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ABSTRACT

The linear mountain drag in the presence of trapped lee waves is calculated using a two-
dimensional linear anelastic model. In many cases, it is shown that the drag is affected by the
wave refraction index aloft, but remains well predicted by the drag due to hydrostatic freely
propagating mountain waves. In contrary, the vertical profile of the waves’ Reynolds stress is
very sensitive to the mean flow variation, and often decays with altitude in the steady case and
in the absence of dissipation. This apparent contradiction with the conventional Eliassen-Palm
relation is simply related to the non-zonal, non-periodic geometry of the domain in which the
momentum budget is calculated and to the presence of trapped lee-waves. In this context, the
spatial average of the pseudo-momentum conservation equation shows that the wave drag at
the ground is equal to the wave pseudo-momentum entering in the domain through its upper
and leeward boundaries. In the presence of trapped lee-waves, the amount of pseudo-momentum
entering through the leeward boundary represents a significant part of the drag, and explains
the difference between the Reynolds stress and the surface drag. In this case, the large-scale
flow does not need to be modified inside the physical domain, because the entering pseudo-
momentum equals the entering momentum transported by the waves across the domain bound-
aries. It is suggested that conventional gravity wave drag schemes can easily represent the
trapped waves by altering the large scale momentum at low level, when the waves are dissipated.

1. Introduction downstream of the ridge is controlled by the
modes that exist in the flow in the presence of a

The parameterization of mountain gravity wave flat ground (Corby and Wallington, 1956; Brown,
drag in weather forecasting and climate models 1983; Shutts et al., 1994). To determine if those
significantly improves their performance (Boer waves are important for the climate, one can
et al., 1984; Palmer et al., 1986). In most para- compare the drag due to the trapped waves to the
meterization schemes, it is assumed that the wave drag due to the vertically propagating waves which
Reynolds stress is constant with altitude, when the are parameterized in General Circulation Models.
background mean wind U(z) has a constant sign, In this context, Wurtele et al. (1987) and Keller
in the absence of dissipation and in the steady (1994) have shown in a few examples where the
case (Eliassen and Palm, 1961). Nevertheless, incident wind varies with height that the drag is
when the flow varies with altitude, some waves essentially controlled by the values of the incident
can be trapped at low atmospheric levels and wind and of the buoyancy frequency at the ground.
cannot transport momentum far aloft (Scorer, In contrast, the vertical profile of the wave
1949). In this case, the structure of the wave field Reynolds stress is very sensitive to the vertical

variations of the incident flow, and this is related
E-mail: flott@lmd.jussieu.fr to the presence of low level trapped waves. These
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studies suggest that in some circumstances, the anelastic approximation (Scinocca and Shepherd,
1992). As a consequence, it seems usefull to verifylinear mountain drag is close to the freely propag-

ating hydrostatic wave drag, while a significant that the momentum and the pseudo-momentum

budgets are consistent in the weakly nonlinearfraction of the waves emitted are trapped. It is
noteworthy that this behavior is consistent with steady undissipated case for arbitrary flow profile

and domain size. Such a verification also givesthe observations. Indeed, the PYREX and ALPEX

campaigns have shown that their are always pro- further justifications to this work, in the sense that
the momentum balance can be closed to the lowestnounced differences between the mountain pres-

sure drag measured at the ground and the order by the waves described to the lowest-order

by a linear model.Reynolds stress measured by airplanes above the
mountain peaks (Bougeault et al., 1993; Davies The first objective of this paper is to analyze

more systematically the result of Wurtele et al.and Phillips, 1985; Hoinka, 1986): the pressure

drag is often close to the drag due to freely (1987) that the wave drag in the presence of
trapped lee waves is not much affected by thepropagating gravity waves (Bessemoulin et al.,

1993), but it is typically one order of magnitude wave refraction index aloft. The second objective

of this paper is to determine whether the linearlarger then the Reynolds stress. Although this
difference can be due to nonlinear three- hydrostatic drag due to freely propagating gravity

waves is a good approximation to the drag whendimensional effects (Miranda and James, 1992);

Schär and Durran, 1996), according to Durran significant non-hydrostatic effects occur aloft. The
third objective of this paper is to analyze the(1986), it is also plausible that the presence of

trapped lee waves partly explains it. vertical profiles of the wave Reynolds stress and
to interpret their decay with altitude, in the steadyWhen there are trapped waves, the fact that the

Reynolds stress decays with altitude does not case and in the absence of dissipation, by making

pseudo-momentum budgets. In this context, it isnecessarily mean that the waves are dissipated or
unsteady, in contrast to the situation where the also checked that the pseudo-momentum fluxes

evaluated with the linear model are also the fluxesdisturbance vanishes at the horizontal boundaries

of the domain where the momentum budget is of momentum related to the lee waves which are
calculated with the linear model to the first-ordermade. This apparent contradiction to the conven-

tional Eliassen and Palm (1961) theorem is due in the forcing amplitude. In Section 2, the basic

equations, the linear model and the different setto the facts that the Reynolds stress is linked to
the vertical component of the pseudo-momentum of numerical experiments are presented. The sens-

itivity of the mountain drag and of the Reynoldsflux (Scinocca and Shepherd, 1992), and that the

trapped waves transport a significant amount of stress profiles to the non-dimensional parameters
that characterize wave propagation aloft are pre-pseudo-momentum horizontally. Furthermore, in

the steady undissipated case, the fact that the sented in Section 3. The pseudo-momentum

budget is presented in Section 4. Section 5 dis-addition of the pseudo-momentum fluxes across
the upward and leeward boundaries of a given cusses the links between the momentum fluxes

and the pseudo-momentum fluxes, and thedomain equals the drag follows from the integra-

tion of the pseudo-momentum conservation equa- implications for gravity wave drag parameteriz-
ation schemes.tions (Scinocca and Shepherd, 1992), and from

the fact that the pseudo-momentum fluxes through

the ground equals the drag (Andrews and
McIntyre, 1978; Durran, 1995b). These different 2. Basic equations and linear model
results illustrate how the trapped waves break the

relationship between the Reynolds stress and the All the results presented have been obtained
using the anelastic approximation (Lipps anddrag, but they do not show directly if the same

steady waves alone can close the momentum Hemler, 1982; Scinocca and Shepherd, 1992). In
this approximation, freely propagating gravitybudget. Indeed, even for small disturbances, the

relationship between the pseudo-momentum waves and trapped mountain waves co-exist, and

the equations of motion form a Hamiltonianfluxes and the momentum fluxes are not obvious
when the domain is not periodic and in the system. For these purposes, the ‘‘strong’’
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Boussinesq approximation is also convenient vertical wavelength of the hydrostatic gravity
waves, the vertical scale of the incident flow(Benjamin, 1986), and it has been verified that all

the results obtained are also valid when it is used. change, the compressibility scale He=r0/r0z , the

width and the height of the mountain, respectively.The two-dimensional equations that result from
the anelastic approximation are The ratios between the last 4 scales and the first

scale, define the 4 parameters,
dv
dt
+((cphop̃)+cp

dpo
dz

h̃z=0,
dh

dt
=0,

L =
N(0)l

U(0)
, D=

N(0)d

U(0)
, C=

N(0)He (0)

U(0)
,

(· (rov )=0 . (1)

In this system, the Exner pressure and the poten- HN=
N(0)H

U(0)
, (7)

tial temperature have been written

which will be referred to as a non-dimensional
p=Ap

prBk=p0 (z)+p̃ (x, z, t) , vertical scale, a non-dimensional obstacle length,
a non-dimensional compressibility scale and a

non-dimensional mountain height, respectively.h=Tp−1=h0 (z)+h̃ (x, z, t) , (2)
For all the results presented in this paper, it will

where the zero subscript refers to the background be assumed that HNH1, so that the mountain
state, the tildes represent perturbations, pr is the height is small compared to the vertical wave-
surface reference pressure and k=R/cp . If one length of the waves, and the linear approximation
assumes that the background is in hydrostatic can be used (Smith, 1979). In this case, the waves
balance, forced by the obstacle satisfy the linear equations:

cpho
dpo
dz

=−g , (3)
(∂
t
+U∂

x
)v∞−AVr0BZ∂xy∞−cp

dp0
dz

∂
x
h∞=0 , (8)

and invokes the ideal gas law p=rRT , all the

background thermodynamics fields are uniquely (∂
t
+U∂

x
)h∞−

N2h0
gr0

∂
x
y∞=0 , (9)

determined in terms of the profile h0 (z), and the
buoyancy frequency is given by N2(z)=gh0z/h0 . y∞(0)=−r0 (0)U(0)h (x) at z=0 , (10)
Alternatively, the first equation in (1) can be

where the primes replace the tildes to indicate thatreplaced by the vorticity equation:
only the linear part of the total disturbance is

considered. Once it is assumed that the wave fieldro
d

dt Av

roB−cp
dpo
dz

∂h̃

∂x
=0 , (4)

amplitude is controlled by H
N
, the generation and

the refraction of the waves by the incident flow
where v=∂

z
u−∂

x
w, and the continuity equation

depend very much on the parameters L , C and D.
is identically satisfied if we define the mass flux

Indeed, in the steady case, one particular harmonic
streamfunction y,

forced at the ground,

y∞(x, z)=r1/20 R(ŷ(z)eikx ) , (11)u=
1

r0

∂y

∂z
, w=−

1

r0

∂y

∂x
. (5)

has a vertical structure which is governed by the
The lower boundary condition is Taylor Goldstein equation:

w=
d

dt
h at z=h(x) . (6)

ŷ
zz
+AN2

U2
−

U
zz
− (r0z/r0 )Uz

U
+

r
0zz

2r0
In this framework, the nature of the waves which

result from the interaction between a mountain, −
3r2

0z
4r20

−k2Bŷ=
z=h(x), and the incident flow characterized by
the velocity U(z) and by h0 (z) depends on the

ŷ
zz
+(S(z)−k2 ) ŷ=0 , (12)

relative amplitude of the 5 scales, U(0)/N(0), l,
He(0), d, and H. These scales are related to the where S(z) is the Scorer parameter (i.e., the index
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of wave refraction). Near the ground, the vertical occur for all the waves whose horizontal wave-
number is larger than √S(2 ). Comparison withwavenumber of an harmonic is, m2(0)=S(0)−k2 .
the typical wavenumber, kc , indicates that low-For an obstacle with characteristic width d, the
level confinement will occur for most waves ifhorizontal wavenumber of the forced waves are

near kc=d−1 , and their vertical wavenumbers at

the ground are near, D<
1

√S(2)

N (0)

U(0)
.

In the following, the ratio
m2c(0)#

N2(0)

U(0)2
(1+O(L −2 )−O(C−1L−1 )

1

√S(2)

N(0)

U(0)
#5 ,

−O(C−2 )−D−2) , (13)

and since Dµ[1, 8], situations where most waves
when the incident flow shear is positive and are trapped and where most waves propagate to
decreases with height. The last 2 terms in eq. (13) z=2, are considered.
show that immediatly aloft the obstacle, most of The linear response to the mountain is evaluated
the modes are evanescent if the density varies using a time-dependent numerical model which is
rapidly compared to one vertical wavelength of close to the one used by Wurtele et al. (1987) or
the disturbance (C2<1) or (and) if the obstacle by Lott and Teitelbaum (1993). It solves the linear
length is small compared to one vertical wave- eqs. (8) and (9) and has sponge layers at the
length of the disturbance D<1). The incidence of boundaries to mimic wave propagation at X=2
the parameter L on the nature of the wave field and Z=2. A typical model configuration is dis-
immediatly aloft the ridge is more complex to played on the Fig. 1, and further details are given
describe, since for L=O(1), the WKB analysis in the Appendix A. In the simulations that follow,
upon which this discussion is based is not valid. the incident flow is given by,
In particular, for small L , the waves turning

U(z)=U0=10ms−1 and
heights are close to the ground, a configuration

that goes against wave emission. In contrast, the
N2(z)=N2

2
+(N20−N2

2
)expA−z

l B , (14)O(L−2 ) term in eq. (13) indicate that when L is

small, waves emission is favoured.
whereTo systematically investigate the space described

by these 3 parameters would result in a very large N
2
=0.2N0=10−2s−1

number of simulations. Nevertheless, in the atmo-

sphere, the compressibility parameter is often

large, which makes the wave fields essentially

sensitive to L and D. For this reason, in the

simulations that follow, the compressibility para-

meter is changed only when the flow profile is

changed and is always large CI1, while the

parameters L and D vary in ([1, 8]×[1, 8]). This

ensures that a significant number of waves are

emitted and that the flow varies on scales that are

comparable or larger than the typical vertical scale

of the disturbances. In most cases presented, non-

hydrostatic effects become important aloft because

the Scorer parameter decreases with height

(Scorer, 1949) and the non dimensional mountain
Fig. 1. y∞/r1/20 and model domain description. The lightlength D controls the amount of harmonics that
grey areas represent the damping layers. The dark grey

encounter turning heights, S(Zc)=k2 , where they areas are outside the model domain. They are displayed
are reflected downward (Gill, 1982). From (12), it to represent the mountain profile (16) (continuous line),

and the incident flow (15) (U, long dash; N2 dot-dash).can be predicted that downward reflection will
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or by, where

U(z)=Uo+(U2−U0 ) tanhA U0
U

2
−U0

z

lB and r0u=P+X−X P Zh(x) r0 (z)u(x, z, t)dzdx (18)

is the mean momentum, M
x
(X, Z ) is the horizontalN(z)=N0=1.8·10−2 s−1 , (15)

momentum flux through a vertical line located atwhere
X of height Z, M

z
(X, Z) is the vertical flux ofU

2
=5U0=25 m/s. The mountain profile is

momentum across an horizontal line of length 2X
located at the altitude Z, and Dr is the drag. In

the steady case, and to the lowest-order in the
h(x) = GH cosApx

4dB
0

if −2d<x<2d

otherwise
. (16)

forcing amplitude, the drag reduces to the linear
wave Reynolds stress evaluated at Z=0:

In a very idealized way, the incident flow (14) Drlin=−P+X−X
r0u∞w∞(x, 0)dx=−M

z
(X, 0) ; (19)

represents a winter continental flow configuration,
when the lowermost layers of the atmosphere are it is independent of X as soon as X exceeds the
very stable because the ground is cold. The incid- mountain half length 2d.
ent flow (15) is an idealization of the lower part Fig. 2a shows the drag due to linear mountain
of the tropospheric jet above the boundary layer. waves normalized by r0N(0)U(0)H2 , as a function
In the parameter space investigated, the total of the two parameters (L , D), for the incident flow
length of the obstacle (16) is 4d and typically

profile (14). In the following, the quantity Drhyd=varies from 1 km to 10 km; the vertical variation
1.1r0N(0)U(0)H2 will be called the hydrostatic

of the incident flow l varies from few hundred
predictor of the mountain wave drag, Drlin . It is

meters to few kilometers. Although moderate, it
the drag due to freely-propagating gravity waves,

is noticeable that these scales are realistic and also
forced by the mountain (16) in a uniform flow

that a similar analysis could be done for longer
(U(z)=U(0) and N (z)=N (0)) for large mountainsmountains, provided that the low-level wind is
(DI1) and large compressibility scale (i.e., it haslarger (the extrema of the incident wind in both
been evaluated with the model in the Boussinesqprofiles (14) and (15) are quite moderate), or that
limit CI1). Fig. 2a shows that the drag is ratherthe buoyancy frequency near the ground is smaller
different from the hydrostatic predictor when the(as is often the case in the troposphere).
incident flow varies rapidly in the vertical direction
compared to one typical vertical wavelength of

3. Linear drag and wave’s Reynolds stress the waves (i.e., for the smallest values of L ). For

instance, when L=1, the drag is very sensitive to
To define the drag and the related momentum

the non-dimensional mountain length D and is
transfers in the flow the horizontal momentum

often small compared to the hydrostatic predictor.
eq. (1) is integrated over the domain

In this case, most of the forced waves become
[h; Z]×[−X; +X], using the lower boundary

evanescent very close aloft the ridge. Interesting
condition (16):

results are found when L=2. In this case, the

linear drag is very sensitive to the non-dimensional
mountain length D. For instance, it significantly

∂r0u
∂t

+ P Z
0

[r0u2+r0cph0p̃]+X−X dz

aggggbggggc
[M

x
(x,Z)]+X−X

exceeds the hydrostatic predictor when D=3, 4, 5

and 6. This indicates that wave reflection aloft can
have a significant feedback influence on the pres-
sure field near the ridge, which in some cases+ P+X−X

[r0uw]Z dx

agggbgggc
M
z
(X,Z)

increases the drag. At larger L , the forced waves
are also refracted, but this occurs far above the
obstacle, so it does not affect the drag as much.
Accordingly, the hydrostatic predictor becomes+P+X−X

r0cph0p̃
dh

dx
dx

aggbggc
Dr

=0,
(17) appropriate at large L and when D>2. It only

overestimates the drag for all values of L when
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Fig. 2. Wave drag for different values of the parameters L and D, and for the mountain profile (16). Hydro is the
drag due to freely-propagating waves in the Boussinesq limit.

D#1. Fig. 2b shows similar sensitivity experiments area where they are trapped. It is clear that the
effect of wave trapping on the Reynolds stressfor the incident flow profile (15). Although the

dynamical configuration is very different, the profiles is noticeable everywhere below the incid-
ent wind maximum (i.e., below z/l#5). Above thedependence of the drag upon the parameters L

and D is quite close. The most important difference incident wind maximum, the freely propagating

waves remains, whose Reynolds stress is constantis that the feedback effect on the drag of the waves
reflection when L =2 is not as pronounced as with altitude. On the other hand, in Fig. 3a, this

distinction on the Reynolds stress profile betweenbefore. This is probably due to the fact that the

downstream advection of the waves is faster in low and high altitudes is not as clear. This qualitat-
ive difference was also found to be related to thethis configuration because the incident wind

becomes large aloft and the waves reflected down- mountain width parameter D, not to the incident

flow profile or to the vertical scale of the incidentward do not as significantly influence the pressure
field near the mountain. flow variation L .

The vertical profiles of the linear wave Reynolds

stress,
4. Linear drag and averaged pseudo

momentum fluxes
Re(X, Z )=P+X−X

[r0u∞w∞]Zdx , (20)

The decay with altitude of the waves Reynolds

stress is due to the fact that the Reynolds stressevaluated over rather large domains X�10, is
(20) is not the only term that contributes to theshown in Fig. 3 for two examples with different
momentum transfers by the waves. First, it isincident flow profiles, and different values of both
related to the quadratic part of the vertical fluxL and D. In both cases, the waves Reynolds stress
of momentum (defined in 17),decays with height for all values of the physical

domain length, X. When the domain height Z=
20l, the Reynolds stress at the top is half the drag M

z
(X, Z)=P X−X [r0uw]Zdx

in profile (14) when L =3 and D=5, it is 30% of
the drag in profile (15) when L=2 and D=3.

=P X−X [r0 (U(Z )+ũ)w̃]Zdx , (21)Although the two examples are different in many

respects, the amplitude of the discrepancy between
the surface stress and the stress at high level was which contains a non-quadratic term. Secondly,

momentum transfers by the waves in the hori-found to depend only on the non-dimensional
mountain length D, which controls the number of zontal direction (i.e., M

x
(X, Z)≠0), can occur.

Then, to describe the wave propagation and inter-modes trapped at low level. Fig. 3b also shows

that some distinction can be made between areas action with the large-scale flow, the pseudo-
momentum flux diagnostics are better adaptedwhere the waves are freely propagating and the
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Fig. 3. Vertical profiles of the wave Reynolds stress, Re (X, Z), for different physical domain length X.

(Shepherd, 1990; Scinocca and Shepherd, 1992). For the following discussion, it is also convenient

to define the quantities,In the anelastic approximation, the local form of
the pseudo-momentum at the second order in the
forcing amplitude is given by: P

x
(X, Z)=P Z

0
F
x
(X, z)dz ,

A=
gr0

h0N2
h∞v∞+

g2r0
2h20N2

d

dz AVr0 Bh∞2 , (22)
P
z
(X, Z)=P−X−X

F
z
(x, Z )dx , (26)

where V(z) is the incident flow vorticity. The
which are the horizontal flux of pseudo-pseudo-momentum A satisfies the conservation
momentum averaged over the vertical and hori-equation,
zontal lines that are used to define the boundaries
of the domain. In this framework, the Reynolds∂A

∂t
=−(·F , (23)

stress Re (defined in 20) is quite close to the
averaged flux of pseudo-momentum P

z
,

in absence of dissipative processes, and the flux F
is given by:

Re(X, Z )=P
z
(X, Z)−C 1

4r0

dr0
dz

y∞2
r0

(x, Z)D+X−X ,

F
x
=

gr0U
h0N2

h∞v∞+
g2r0

2h20N2 A1− r0U
N2

d

dz AVr0BB h∞2
(27)

the second term on the rhs of eq. (27) being small
−

1

2 GA ∂
∂x

y∞
r1/20 B2−A ∂

∂z
y∞

r1/20 B2 when the compressibility scale and X are large
(this will be verified later). Then, the integration

of the local pseudo-momentum eq. (23) over the
+C 1

2r0

d2r0
dz2

−
3

4r20 Adr0
dz B2D y∞2

r0H , (24)
domain [−X, X]×[0, Z] links the surface wave
drag to the pseudo-momentum flux across the

upward and leeward boundaries of the integrationF
z
=−A ∂

∂x
y∞

r1/20
B A ∂∂z y∞

r1/20
B . (25)

domain in the presence of steady undissipated
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waves: a pseudo-momentum sink, but it now splits into
two branches. At high level, the pseudo-

−Dlin=P
z
(X, 0)=P

z
(X, Z )+P

x
(X, Z ) . (28)

momentum flux is essentially oriented downward

and is linked to the waves that propagate vertic-To establish (28), the contribution of the pseudo-
momentum flux through the upstream boundary ally. The low part of the F field has a more

complex pattern: the vectors in some places, areis neglected because P
x
(−X, Z) was always found

to be very small. oriented horizontally and leeward, in other places,
they are oriented vertically and upward. ThisFig. 4, shows the pseudo-momentum flux vector

F field when the incident flow is uniform. As complex structure arises because the wave field

downstream is made up of the superposition ofshown by Scinocca and Peltier (1994), the pseudo-
momentum flux is directed downward and the many different interfering wave packets, reflecting

several times at the ground and at turning heights.ground is a pseudo-momentum sink. When the

buoyancy frequency decreases with height, and for The pseudo-momentum flux vectors are neverthe-
less predominantly horizontal and orientedL=3 and D=5, Fig. 5 shows that there are trapped

lee-waves that propagate downstream together toward the mountain, in the lee and at low level.

This last property is clearer on Fig. 6 which showswith some long gravity waves which propagate
aloft. The F field still shows that the mountain is the wave field and pseudo-momentum flux vectors

in profile (15) with L=2 and D=3.

The fact that there is a large windward pseudo-
momentum flux at low level in both flow config-

urations, is better indicated on Fig. 7 which repres-
ents P

x
as a function of the downstream distance

X, and for different altitudes, Z. In the lee, P
x

is

always very significant compared to the drag, and
does not decrease with downstream distance for
large X (i.e., for X�30d ). As Z increases, and for

large X, the amount of pseudo-momentum trans-
ported across the leeward boundary tends toward
a constant value which represents that part of the

mountain drag which is transported horizontally
by the lee waves. It represents 45% of the drag

Fig. 4. y∞/r1/20 and pseudo-momentum fluxes, F. F is plot- when D=5 in profile (15) (Fig. 7a) and 70% of
ted every 2 model gridpoints in the both horizontal and the drag when D=3 in profile (15) (Fig. 7b). A
vertical directions; uniform flow profile U=5 m/s, N= systematic evaluation of the fraction of the drag
1.810−2 s−1 ; L =2 and D=10.

Fig. 6. y∞/r1/20 and pseudo-momentum fluxes, F. F is plot-Fig. 5. y∞/r1/20 and pseudo-momentum fluxes, F. F is plot-
ted every 3 model gridpoints in both horizontal and ted every 3 model gridpoints in both horizontal and

vertical directions. Flow profile (15), L =2 and D=3.vertical directions. Flow profile (14), L =3 and D=5.
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Fig. 7. Horizontal profiles of the pseudo-momentum fluxes through a vertical line, P
x
(X, Z), as a function of its

horizontal position X and for different line heights Z.

that is transported horizontally by the trapped when X=20. It is constant with height, indicating

that in the presence of trapped waves, the decaywaves is given in Fig. 8, for a given incident flow
but varying the mountain width. It verifies that with height of the vertical flux of pseudo-

momentum P
z

is exactly balanced by an increaseas long as the parameter

of the horizontal flux of pseudo-momentum P
x
.

The Reynolds stress Re is also plotted on thisD∏5#
1

√s (2 )

N(0)

U(0)
,

figure, verifying that it is indeed very close to the

vertical flux of pseudo-momentum, P
Z
. The factmore than half of the drag is transported horizon-

that the trapped waves transport a finite amounttally. For larger values of D, the contribution of
of pseudo-momentum horizontally and that thethe trapped waves to the drag transfer is decreas-
Reynolds stress decays with altitude independenting. It nevertheless remains significant until D#10.
of the domain length, seems to contradict theFig. 9 shows the vertical profile of the pseudo-
results of Keller (1994), who has shown that themomentum fluxes averaged over the upper and
Reynolds stress at all altitudes, asymptotes theleeward boundaries of the physical domain (28)
wave drag, provided that the domain length is
long enough. This difference may be related to the

fact that the incident flow profiles are different
from those used in Keller (1994), so that the
harmonics which are trapped at low level in Keller

(1994) eventually leak weakly in the stratosphere.

5. Pseudo-momentum fluxes and second-
order wave momentum fluxes

As discussed in McIntyre (1980), it is known
that pseudo-momentum flux conservation means
that there is no torque exerted on the large-scale

flow in the Lagrangian context. Nevertheless,
when the spatial averages are made over a non-

Fig. 8. Fraction of the mountain drag transported hori- periodic finite domain, the assumptions used to
zontally by the trapped waves, and for different values

develop the general lagrangian description of
of D. Values shown are evaluated very far upstream:

wave-mean flow interaction (Andrews andX/d=50 and over a deep domain Z/l=20. For both
McIntyre, 1978) are not easy to satisfy. In thisvalues, convergence of P

x
was reached (it does not

change when the domain bounds X and Z increase). context, it does not directly follow from the
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Fig. 9. Vertical profiles of the pseudo-momentum fluxes involved in the steady pseudo-momentum budget. Note
that the profiles of P

z
and of the Reynolds stress Re are close to one another.

pseudo-momentum conservation budgets that the integrands in eq. (30) and the pseudo-momentum
fluxes (24) and (25) comes from the non-quadraticwaves alone can close the momentum budget. In

the following, this will be verified, by showing that terms. To show, nevertheless, that those terms
cancel out at first order, it is convenient to splitthe momentum flux through the domain boundar-

ies due to the primary steady undissipated waves, M in two integrals M1+M2 , where

is equal to the pseudo-momentum flux through
the same boundaries.

M1=P Z
0

r0[B(h)−B (h0 )−cpp0h̃+Uũ]Xdz
To evaluate the momentum fluxes in (17), the

fact that the streamfunction, the Bernoulli function
and the ‘‘Long’’ function are constant on isentropes, +P+X−X

[r0Uw̃]Zdx (31)

y(h), B(h)=
u2
2
+

w2
2
+cph0p+cpp0h̃+gz ,

contains non-quadratic terms to lowest order and

L(h)=
v

r0
+cpp0

dh

dy
, (29)

M2=P Z
0

r0Cũ22 −
w̃2
2 DX dz+P+X−X

[r0ũw̃]Zdx (32)

is used together with the fact that the disturbances

upstream are very small. For instance, the is quadratic already. To transform M1 , the
Bernoulli function allows the momentum fluxes, Bernoulli function is expanded in a Taylor series:
M=[M

x
(x, Z)]+X−X+M

z
(X, Z ) in eq. (17), to be

transformed into:
B(h)=B (h0 )+Ḃ(h0 )h̃+B̈(h0 )

h̃2
2
+… , (33)

M=P Z
0

r0Cu22− w2
2
+B(h)−cpp0h̃D+X−Xdz

where B(h0 ) and its derivatives are evaluated
upstream and using the inverse function of h0 (z)+P+X−X

[r0uw]Zdx . (30) (hereinafter noticed Z(h)), and dots represent

derivative with respect to h. Similar developments
in h̃ of the total streamfunction y and of theObviously, the largest discrepancy between the
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‘‘Long’’ function L, give the relationships, ive orders from the linear wave solution and by
Taylor expansions of the nonlinear equations (29).
These nonlinear rectifications are thus tight to theỹ=r0UŻh̃+ÿ(h0 )

h̃2
2
+… and

waves calculated with the linear model, and one
can say that the momentum balance is closed by

ṽ=−
g

h0U A1− r0U
N2

d

dzAVr0BBh̃+…. (34) the waves alone: there is no need to introduce any

far-field large-scale disturbance.
Combined with eq. (33) they allow to transform Fundamentally, the preceding calculation is
M1 into, only a verification that under the usual non-

interaction conditions (i.e., when the waves are
steady, small and not dissipated), the EliassenM1=P Z

0
Cgr0U

h0N2
ṽh̃

Palm theorem can still apply, even if some con-

straints on the domain geometry have been
+

g2r0
h20N2A1− r0U

N2
d

dzAVr0BB h̃2
2DXdz+… (35) relaxed. Nevertheless, a more complete treatment

of the problem would be to introduce unsteady

effects and dissipation and to try to find connec-Integration of eq. (32) by parts gives,
tions between the wave momentum fluxes and the
wave pseudo-momentum fluxes in this more gen-M2=P Z

0
C− 1

2GA ∂
∂x

ỹ

r1/20
B2 − A ∂∂z ỹ

r1/20
B2 eral context. Although this calculation has not

been undertaken, there are a few remarks that can

be made and that suggest that if the waves are+C 1

2r0

d2r0
dz2

−
3

4r20Adr0
dz B2D ỹ2

r0HDXdz
unsteady or dissipated, the large-scale flow is
affected. The simplest case is the unsteady case.

+P+X−X C−A ∂
∂x

ỹ

r1/20 B A ∂∂z ỹ

r1/20 BDZdx . (36) For instance, when the wave field has not reached
a steady state, the averaged momentum r0u
changes, simply because the domain is not periodicTo the lowest order in the forcing amplitude,

one can replace the total disturbance fields for the disturbance itself. Because the averaged
momentum r0u is part of what is referred to as(denoted by tildes) by their linear approximation

(denoted by primes) in both eqs. (35) and (36). the ‘‘large’’-scale in the momentum budget, the

large-scale flow varies in time when the wavesThen, to the second order in the forcing amplitude,
the sum of eq. (35) and of the first integral in field varies in time. Nevertheless, as there is no

need to take into account any nonlinear wave-eq. (36) equals the integrated horizontal flux

of pseudo-momentum P
x
(X, Z ) and the second mean flow interaction in this process, this shows

that the momentum budgets are not always effi-integral in eq. (36) is the integrated vertical flux
of pseudo-momentum P

Z
(X, Z). This result, cient to separate between the waves and the large-

scale flow in the unsteady context.together with the fact that the pseudo-momentum
flux averaged over the boundaries of the domain Now, assume that the flow is steady, but that

the low-level waves are dissipated inside theequals the wave drag at the ground, means that

the momentum transported by the waves inside domain far from the the boundaries and far from
the mountain. The place where the waves arethe domain exactly balances the drag. In this

context, it is important to note that the develop- dissipated is a pseudo-momentum source*. There

is thus an exchange between that source and thements (34) of the streamfunction and of the ‘‘long’’
equation, evaluated to the lowest order in the ground, and the pseudo-momentum fluxes

through the boundaries are significantly smallerforcing amplitude, are equivalent to the linear

potential temperature, eq. (9), and to the linear than the surface drag. In this case, as there are no
vorticity, eq. (8), in the steady case, provided that
the waves are very small upstream. It is also

* Sign convention in the pseudo-momentum definition
important to note that the use of the nonlinear

leads to the fact that the mountain which forces the
wave solution (29) implies that the only nonlinear waves appears as a pseudo-momentum sink, while the
rectifications used to evaluate the momentum locations where the waves are absorbed appear as

pseudo-momentum sources.fluxes can always be calculated locally at success-
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momentum sources or sinks inside the fluid for Reynolds stress behave as observed by airplanes
during field experiments: a sharp decay below thethe total motion (assuming further that there is

no friction at the ground), the drag still has to be jet maximum and a constant stress above

(Bougeault et al., 1993). Although this apparentlytransported outside the domain. This means that
the large-scale flow has to be modified to compens- contradicts the Eliassen and Palm (1961) result,

the difference is easily explained by makingate by a momentum flux deficit, the pseudo-

momentum flux convergence, that results from pseudo-momentum budgets. These show that the
wave Reynolds stress is essentially related to thewave dissipation (a detailed analysis of this process

is given in Durran (1995a)). To complete this vertical flux of pseudo-momentum averaged over

the upper boundary of the physical domain. Itsremark, it is also worth noting that to the lowest
order, the large-scale flow distortions are of second decay with altitude is simply balanced by a hori-

zontal flux of pseudo-momentum through theorder in the forcing amplitude. Then, the fluxes of

pseudo-momentum related to these large-scale leeward limit of the domain. In most cases, this
horizontal flux of pseudo-momentum, is signific-flow distortions will be of third order in the forcing

amplitude. This means that to second order in the ant compared to the wave drag and tends to a

constant value in the steady case when the down-forcing amplitude, the pseudo-momentum fluxes
are only related to the waves and not to the large- stream distance and the domain height become

very large. It has also been verified that to secondscale flow.

These remarks have a consequence for the para- order in the forcing amplitude, the averaged
pseudo-momentum fluxes are equal to the wavemeterization of trapped lee-waves in GCM. If one

assumes that the trapped lee-waves are attenuated momentum fluxes. This means that in the steady
inviscid case, the momentum that is taken to theinside a grid box of a large-scale model, one can

directly apply the related drag to the large-scale earth is entirely carried inside the physical domain

by the waves. Consequently the large-scale flowflow at low level.
does not need to be modified, because the exact
balance between the mountain drag and the

momentum fluxes is maintained by the waves only.6. Conclusion
These results justify the introduction of low-

level gravity waves in different gravity wave dragThis paper has shown that for two typical flow

profiles (which mimic a winter atmospheric flow parameterization schemes (Miller et al., 1989; Lott
and Miller, 1997). In essence, the low-level waveover land and the lower part of the tropospheric

jet), the mountain wave drag is not very sensitive drag referred to in the present work is very

different from the blocked flow drag (Lott andto the wave refraction index aloft. Accordingly,
the wave drag can often be predicted using the Miller, 1997) that has been recently introduced in

the ECMWF model, and that decelerates the meanflow characteristics observed near the ground. The

predictor is the drag associated with freely propag- flow at model levels which do not pass over the
sub-grid scale mountains. Although the introduc-ating hydrostatic gravity waves in a background

flow that is constant with height. This predictor tion of a low-level gravity wave drag is also

justified by the fact that mountain waves break atwas tested over a very large number of cases by
changing the vertical scale of the incident flow low level in the non-linear context, another pos-

sibility is that trapped waves are dissipated at lowvariation and the horizontal length of the moun-

tain. This predictor becomes invalid when the level. In this case, a force is applied to the large-
scale flow to compensate for a large-scalemean flow varies rapidly compared to one vertical

wavelength of the disturbances forced at the momentum deficit; the wave pseudo-momentum

fluxes convergence due to the dissipation. Theseground (i.e. when L∏1), and when the obstacle is
sharp (i.e., when D∏1). Furthermore, in all the effects can easily be included in a GCM gravity

wave drag parameterization scheme, since it hascases studied, there were always trapped waves at
low level. Accordingly, those waves cannot trans- been shown in the present paper that the drag is

often well predicted by the hydrostatic gravityport momentum upward and the Reynolds stress

always decays with height in the steady inviscid wave drag, calculated using the low-level flow
characteristics.case. In many cases, the vertical profiles of the
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7. Acknowledgements the model domain. The width of the leeward

sponge layer is equal to 10d, where d is a quarter
I am grateful to Professor Dale Durran and Dr. of the mountain length. At the upper boundary,

Jacques Vanneste for helpful dialogues about this the damping layer has a depth of 10l, where l
work. I am also grateful to Dr. Nicholas Kevlahan scales the vertical variations of the incident flow.
for a careful reading of the manuscript. The amplitude of the dampings was then adjusted

to minimize backward wave reflections and to

maximize absorption. These damping layers are8. Appendix A
very important because they simulate wave propa-

gation at X=2 and Z=2. A typical modelThe model solves eqs (8) and (9) in spectral
configuration is displayed in Fig. 1. In most cases,space in the horizontal direction and in finite-
the model resolution is Dx/d=Dz/l=0.1 with timedifferences in the vertical direction. In time, the
step Dt=Dx/(4U2 ). It is sometimes more accurateevolution equations are solved by one Euler step,
to verify model convergence when the wave fieldfollowed by successive leapfrog steps. After each
has small patterns that need higher resolution totime step, an Asselin filter is applied. Furthermore,
be properly solved. Each simulation begins withsome linear dampings are introduced (Rayleigh
an initiation period that lasts Tini=10d/U0 , duringfriction and Newtownian cooling) on the right-
which the incident wind increases toward a con-hand side of eqs. (8) and (9) to define sponge

layers at the leeward and upward boundaries of stant profile.
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