 min of resolution dataset. At each time step, the
SSO scheme uses the background flow conditions predicted by
the model at a given gridpoint (i.e. the horizontal components of
the winds, the temperature and the surface pressure), and predicts
the effect of the SSO on the large-scale flow at all model levels.

The SSO scheme uses a set of six non-dimensional parameters
of order O(1) which characterize the mesoscale and synoptic-scale
effects of the mountain on the large-scale flow. The first three
parameters directly scale the forces associated with the different
processes parameterized: the gravity wave drag G, the low-level
blocked flow drag Cd, and the low-level lift Cl that enhances large-
scale vortex compression to represent valley sheltering. The other
three parameters used are the low-level flow blocking depth HNC,
the fraction β of the gravity wave drag that propagates toward the
free troposphere and aloft, and the critical Richardson number
Ric that is used to predict when the mountain waves break. In
Table 1, we give the values of each parameter used in operation,
and also the range of values we will consider as plausible when we
retune the SSO scheme.

The profiles of wind tendencies given by the SSO scheme are
very sensitive to the value of the six non-dimensional parameters
as in other schemes. The parameters used in the past were
motivated by decades of research on mountain flow dynamics, and
by a few experimental campaigns conducted over specific areas
like the Pyrenees in France (e.g. Lott, 1995, gives a motivation
for the lift based on the PYREX campaign). Although satellite
data combined with high-resolution simulations could also be
used in the future (Hertzog et al., 2012), it remains the case that
local tunings will probably still be needed, at least near places
where the drag forces can potentially be very important. For
this reason, and also because the methodology we propose is
well adapted to handle one-column models (Posselt and Bishop,
2012), this is the strategy we have followed in the present work,
where we imagine that an observational campaign takes place
near the Perito Moreno Glacier in the Andes (46◦S, 71◦W)
(dot in Figure 1). There, the mountains are characterized by an
important anisotropic shape and strong variation in altitude (the
standard deviation is 295 m for a mean altitude of 531 m and a
peak of 1513 m). These topographical conditions represented in
Figure 1(a) are ideal to study mountain-induced forces especially
in high surface wind speed conditions such as in Figure 1(b).
Indeed, this geographical location gave one of the largest subgrid-
scale mountain drag amplitudes on the Earth in a preliminary
spatial analysis for July 2000 in which we computed globally the
subgrid-scale mountain drag with the scheme.

2.2. Preliminary tests

To give a preliminary view of the scheme outputs, Figure 2 shows
the tendencies predicted by the SSO scheme,

y(tk) = F {θ , Z(tk)} , (1)

where θ = (HNC, Cd, Ric, G, Cl, β), and Z(tk) is a generic notation
for the vertical profiles of the horizontal winds and temperature.
In Eq. (1), the vector y(tk) has m = 100 values each of the 31 days
k ∈ {1, . . . , K = 31} of July 2000. Each day, the first 50 values
correspond to the zonal tendencies at the 50 model levels, and the
last 50 values to the meridional tendencies.

From a preliminary temporal analysis during July 2000 at
the chosen location, we distinguish two characteristic regimes of
wind profiles in terms of the resulting induced SSO tendencies.
Examples of these two regimes are shown in Figure 3. On 5 July
2000 (dotted line), the wind profile shows low and constant wind
speeds with altitude. On 25 July (dashed line) the profile shows
higher surface wind speeds and an increase of the wind with
height, due to the presence of the subpolar jet in the region. The
zonal and meridional components of the SSO tendency for the
two cases are shown in Figure 2. The free physical parameters
of the scheme are set to Ht

NC = 1, Ct
d = 1, Rit

c = 0.25, Gt = 1,
Ct

l = 1 and β t = 0.5. These set of ‘true’ parameter values θ t

were proposed by Lott (1999) and generate the ‘true’ tendency
denoted yt(tk). From Figure 2, on 25 July 2000, we find large
tendencies whereas on 5 July 2000 the effect is much weaker due
to the low wind speed conditions. The 95th percentile envelope
around the mean value for the month of July 2000 is also shown.
It indicates that the predicted SSO tendencies tend to be small in
the mid-levels and larger at levels corresponding to the peak of
the mountain (800 hPa) and to the tropospheric jet (250 hPa).

To evaluate how the outputs of the scheme vary with the
different parameters, we evaluate the cost function

J(tk) = {
yt(tk) − y(tk)

}�{
yt(tk) − y(tk)

}
, (2)

where the transpose notation � is used, so that the square
differences are summed over all altitudes and over the two
components (zonal and meridional). Firstly, the cost function
given in Eq. (2) is computed by changing one physical parameter
and by fixing the other parameters to the true values.

Figure 4(a) shows the sensitivity of J as a function of HNC and
Cl for the state found on 5 July 2000 which is a situation with low
surface winds as shown in Figure 3. The cost function associated
with HNC shows a non-quadratic behaviour, representing a
nonlinear sensitivity in the derivative of J. The parameter Cl

shows a quadratic cost function so that its sensitivity is linear.
The other four parameters also show a linear sensitivity, as found
for the Cl parameter, so that their cost functions are not shown.
Figure 4(b) shows the sensitivity of J in high surface wind speed
conditions, on 25 July 2000. The sensitivity of J to HNC is enhanced
by a factor of 103 in strong wind speed conditions compared to the
sensitivity for the weak wind speed case. Finally, a relatively weaker
enhancement of the J sensitivity is found for high surface wind
speed conditions to certain physical parameters, e.g. Cl (squares)
and Cd (not shown here) compared to the enhancement of HNC

sensitivity between low and high surface wind conditions. In
Figure 4(b), a saturation of the cost function is found close to
the global minimum for HNC > 1.1 (circles) in high wind speed
conditions. This behaviour can be explained as follows. As the
surface wind increases and HNC increases, the blocked flow depth
decreases and eventually reaches 0 (Eqs. (4) and (9) in Lott and
Miller, 1997). At this point, the parameter HNC becomes saturated
since an increase of its value cannot change the blocked flow depth
to negative values. Therefore, HNC values larger than this critical
value cannot affect the SSO predictions.

In a second sensitivity experiment, the cost function given
in Eq. (2) is computed changing two physical parameters
simultaneously. Figure 5 shows the cost function as a function
of the parameters HNC and G. HNC is correlated with G. The ten
smallest values of the cost function are indicated by black dots in
Figure 5. They underline the fact that the global minimum region
of the cost function (intersection of the two dashed black lines) is
not well defined. On the contrary, in Figure 5(a), a large region of
very low sensitivity close to the global minimum is highlighted,
especially in low wind speed conditions where the sensitivity of J
is reduced. In this region of the cost function, there is a negative
correlation between HNC and G.
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(a)

(b)

Figure 1. (a) Topography of the south Andes and (b) surface winds on 25 July 2000. The location of the chosen mountain peaks is close to the Perito Moreno Glacier
(46◦S, 71◦W) and represented by a dot.

3. Nonlinear Gaussian state-space model

To estimate the n = 6 physical parameters in θ via our filtering
technique, we first need to make them stochastic. We denote them
as x and we say it is the ‘state of the system’. The state evolution
is given by a Gaussian random walk,

x(tk) = x(tk−1) + η(tk), (3)

where the n-dimensional stochastic random vector
{η(tk)}k∈{1,...,K} represents an additive perturbation at each time
tk. We assume that the perturbations are Gaussianly distributed
with zero mean and a constant in time n × n covariance matrix
Q. Equation (3) is taken as the state equation in our state-space
model.

If we use directly the physical parameters θ as the state of
the system, they can easily become negative or reach very large
values, whereas the parameters in the SSO scheme are assumed
to be always positive and of the order of unity. For this reason,
we map the physical parameters θ on x by using the Gauss error
function θ = G(x), as sometimes used in data assimilation (Hu
et al., 2010).

At the initial time of Eq. (3), we introduce an a priori knowledge
of the physical parameters. We assume that this background
information follows a Gaussian distribution given by the n-
dimensional vector mean xb and the n × n covariance matrix
B.

At time tk, the zonal and meridional SSO tendencies given in
Eq. (1) are assumed to be observed. They are stored in the m-
dimensional stochastic random vector {y(tk)}k∈{1,...,K}. The state
vector at time tk is related to the observation by means of the
observation equation defined by

y(tk) = Hk {x(tk)} + ε(tk), (4)

where the observation operator Hk is the nonlinear function
defined by

Hk {x(tk)} = F [G {x(tk)}, Z(tk)] , (5)

where F is the SSO scheme Eq. (1) and G is the Gauss error
function. In Eq. (4), we suppose that the m-dimensional stochastic
random vector {ε(tk)}k∈{1,...,K} is an additive zero-mean Gaussian
error. The m × m covariance matrix of ε(tk) is denoted by R(tk).
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(a)

(b)

Figure 2. Vertical profiles of (a) zonal and (b) meridional tendencies generated
by the SSO scheme at location 46◦S, 71◦W within the Andes. The grey shading
denotes the 95th percentile envelope over the month of July 2000. The dotted
and dashed lines correspond to the mountain drag profiles on 5 and 25 July 2000
respectively.
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Figure 3. Wind speed profiles from the LMDz GCM model on 5 (dotted line)
and 25 (dashed line) July 2000 at location 46◦S, 71◦W within the Andes.

As the sensitivity of J varies with the atmospheric conditions
Z(tk), particularly with the surface wind speed, R(tk) is assumed
in principle to vary with time.

The statistical parameters correspond to the vector and matrices
that define the system (3) and (4). They are denoted by ψ . We
use the term ‘statistical parameters’ of the state-space statistical
model to distinguish from the six ‘physical parameters’ θ of
the SSO scheme. The statistical parameters are the a priori
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Figure 4. Cost function (Eq. 2)) as a function of the physical parameters HNC

(circles) and Cl (squares). The true values of the physical parameters are Ht
NC = 1

and Ct
l = 1. The results are given for the location 46◦S, 71◦W on (a) 5 July 2000

representing low surface wind speed conditions and (b) 25 July 2000 representing
high surface wind speed conditions.

probability density functions (PDFs) of the physical parameters,
given by xb and B, and the covariance error matrices Q and
R(tk) ∀k ∈ {1, ..., K}. We write ψ = (

xb, B, Q, R
)
. The statistical

parameters define the uncertainty of the state-space statistical
model and play a central role on the quality and rate of
convergence in the estimation of the physical parameters with the
filtering and smoothing techniques described below.

The estimation of the statistical parameters ψ is conducted
maximizing the total likelihood function L. This function is
based on the PDF of the initial state p{x(t1)}, the conditional state
evolution p{x(tk)|x(tk−1)} and the observations conditionally
to the state p{y(tk)|x(tk)}. The three PDFs are assumed to be
normally distributed with the respective mean and covariances:
x(t1) − xb and B, x(tk) − x(tk−1) and Q, y(tk) − Hk{x(tk)} and
R(tk). Finally, using the Markov property of the state-space model,
the total likelihood function is the product of the PDF for all times
K. It is given by

L(x, ψ) = p{x(t1)}
K∏

k=2

p{x(tk)|x(tk−1)}

×
K∏

k=1

p{y(tk)|x(tk)}.
(6)

In practice, this total likelihood function is approximated
by its expectation conditionally to all the observations
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Figure 5. Cost function (Eq. (2)) as a function of the physical parameters HNC
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true physical parameters Ht
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parameters which generate the ten lowest values of the cost function. The results
are given for the location 46◦S, 71◦W on (a) 5 July 2000 representing low surface
wind speed conditions and (b) 25 July 2000 representing high surface wind speed
conditions.

y1:K = y(t1), . . . , y(tK ). This requires the computation of the
state smoothed probabilities to be described below.

4. Estimation technique

The algorithm to estimate the physical and statistical parameters
is described concisely here. A diagram with the main steps
of the algorithm is shown in Figure 6. The algorithm starts

with a proposed set of statistical parameters ψ̂
(1)

which do not
need to be known precisely. Then, the statistical parameters are
estimated by maximizing the total likelihood function using
the EM algorithm. A loop is initiated which is composed
by an expectation and a maximization step. The expectation
step computes the expectations given in Appendix A via the
EnKS. The maximization step consists basically in computing

the optimal ψ̂
(j)

from the known analytical expressions given in
Appendix B. At each iteration j of the EM algorithm, we compute
the innovation likelihood l given in Appendix C. It is commonly
used to evaluate the quality of the state estimates and to compare
state-space models with different statistical parameters (Cappé
et al., 2005, p. 140 give more details). If the innovation likelihood

does not change significantly, the last estimated ψ̂
(j)

is returned.
These optimal statistical parameters given by the EM algorithm
are finally used to initiate a last EnKF run which estimates the
physical parameters.

Figure 6. Diagram of the method based on the maximum likelihood estimates of
the state-space model Eqs (3) and (4).

4.1. Expectation-maximization algorithm

The maximum likelihood estimates of the statistical parameters
ψ are conducted using the EM algorithm proposed by Dempster
et al. (1977). This is a classical method used in the case of
incomplete or missing data. This iterative algorithm is based on
two steps: the expectation of the total log-likelihood function
(E step) and its maximization with respect to ψ (M step). The
EM algorithm begins with an initial set of statistical parameters

ψ̂
(1)

. Then, repeating the E and M steps, the sequence of estimates

ψ̂
(j)

yields increasing values of the expected log-likelihood and
converges to the maximum likelihood estimates.

At iteration j, the E step consists of computing the expected total
log-likelihood function conditionally to the total observations and
the previously estimated statistical parameters. It is given by

Q(ψ |ψ̂ (j−1)
) = E

[
log {L(x, ψ)} | y1:K , ψ̂

(j−1)
]
. (7)
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In the case of nonlinear state-space statistical models, the exact
smoothed probabilities are not computable. Thus, we use the
Monte Carlo approximations given by the EnKS. The conditional
expectations given in Appendix A are then computed.

The M step consists of maximizing Q(ψ |ψ̂ (j−1)
) with respect

to ψ . We obtain a direct analytic form of the maximum
likelihood estimates. The expressions are given in Appendix B.
The derivations are not presented here (cf. Tandeo et al., 2011,
for more details).

4.2. Ensemble Kalman filter

The EnKF algorithm used here is an adaptation of the one
proposed by Burgers et al. (1998).

In the initial step of the EnKF algorithm, at time t1, an
ensemble of xs composed of N members is randomly generated.
The members of the ensemble follow a Gaussian distribution
given by the vector mean xb and the covariance matrix B. The N
initial members are stored in the vectors xf

i(t1) ∀i ∈ {1, ..., N}.
In the update step, at each time tk, we randomly generate N

samples of ηi and εi ∀i ∈ {1, ..., N} with respective covariances Q
and R(tk). Then, following Eq. (3), the i-member of the updated
state is given by

xf
i(tk) = xa

i (tk−1) + ηi(tk), (8)

and the mapping from the forecast state space to the observational
space of the i-member is computed as

yf
i(tk) = Hk

{
xf

i(tk)
}
. (9)

The N members of the ensemble are used to estimate the
sample means of the propagated state in the state space and in the
observational space denoted by xf(tk) and yf(tk) respectively.

In the analysis step, we follow the Pham (2001) methodology
which avoids the linearization of the observational operator. The
Kalman gain is computed with

K(tk) = Pf
xy(tk)

{
Pf

yy(tk) + R(tk)
}−1

, (10)

where Pf
xy(tk) is the sample cross-covariance matrix and Pf

yy(tk) is
the sample covariance matrix, which are determined by

Pf
xy(tk) =

1

N − 1

N∑
i=1

{
xf

i(tk)−xf(tk)
}{

yf
i(tk)−yf(tk)

}�
(11)

and

Pf
yy(tk) =

1

N − 1

N∑
i=1

{
yf

i(tk)−yf(tk)
}{

yf
i(tk)−yf(tk)

}�
. (12)

In our case, the number of observations is larger than the
dimension of the state space (m > n), so that the matrix
Pf

yy(tk) + R(tk) is ill-conditioned making the matrix inversion
difficult. Therefore, as described in Evensen (2009), Chapter 14,
we compute the pseudo-inverse of Pf

yy(tk) + R(tk), taking into
account 99% of the information given by the eigenvalues. Having
K(tk) from Eq. (10), the N members of the ensemble are then
updated by

xa
i (tk) = xf

i(tk) + K(tk)di(tk), (13)

where the m-dimensional di(tk) ∀i ∈ {1, ..., N} are the N
innovation vectors in which we use perturbed observations such as
di(tk) = y(tk) + εi(tk) − yf

i(tk). Note that the sample covariance
of the N innovations is Pf

yy(tk) + R(tk). Finally, the updated
analyzed state is represented by the sample mean xa(tk) and the
sample covariance Pa(tk).

4.3. Ensemble Kalman smoother

The backward recursions correspond to the EnKS algorithm
proposed by Evensen and Van Leeuwen (2000). It uses the results
of the EnKF computed above.

In the initial step of the EnKS algorithm, at time tK , we
use the members of the filtered state, ∀i ∈ {1, ..., N}, such as
xs

i (tK ) = xa
i (tK ) and Ps(tK ) = Pa(tK ).

Then, we proceed backward from k = K − 1 to k = 1. At each
time tk, we compute

xs
i (tk)=xa

i (tk) +Ks(tk)
{

xs
i (tk+1)−xf

i(tk+1)
}

, (14)

where Ks(tk) is the n × n Kalman smoother gain matrix given by

Pa(tk)
{

Pf(tk+1)
}−1

. The Gaussian distribution of the updated
state estimate is given by the sample mean and covariance
respectively denoted by xs(tk) and Ps(tk). The sample covariance
of the state between two consecutive times is computed using

Ps(tk, tk−1) =
1

N − 1

N∑
i=1

{
xs

i (tk)−xs(tk)
}{

xs
i (tk−1)−xs(tk−1)

}�
. (15)

5. Results

5.1. Identical-twin experiment

In order to evaluate the technique, twin experiments are used. In
this case, the observations are obtained under the assumption of
a perfect model; in other words, the SSO scheme is assumed
to give the true tendencies when the physical parameters
θ t = (1, 1, 0.25, 1, 1, 0.5) are used as the true parameters. Then we
suppose that the state, i.e. the physical parameters, is unknown and
we try to estimate it via the state-space model (3) and (4) using
the generated mountain drag observations. As schematized in
Figure 6, we estimate the statistical parameters ψ = (

xb, B, Q, R
)

of the state-space model via the EM algorithm in order to
improve the estimation of the physical parameters, θ . At iteration

j = 1, we deliberately initialize the state vector x̂(1)
b far from the

true state values (corresponding to the true parameters). The
corresponding covariance B̂(1) is chosen as the unit matrix I6

to generate large initial spreads of the members. Throughout
the filter evolution, the members are randomly perturbed by
the constant covariance matrix Q̂(1) = 0.1 × I6 in Eq. (8). The
covariance of the measurement errors in Eq. (9) is set to
R̂(1)(tk) = 1000 × I100 ∀k ∈ {1, . . . , K}, which is of the same
order as the mean value of the cost function J given in Eq. (2). We
use N = 100 members and 25 iterations of the EM algorithm.

The innovation log-likelihood function and the total RMSE of
the physical parameters for the conducted twin experiments are
shown in Figure 7(a) as a function of the EM iteration. The results
indicate that the innovation log-likelihood is a good synthetic
indicator of the filter quality which follows the inverse variations
of the total RMSE. In Figure 7(b), we decompose the total RMSE
for each physical parameter. We find a good convergence of all the
physical parameters after j = 10 iterations except for Cd, HNC and
G, which need more EM iterations. The evolution of these two last
physical parameters as a function of time for different iterations
(j = 1, 10, 25) of the EM algorithm are shown in Figure 8. For
both physical parameters, the EM algorithm is able to adapt the
filter conditions and to give, along the iterations j, more and more
accurate initial distributions of the physical parameters (given by
the xb and B maximum likelihood estimates). However, at the last
iteration j = 25, the temporal convergence (near k = 20) is higher
than the other physical parameters (not shown here). Note that
the results using deterministic values of ψ , instead of estimating
them via the maximum likelihood method, show the inability of
the filter to converge to the solution θ t. This is shown with the
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Figure 7. Evolution of (a) the innovation log-likelihood (left y-axis; blue line),
the total physical parameter RMSE summed by time (right y-axis; red line) and
(b) detailed RMSE of each physical parameter over j = 25 iterations of the EM
algorithm.

blue curves of Figure 8 corresponding to the first iteration of the
EM algorithm (i.e. this could be interpreted as a standard EnKF
estimation). Even if we use more realistic but uniform values of
covariance matrices B̂(1), Q̂(1) and R̂(1)(tk) ∀k ∈ {1, . . . , K}, the
standard EnKF is unable to converge to a stable and accurate
solution.

Figure 9(a) shows the matrix Q after 25 EM iterations. A
negative correlation between the HNC and G physical parameters
is clearly detected. This confirms the observation we made from
Figure 5 in the weak sensitivity region of the cost function J. The
elements of the Q estimated by the maximum likelihood method
for the covariance between HNC and G and the variances of
HNC and G are respectively −1.5×10−5, 1.5×10−5 and 3×10−5.
These variances correspond to the optimal perturbations of the
members in Eq. (3) at each time of the filter. Note that the
amplitude of Q tends to decrease with the iterations of the EM
algorithm since the model becomes perfect and the observations
are produced with the optimal physical parameters. Concerning
the estimated amplitude of the observation-error covariance
R(tk), i.e. the covariance of ε(tk) ∀k ∈ {1, . . . , K}, it varies with
the forcing terms, particularly the surface wind speed conditions.
The results for the low and high wind speed conditions are
shown in Figure 9(b)and (c). We distinguish different parts on
these estimated matrices. The top left and the bottom right
parts correspond respectively to the zonal and meridional error
covariances of the observation equation given in Eq. (4). The top
right and bottom left parts correspond to the cross-covariance
between the zonal and meridional components. The x- and
y-axes indicate the vertical level of the different components.
For instance, the level 1000 hPa is given by the indices 1 and
51 whereas the level 5 hPa is given by the indices 50 and 100.
The results indicate a checkerboard structure in the covariances
inside groups of vertical levels and especially a larger variability
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Figure 8. Evolution of the (a) HNC and (b) G estimates with their 95% confidence
intervals over time for different iterations of the EM algorithm: j = 1 (blue),
j = 10 (red) and j = 25 (black). The straight lines correspond to the true physical
parameter values. The physical parameters (θ , not x) are shown.

of the observation error in the levels close to the surface in
both cases. We also observe a cross-covariance between the zonal
and meridional error terms at this altitude for the low wind
speed conditions. The main difference between the two estimated
matrices is the amplitude of the variability. In strong wind
speed conditions, the variance is globally enhanced by a factor
of 103. Therefore, the method proposed here is able to model
a flow-dependent (typically the wind speed) and not necessarily
diagonal error covariance matrix R. Miyoshi et al. (2012) have also
proposed to retrieve the shape of R in a data assimilation problem
conducting twin experiments. More precisely, they extended the
adaptive estimation method proposed by Li et al. (2009) to include
off-diagonal terms of R.

We make two comments on results that are not shown here.
Firstly, the use of N = 500, 1000 members in the ensemble
(not shown) gives similar results as the case with N = 100
presented here. Thus, an ensemble of 100 members is sufficient
to capture the highly nonlinear behaviour of the SSO scheme and
to estimate properly the statistical parameters of the state-space
system. Secondly, the maximum likelihood statistical parameter
ψ estimates are independent of the initial conditions of the EM

algorithm. Different initial guess parameters x̂(1)
b and different

covariances B̂(1) give similar rates of convergence.

5.2. Changes in orography resolution

When the resolution of a GCM is increased, or when a new
dataset is used to feed the physical parametrizations, the physical
parameters of the GCM need to be adjusted. There is no systematic
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Figure 9. Maximum likelihood estimates after j = 25 iterations of the EM
algorithm of (a) Q̂, (b) R̂(t5) and (c) R̂(t25). The straight lines in (b) and
(c) denote the limit between the zonal and meridional mountain drag error
covariance of the observation equation.

way to produce these adjustments in the schemes so far. The
technique introduced in this work can be used to do this. In
particular, the standard parameters that are currently used in the
SSO scheme shown in Table 1 have been manually tuned using
PYREX data by Lott and Miller (1997). This set of parameters are
used operationally in the LMDz model. The tuning was conducted
with a version of the SSO scheme that uses the low-resolution
orography (10′×10′; Figure 10(a)). Suppose that the higher
resolution (2′×2′; Figure 10(b) and NOAA, 2001) orography
dataset is used to improve LMDz at a given horizontal resolution.
The parameters of the scheme should be adjusted for this new
orography dataset. We conducted an experiment to examine if

the technique is able to determine a new set of optimal parameters
for this high-resolution orography dataset. The conducted data
assimilation experiments use the SSO tendencies predicted by the
SSO scheme using the low-resolution orography as observations.
The assimilation then uses the SSO tendencies predicted with a
higher-resolution orography dataset. In this way, the operator Hk

used in the assimilation has an error.
In this experiment in which the SSO scheme is not ‘perfect’

due to the resolution change, we found that the results depend on
the initial guess conditions, in opposition to the identical-twin
experiments. As convergence could not be reached easily, one
hundred filter experiments with different random initial guess

conditions x̂(1)
b of the EM algorithm were conducted. Among

these 100 experiments, we find results with recurrent estimations
reach the same log-likelihood as those shown in Figure 11(a). The
parameter estimations after j = 25 EM iterations for five selected
cases are shown in Figure 11(b).

From Figure 11(b), we notice that there is one parameter
which does not need to be changed much when the resolution
is changed –Cl. This is not a surprise since Cl is an almost
linear lift coefficient, which is related to a mountain lift force
whose amplitude varies linearly with the difference between the
mountain and valley height. We also find that Cd needs to
be reduced by a factor ≈ 2. Considering Eq. (16) in Lott and
Miller (1997), the scheme measures the number of mountains
in a subgrid-scale area, and multiplies the low-level drag by
this number of ridges. This yields a multiplicative factor in the
mountain slope. When we move to a higher-resolution grid, the
estimate of the slope necessarily increases, so Cd needs to decrease.
The same conclusion could be drawn for the parameter G which
controls the gravity wave drag, but here the technique gives two
possible solutions. One where G is almost unchanged or has
a weak increase, and one where it is decreased substantially, as
expected. As the solution with unchanged G is the most surprising,
it is important to notice that this is also related to a smaller β ;
they therefore correspond to more trapped waves which apply
more low-level drag. As at the low level, it is Cd that essentially
controls the drag. We have therefore increased the gravity wave
drag by increasing G but placed that drag at low level where the
effect is small compared to that of Cd. Another important result
of the analysis is that the value of the critical Richardson number
clearly converges to Ric = 1.5. As this high-resolution orography
case likely has larger-amplitude gravity waves, this larger
Richardson number than the one used with the low-resolution
orography dataset needs to be enhanced so that the waves
propagate at high levels without breaking systematically at lower
levels.

In general, the parameter estimations, except for Ric, present
a very large spread, particularly for those parameters acting at
low levels. For these, it should be remembered that the drag
at low levels is always treated via implicit methods in part for
stability, and in part because overestimated drags could yield
wind reversals at low levels, which contradict the nature of drag
forces. Clearly, the assimilation technique indicates that some
physical considerations should be given to make these parameters
more efficient in controlling the drag. Among the possibilities,
the SSO scheme does not consider that, when there are several
mountains in a gridbox area, some sheltering should be taken into
account not to decelerate the same flow twice in succession. This
is currently handled implicitly by the scheme, but the low-level
drag should take into account this horizontal sheltering when we
increase the orography resolution.

Figure 11(b) shows that the filter converges towards two
possible optimal states, in which HNC and G clearly present
bimodal distributions. This result is associated with the high
correlation that was found in the cost function between HNC and
G (Figure 5). The presence of model error in this imperfect model
experiment appears to add complexity to the cost function with
the presence of these two local minima. This is consistent with the
results obtained by Schirber et al. (2013) in an online parameter
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(a)

(b)

Figure 10. (a) Low 10′×10′ and (b) high 2′×2′ topographical resolution near location 46◦S, 71◦W (black dot) in the southern Andes.

estimation under the presence of model error. From a physical
perspective, this bimodal result is not surprising since large HNC

yields low blocking levels, and a more efficient mountain elevation
to excite gravity waves. When there is a larger amount of gravity
wave drag, a good fraction of the corresponding gravity waves
is likely to break at low level; this may be an effect hidden in
the low-level drag discussed earlier. Also, this bimodality may be
inherent in the nonlinear low-level flow dynamics the scheme
tries to represent.

Figure 12 shows the five profiles of the SSO tendency intensity
(i.e. the norm of the SSO tendency) generated with the estimated
parameters for weak (5 July 2000) and strong (25 July 2000)
surface wind conditions. In both surface wind conditions, the sets
of estimated parameters with large G tend to underestimate the
low-level drag (between 900 and 1000 hPa) and to overestimate
the drag at high levels (between 650 and 900 hPa). On the other
hand, the sets of estimated parameters with small G (and large
HNC) tend to overestimate the drag at low levels and also at higher
levels (but they are relatively closer to the observed than in the
cases with large G at those levels). The spread in the β parameter
also appears to play a role.

6. Conclusion and outlook

In this article, we use a filtering technique to estimate the
physical parameters of a subgrid-scale orographic scheme. The
estimation is conducted offline, without estimating the state of
the atmosphere and thus reducing the size of the state vector. As
forcing terms, we use simulations of a general circulation model.
The estimation problem is written as a nonlinear state-space
system. This formulation is flexible and overcomes the main
difficulties such as the boundaries on the physical parameters
(strictly positive), the unknown background covariances and the
high nonlinearity of the orographic scheme. In this state-space
model, we suppose that the state and observation equations
have additive Gaussian noise and that we know the a priori
distribution of the physical parameters. The choice of these
statistical parameters constitutes an important condition of
convergence of the system to the true physical parameters. Thus,
we estimate them via a maximum likelihood method. We use
an iterative algorithm that computes the expected total log-
likelihood function and maximizes it with respect to the statistical
parameters.
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Figure 11. Evolution of five cases, with N = 100 members and the high-
resolution orographic scheme, of (a) the innovation log-likelihood along the
EM iterations and (b) the physical parameters estimated by the EnKF over time at
iteration j = 25 of the EM algorithm. The straight dashed lines in (b) denote the
physical parameter values of the low-resolution orographic scheme. In (b), the
physical parameters (θ , not x) are shown.

The estimation technique is evaluated in a single vertical
column and using synthetic observations (i.e. without using
real observations but those produced by the SSO scheme). We
imagine that an observational campaign takes place near the
Perito Moreno Glacier in the Andes, where the topographical
conditions are ideal to study mountain drag. First, we use twin
experiments: we prescribe a true set of physical parameters and
generate synthetic observations of mountain drag. Then, we apply
the estimation technique using these generated observations and
compare the estimated parameters to the true ones. The results
indicate a convergence of the filter to the true parameters after
∼ 20 iterations of the EM algorithm. Even if the user initializes the
error covariances and initial guess conditions with inappropriate
values, these statistical parameters are iteratively updated and
will converge towards the optimal values. The technique is
able to detect correlations between parameters, to weight the
observations as a function of the external forcing terms and
to generate adaptive a priori information on the parameters.
This overcomes the results obtained with deterministic values
of statistical parameters which are usually arbitrarily prescribed
since they are unknown.

We also examined whether the estimation technique is useful
to determine whether the physical parameter should be changed
when the horizontal resolution of an input dataset of the general
circulation model is increased. In this case, the SSO scheme
is imperfect and our filter takes into account this model error
adding Gaussian noises controlled by time-dependent covariance
matrices. The results show that our technique is a useful tool
to determine the changes in the parameter when the resolution
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Figure 12. Profiles of the SSO tendency amplitude generated with the five sets
of estimated parameters obtained with the SSO scheme using the high-resolution
dataset on (a) 5 July 2000 and (b) 25 July 2000. The profiles used as observations
and generated with the SSO scheme using the low-resolution dataset are shown
by dashed lines.

of the input orography dataset increases. However, model error
degrades the estimated drag profiles; some features of the observed
drag profile in Figure 12 cannot be reproduced by the estimated
drag profiles that use the high-resolution orography dataset. A
technique with model bias treatment as in Dee and Da Silva
(1998) may be required to diminish the differences in the drag
profiles. We also detected that some parameters may have a range
of values for which the RMSE and the likelihood (cf. Figure
11(a)) almost do not change. These results show that there is no
sensitivity to these parameters and therefore show that a precise
value for these parameters is not important. We attribute this
to the fact that, in the SSO scheme, a lot of drag is applied at
low level and handled implicitly. In the scheme also, the low-
level drag is multiplied by the number of ridges present in the
gridbox area, a number which is around 1 or 2 for the US Navy
10′×10′ dataset, and which becomes much larger when a more
refined dataset is used. Ideally, we should take into account that,
when a mountain exerts a drag, a wake downstream is associated
with it, so that for mountains in the lee but still in the gridbox,
the incident flow should be much reduced. Currently, when we
increase the orography resolution, this effect is handled by an
implicit treatment. Numerically this situation is satisfying, but
clearly call for further understanding of the dynamical sheltering,
and its impact on the large-scale flow. It may explain the difficulty
in estimating the parameters and the difference between the drags
generated with low- and high-resolution orographic datasets in
Figure 12.
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The technique presented here is an efficient method to resolve
offline physical parameter estimation. The advantages are (i) the
flexibility of the state-space formulation which can be applied
to a large number of applications, (ii) the ability to estimate
the background state and the eventually flow-dependent (and
not necessarily diagonal) error covariance matrices Q and R of
the EnKF, and (iii) the relative low computational cost of the
technique where a relatively small number of members and few
iterations of the EM algorithm are needed. One possible extension
of the technique is the estimation of biases in more realistic cases
with different kinds of model error.

This work is focused on the evaluation of the technique
using first twin experiments and also an experiment with
synthetic observations but using a higher-resolution orographic
dataset so that the model (used in the data assimilation
system) in this case is imperfect. In a real application, the
technique requires vertical profiles of small-scale momentum
forcing. We envisage two possible sources of this forcing which
can be used to constrain orographic parameters. The most
significant one is from intensive observational campaigns over
mountainous areas. One of the most representative ones was
PYREX (Bougeault et al., 1990). Currently, there are several
proposed campaigns (over the Andes, over New Zealand and
over Scandinavia) for intense measurements over mountains with
aircraft, lidars and radiosondes. These combined instruments can
give significant information on momentum fluxes and their
divergences. These potential campaigns could be an important
source of observational data to estimate parameters of the subgrid-
orography schemes using the proposed technique. A second
possible data source of small-scale momentum forcing can be
obtained from data assimilation techniques. Pulido and Thuburn
(2005) show that four-dimensional variational assimilation can be
used to estimate the missing momentum forcing term in the model
equations. The technique is applied to obtain missing momentum
forcing profiles in the middle atmosphere; here a significant part
of systematic model error can be associated with gravity wave drag
since the other physical parametrization active at those levels–the
radiative transfer scheme–contains well-known parameters. On
the other hand, in the troposphere several parametrizations are
coupled so that the source of missing momentum is not readily
identifiable with a particular parametrization. Therefore, the data
assimilation techniques might be potentially useful to constrain
subgrid-orography schemes using only the momentum forcing
profile in the stratosphere. However, the impact of model errors
from different sources in the parameter estimation problem needs
to be further investigated. Another point that needs to be further
investigated in an actual application of this offline technique
is the possible feedbacks between the parametrization and the
low-level flow; these feedback processes can affect the optimal
parameters.

Follow-up work could apply this technique for online
parameter estimation in strongly nonlinear systems. A first step
will be to evaluate the method in a low-dimension system.
Parameter estimation in a low-dimensional model was previously
done by Annan and Hargreaves (2004) using deterministic values
of the background state and the error covariance matrices. The
advantage of applying our technique is to estimate them properly
via the EM algorithm. Some first simulations we have performed
give promising results. A simplified version of the method may
also be useful in a larger-dimension online parameter estimation
problem, for instance when there are a few unknown statistical
parameters which need to be estimated precisely.
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Appendix A

E step

At each iteration j of the EM algorithm, we need the following
conditional expectations:

E
[

x(tk)x(tk)�|y1:K , ψ̂
(j−1)

]
= xs(tk)xs(tk)� + Ps(tk)

E
[

x(tk)x(tk−1)�|y1:K , ψ̂
(j−1)

]
= xs(tk)xs(tk−1)� + Ps(tk, tk−1)

E
[
Hk {x(tk)} |y1:K , ψ̂

(j−1)
]

= Hk {xs(tk)}
E

[
Hk {x(tk)}Hk {x(tk)}� |y1:K , ψ̂

(j−1)
]

= Hk {xs(tk)}Hk {xs(tk)}� + Ps
yy(tk),

where Ps
yy(tk) is the sample covariance of the Hk

{
xs

i (tk)
}∀i ∈

{1, ..., N}.

Appendix B

M step

The maximum likelihood estimates of the statistical parameters
are given by:

x̂
(j)
b = E

[
x(t1)|y1:K , ψ̂

(j−1)
]

,

B̂(j) = Var
[

x(t1)|y1:K , ψ̂
(j−1)

]
,

Q̂(j) = 1

T−1

T∑
k=2

E
[

x(tk)x(tk)�|y1:K , ψ̂
(j−1)

]

− 1

T−1

T∑
k=2

E
[

x(tk)x(tk−1)�|y1:K , ψ̂
(j−1)

]

− 1

T−1

T∑
k=2

E
[

x(tk)x(tk−1)�|y1:K , ψ̂
(j−1)

]�

+ 1

T−1

T∑
k=2

E
[

x(tk−1)x(tk−1)�|y1:K , ψ̂
(j−1)

]
,

R̂(j)(tk) = y(tk)y(tk)�

− E
[
Hk {x(tk)} |y1:K , ψ̂

(j−1)
]

y(tk)�

− y(tk)E
[
Hk {x(tk)} |y1:K , ψ̂

(j−1)
]�

+ E
[
Hk {x(tk)}Hk {x(tk)}� | y1:K , ψ̂

(j−1)
]

,

where the conditional expectations are computed in the E step
via the EnKS.

Appendix C

Innovation likelihood

The innovation likelihood function is given by

l (x, ψ) =
K∏

k=1

exp

[
−1

2
d(tk)�

{
Pf

yy(tk) + R(tk)
}−1

d(tk)

]

×(2π)−p/2
[

det
{

Pf
yy(tk) + R(tk)

}]−1/2
,
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with the covariance matrix Pf
yy(tk) and the innovation vector d(tk)

given in Eqs (12) and (13) respectively.
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Cappé O, Moulines E, RydØn T. 2005. Inference in Hidden Markov Models.
Springer Science+Business Media: New York, NY.

Dee DP, Da Silva AM. 1998. Data assimilation in the presence of forecast bias.
Q. J. R. Meteorol. Soc. 124: 269–295.

Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39: 1–38.

Evensen G. 2009. Data Assimilation: The Ensemble Kalman Filter. Springer-
Verlag: Berlin.

Evensen G, Van Leeuwen PJ. 2000. An ensemble Kalman smoother for
nonlinear dynamics. Mon. Weather Rev. 128: 1852–1867.

Hertzog A, Alexander MJ, Plougonven R. 2012. On the intermittency of
gravity wave momentum flux in the stratosphere. J. Atmos. Sci. 69:
3433–3448.

Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead
L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, Levan P,
Li Z-X, Lott F. 2006. The LMDZ4 general circulation model: Climate
performance and sensitivity to parametrized physics with emphasis on
tropical convection. Clim. Dyn. 27: 787–813.

Hu XM, Zhang F, Nielsen-Gammon JW. 2010. Ensemble-based simultaneous
state and parameter estimation for treatment of mesoscale model
error: A real-data study. Geophys. Res. Lett. 37: L08802, doi: 10.1029/
2010GL043017.

Ide K, Courtier P, Ghil M, Lorenc AC. 1997. Unified notation for data
assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn.
75: 181–189.

Jackson C, Sen MK, Stoffa PL. 2004. An efficient stochastic Bayesian approach
to optimal parameter and uncertainty estimation for climate model
predictions. J. Clim. 17: 2828–2841.

Li F, Austin J, Wilson J. 2008. The strength of the Brewer–Dobson circulation in
a changing climate: Coupled chemistry–climate model simulations. J. Clim.
21: 40–57.

Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance
inflation and observation errors within an ensemble Kalman filter. Q. J. R.
Meteorol. Soc. 135: 523–533.

Liang X, Zheng X, Zhang S, Wu G, Dai Y, Li Y. 2011. Maximum likelihood
estimation of inflation factors on error covariance matrices for ensemble
Kalman filter assimilation. Q. J. R. Meteorol. Soc. 138: 263–273.

Lott F. 1995. Comparison between the orographic response of the ECMWF
model and the PYREX 1990 data. Q. J. R. Meteorol. Soc. 121: 1323–1348.

Lott F. 1999. Alleviation of stationary biases in a GCM through a mountain
drag parameterization scheme and a simple representation of mountain lift
forces. Mon. Weather Rev. 127: 788–801.

Lott F, Miller MJ. 1997. A new subgrid-scale orographic drag parametrization:
Its formulation and testing. Q. J. R. Meteorol. Soc. 123: 101–127.

Lott F, Fairhead L, Hourdin F, Levan P. 2005. The stratospheric version
of LMDz: Dynamical climatologies, Arctic oscillation, and impact on the
surface climate. Clim. Dyn. 25: 851–868.

McLandress C, Shepherd TG. 2009. Simulated anthropogenic changes in
the Brewer–Dobson circulation, including its extension to high latitudes.
J. Clim. 22: 1513–1540.

Miyoshi T. 2011. The Gaussian approach to adaptive covariance inflation and
its implementation with the local ensemble transform Kalman filter. Mon.
Weather Rev. 139: 1519–1535.

Miyoshi T, Kalnay E, Li H. 2012. Estimating and including observation-error
correlations in data assimilation. Inverse Prob. Sci. Eng. 21: 387–398, doi:
10.1080/17415977.2012.712527.

NOAA. 2001. NOAA ETOPO2 Dataset, 2-minute Gridded Global Relief
Data. National Geophysical Data Center: Boulder, CO. http://
www.ngdc.noaa.gov/mgg/fliers/01mgg04.html (accessed 13 March 2014).

Palmer TN, Shutts GJ, Swinbank R. 1986. Alleviation of a systematic westerly
bias in general circulation and numerical weather prediction models through
an orographic gravity wave drag parametrization. Q. J. R. Meteorol. Soc. 112:
1001–1039.

Pham DT. 2001. Stochastic methods for sequential data assimilation in strongly
nonlinear systems. Mon. Weather Rev. 129: 1194–1207.

Posselt DJ, Bishop CH. 2012. Nonlinear parameter estimation: Comparison of
an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm.
Mon. Weather Rev. 140: 1957–1974.

Pulido M, Thuburn J. 2005. Gravity wave drag estimation from global analyses
using variational data assimilation principles. I: Theory and implementation.
Q. J. R. Meteorol. Soc. 131: 1821–1840.

Pulido M, Thuburn J. 2008. The seasonal cycle of gravity wave drag in the
middle atmosphere. J. Clim. 21: 4664–4679.

Pulido M, Polavarapu S, Shepherd TG, Thuburn J. 2012. Estimation of optimal
gravity wave parameters for climate models using data assimilation. Q. J. R.
Meteorol. Soc. 138: 298–309.

Ruiz JJ, Pulido M, Miyoshi T. 2013. Estimating model parameters with
ensemble-based data assimilation: A review. J. Meteorol. Soc. Jpn. 91:
79–99.

Schirber S, Klocke D, Pincus R, Quaas J, Anderson JL. 2013. Parameter
estimation using data assimilation in an atmospheric general circulation
model: From a perfect toward the real world. J. Adv. Model. Earth Syst. 5:
58–70.

Severijns CA, Hazeleger W. 2005. Optimizing parameters in an atmospheric
general circulation model. J. Clim. 18: 3527–3535.

Sigmond M, Scinocca JF, Kushner PJ. 2008. Impact of the stratosphere
on tropospheric climate change. Geophys. Res. Lett. 35: L12706, doi:
10.1029/2008GL033573.

Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ,
Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D,
Smith LA, Spicer RA, Thorpe AJ, Allen MR. 2005. Uncertainty in predictions
of the climate response to rising levels of greenhouse gases. Nature 433:
403–406.

Tandeo P, Ailliot P, Autret E. 2011. Linear Gaussian state-space model with
irregular sampling: Application to sea surface temperature. Stoch. Environ.
Res. Risk Assess. 25: 793–804.

Wang X, Bishop CH. 2003. A comparison of breeding and ensemble transform
Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60: 1140–1158.

Wu G, Zheng X, Wang L, Zhang S, Liang X, Li Y. 2013. A new structure for error
covariance matrices and their adaptive estimation in EnKF assimilation. Q.
J. R. Meteorol. Soc. 139: 795–804, doi: 10.1002/qj.2000.

Yang X, Delsole T. 2009. Using the ensemble Kalman filter to estimate
multiplicative model parameters. Tellus 61A: 601–609.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 383–395 (2015)


