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A linear theory of the trapped mountain waves that de-
velop in a turbulent boundary layer is presented. The the-
ory uses amixing length turbulencemodel based onMonin-
Obukhov similarity theory. First, the backward reflection
of a stationary gravity wave (GW) propagating toward the
ground is examined. Three parameters are investigated sys-
tematically: the Monin-Obukhov length (Lmo ), the rough-
ness length (z0) and the limit value of the mixing length (λ)
aloft the "inner" layer. The reflection coefficient appears
to strongly depends on the Richardson number aloft the in-
ner layer (J = λ

κLmo
, with κ the von-Karman constant): the

reflection decreasing when the stability (J ) increases. The
influence of the roughness and mixing lengths on the re-
flection is explained in terms of the depth of a "pseudo"-
critical level located below the surface: the reflection de-
creasing when the depth of the "pseudo" critical level de-
creases. The preferential modes of oscillations occurring
in presence of mountain forcing are then analysed, the de-
cay rate of the trappedwaves downstream increasingwhen
the reflection decreases. At a certain point nevertheless,
when the absorption is large but the boundary layer depth
deep enough, there appears trapped modes that interact
little with the surface.
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1 | INTRODUCTION1

An early theory for gravity waves developing in the lee of mountain ranges was proposed by Scorer (1949) who2

demonstrated that resonant modes can be excited by mountains when the background wind and stratification vary3

with altitude. More specifically and in the 2D-case, they occur when the Scorer parameter,4

S (z ) = N 2

U 2
− Uzz

U
, (1)

decreases with altitude above the surface. Here N ,U and z are the background buoyancy frequency, the background5

wind and the altitude, respectively. In this case all the harmonics with horizontal wavenumber k that encounter a6

turning point ht where7

S (ht (k ) ) = k 2, (2)
are trapped at low levels. A discrete number of them become resonant in the inviscid case, as a result of successive8

reflections between their turning level and the surface. While Scorer (1949), and more recently Teixeira et al. (2013),9

applied the theory to a two layer atmosphere, cases with smooth variations of S (z ) have also been analyzed in10

numerous studies (see for instance Durran (1986) or Wurtele et al. (1996)). Of particular interest to our study is that11

of Keller (1994) which includes trapped waves with strong increase of the wind above the surface. Nevertheless and12

after Scorer (1949), it has been realized that trapped waves can also appear at a sharp density or wind inversion, in13

which case the interaction with the surface is not as pronounced as when the waves result from multiple reflections14

between the surface and turning levels (Vosper, 2004; Sachsperger et al., 2017). In the present paper, we will see that15

near resonantmodes that have slight interactionwith the surface can also be foundwhen the background atmospheric16

state varies smoothly in the vertical.17

If we now return to the initial Scorer (1949)’s theory, one of its weaknesses is that it neglects the dissipative effects18

occurring within the boundary layer, regardless that the variations with altitude of wind and stratification occurring19

in the boundary layer are potentially ducting trapped lee waves. This neglect of dissipation yields to overestimate20

mountain waves amplitude, downslope winds and trapped waves downstream development, as revealed modelling21

studies (Richard et al., 1989; Miller and Durran, 1991; Georgelin et al., 1994). More recently, Jansing et al. (2022) and22

Tian et al. (2023) demonstrated that simulations of mountain waves and Foehn strongly depends on the boundary23

layer parameterizations, parameterizations that are still uncertain in mountainous area (Goger et al., 2019) (see also24

the review in Serafin et al. (2018)). For completeness note that other deficiencies concerning boundary layer effects25

over complex terrain are discussed in Tsiringakis et al. (2017), Lehner and Rotach (2018) and Vosper et al. (2018).26

Beyond numerical models, attempts to understand the more fundamental mechanism at works in the interaction27

between the trapped lee waves and the boundary layer weremotivated by observations. During theMesoscale Alpine28

Program (Bougeault et al., 2001), Smith et al. (2002) noticed that a strong absorption by a near stagnant surface layer29

could inhibit the development of trapped waves, despite favorable conditions aloft. In subsequent papers, they pro-30

posed to analyse systematically the absorptive properties of the surface, illustrating that the combination of reduced31
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winds in the boundary layer and dissipation contribute to the absorption (Smith et al., 2006). They characterized a32

surface reflection coefficient for waves returning to the surface downstream and related it to the spatial decay rate33

of trapped waves (referred to as q and α respectively). In short, a small reflection is associated with a strong decay.34

Nevertheless, in Smith et al. (2006) but also in Jiang et al. (2006), frictional effects are represented by bulk for-35

mula with linear Rayleigh drag, which are not extensively used in models. Indeed the dissipative effects are more36

often taken into account by introducing turbulence closures based on eddy diffusivity. A fundamental difficulty when37

using such closures is that the equations have higher order derivative in the vertical (6 compared to 2 for the inviscid38

Taylor Goldstein equation). In the constant eddy viscosity case, Lott (2007) obtained solutions by using asymptotic39

techniques where the flow is split into an outer region, where viscosity is negligible, and an inner region, where dissi-40

pative effects compare to disturbance advection (Jackson and Hunt, 1975). This region has depth varying according41

to an "inner layer" scale hi that is distinct from the boundary layer depth, and satisfying42

kU (hi (k ) ) ≈
ν′

h2
i

, (3)

where ν′ is the eddy diffusivity acting on the disturbance produced by the mountain. An important result is that when43

the Richardson number near the surface44

Ri (z ) = N 2

U 2
z

≈︸︷︷︸
z→0

J > 0.25, (4)

increases, the surface reflection decreases even in the inviscid limit. Furthermore, in the inviscid limit the reflection45

is almost total when J < 0.25. This condition is similar to the Richardson-number instability criterion for continuously46

stratified inviscid parallel flows (Miles, 1961; Howard, 1961). Elaborating on this further, Lott (2007) showed that47

the neutral modes of Kelvin-Helmholtz instability (Drazin, 1958) can also correspond to trapped lee waves (see also48

Soufflet et al. (2022)).49

A limit of the constant eddy viscosity case is that in reality, turbulent viscosity over a rough surface is more50

realistically represented using mixing-length theory, the mixing length decreasing when approaching the surface. This51

introduces other difficulties, for instance one needs to treat the problem using curvilinear coordinates and re-calculate52

the viscous solutions. To a certain extent, this was accomplished in the past, quite theoretically in Belcher et al.53

(1993), Belcher and Wood (1996), and Hunt et al. (1988), and more numerically in Weng et al. (1997). However in54

these papers the trapping of the waves between the surface (or the top of the inner layer) and the turning levels was55

not fully considered. Specifically, the authors did not capture trapped wave dissipation that may occur in atmospheric56

boundary layers. In a recent paper, Lott et al. (2023) derived such a theory (hereinafter referred to Part 1), and focused57

on the nature of the transition from form drag to wave drag, and from downstream sheltering to upstream blocking.58

During the transition, which is shown to occur when the Richardson number value aloft the surface layer J is close to59

1, it was noticed that trapped waves deeply affect the dynamics. It was also noticed that for small J the turning levels60

are too close to the surface for trapped modes to emerge, and that for large J the surface absorption is too large for61

trapped modes to develop horizontally. Lott et al. (2023) also describe briefly the sensitivity to the Froude number,62

F =
U (∞)
N (∞)L , (5)

where L is a characteristic length of themountain. This number controls the significance of the non-hydrostatic effects63

(Yu and Teixeira, 2014). The purpose of the present paper is to assess further these issues, first by calculating the64
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reflection coefficient and second by trying to relate the flow response to a mountain forcing in terms of this reflection65

coefficient. As we shall see, the decay rate of the trapped waves is well explained by the absorptive properties of the66

surface and their horizontal wavenumber is quite controlled by themore conventional inviscid trappedwave dynamics.67

The plan of the paper is as follows. Section 2 recalls aspects of the formalism used in Part I and needed here.68

Section 3 evaluates the reflection coefficients. Section 4 analyses the response of the flow to an idealized mountain69

using the full model presented in Part I, with a focus on the spatial decay rate of trapped modes. Section 5 concludes70

and the appendix gives solutions to the homogeneous inviscid problem that were not given in Part I and that are71

required to evaluate the surface reflection coefficients.72

2 | TURBULENCE CLOSURE AND BACKGROUND FLOW PROPERTIES73

Although the evaluation of solutions in the presence of a mountain necessitates curved coordinates, they are not74

needed to calculate surface reflection downstream so we will lighten the formalism and consider cartesian coordinate75

(x , z ) in the following. For completeness, we recall here that as in part I, the vertical fluxes of horizontal momentum76

and buoyancy are parameterized by an eddy diffusivity ν based on mixing length theory,77

τxz = ν∂zu, qz = ν∂z b, ν = Λ2
0

 ∂u∂z  , (6)

where u is the zonal wind and b = −g θ−θs
θs

is the buoyancy, θ being potential temperature and θs a reference value.78

For simplicity, we slightly modify the Blackadar formulation for the mixing length - common for neutral flows - but79

keep the same asymptotes,80

Λ0 = λ tanh (
κ
z + z0
λ

)
, (7)

where z0, κ , and λ are the roughness length, the von Karman constant, and the limit value of the mixing length81

respectively. The formulation for the mixing length in (7) gives background wind and buoyancy profiles with uniform82

fluxes,83

UV (z ) = u∗
κ
ln ©«

sinh(κ z + z0
λ

)

sinh(κ z0
λ
)

ª®®¬ , BV (z ) = b∗
κ

ln ©«
sinh(κ z + z0

λ
)

sinh(κ z0
λ
)

ª®®¬ , (8)

where u∗ = √
τs/ρs is the friction velocity, and b∗ = g Hs/(ρscpu∗θs ) is the buoyancy scale, with τs and Hs for surface84

stress and heat flux and cp for the air heat capacity per unit mass at constant pressure. The background wind in (8) is85

going to infinity when z → ∞, whichmakes that the Scorer parameter in (1) goes to zero: all the harmonics are trapped86

which is not representative of the real atmosphere. For this reason, we also considered cases where the background87

wind smoothly becomes constant beyond a boundary layer depth d writing88

U (z ) = u∗d
λ

tanh
[

λ

u∗d
UV (z )

]
, B (z ) = BV (z ), (9)

keeping in mind that in the limit d → ∞ U and Uv coincide.89

Figure 1a shows the wind profile in (9) for d = ∞ and d = 1km and for the same parameter values as in Fig. 190

in Part I. When d = ∞ the wind shear is almost constant everywhere whereas it is approximately constant below91
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300m typically when d = 1km (see zoom in Fig.1b). The zoom also shows that near the surface, the profiles acquire92

a log character, as expected. Figure 1b, also shows the location of the inner layer, evaluated for the case where the93

mountain has a characteristic length L = 1km (i.e. hi (1/L ) according to Eq. 3, and anticipating for ν′ the values given94

in (16a). Figures 1b) and 1c) also show the linear asymptote of U and B when λ ≪ z ≪ d , illustrating that

a) b) c)

F IGURE 1 Background profiles for z0=1m, λ=20m, u∗ = 0.2 m/s, b∗= 5 m/s−2, d = 1km, L = 1km: a) Background
windU in the constant shear case (blue, see (8)) and the variable shear case (red, see (9). b) Zoom for the wind profile
in the boundary layer and in grey its linear asymptote in (10). Are also shown the depth "critical level" depth za andthe inner layer scale hi (1/L ) . c) Buoyancy profile and its linear fit.

95

U (z ) ≈︸︷︷︸
λ≪z≪d

u∗ (z + za )
λ

, B (z ) ≈︸︷︷︸
λ≪z

b∗ (z + za )
λ

(10)

where the parameter,96

za = z0 −
λ

κ
log (

2 sinh κz0
λ

)
. (11)

At least in the boundary layer and above the inner layer, Figs. 1b)-1c) show that these asymptotes approximateU and97

B in (9) quite well. As we shall see, the parameter za can be viewed as the critical level depth for the inviscid part of98

the response.99

As said in the introduction, an important parameter of the flow is the Richardson number (4), for the boundary100
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layer profiles in (9)101

Ri (z ) = N 2

U 2
z

≈


0 for z → 0

J = b∗λ
u2∗

= λ
κLmo

for λ << z << d

∞ for d << z

(12)

where N 2 = Bz and Lmo is the Monin-Obukhov length. Still for the boundary layer flow (9) the Froude number (5)102

F =
U (∞)
N (∞)L =

√
u2∗
b∗λ

d

L
= J −1/2

d

L
. (13)

A difficulty is that F changes when J changes. In the present paper, as we are focused on the absorbing properties of103

the boundary layer we make the choice to systematically vary the dissipative parameters λ and z0 and the parameter104

J , F will in most cases take the two contrasting values F = 1,∞ (d =
√
JL,∞). In these two cases, the fraction of105

harmonics that stay trapped compared to the number of harmonics excited by the mountain remains constant when106

the other parameters change. Note nevertheless that to keep F constant we are forced to increase the shear layer107

depth d when J increases. J will therefore have two contrasting effect: on the one hand trapped lee waves will be108

more attenuated at the surface when J increases, but on the other the ducting region will increase enabling more109

modes to develop. We will see that some of them interact little with the surface and can propagate downstream110

substantially even when surface absorption is large.111

3 | LINEAR SOLUTIONS112

To analyse the gravity wave absorption at the surface, we use the boussinesq equations linearized around U and B ,113

and evaluate the behaviour of harmonics with wavenumber k > 0, i.e. considering disturbance fields under the form114

(
u ′,w ′, p ′, b ′

)
= (u,w, ρsp, b) e i k x , (14)

where u ′, and w ′, are horizontal and vertical wind disturbances, whereas p ′ and b ′ are disturbances in pressure and115

buoyancy and ρs a reference density. In this Fourier space, the equations we solve are116

i kUu +w∂zU + i kp = ∂z 2Λ0u∗∂zu, (15a)
117

i kUb + N 2w = ∂zΛ0 (u∗∂zb + b∗∂zu) , (15b)
118

i kUw + ∂zp − b = 0, (15c)
119

i ku + ∂zw = 0, (15d)
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which are the dimensional form of the homogeneous part of Eq. 29 in Part I, the dissipation being neglected in (15c)120

consistent with the Prandtl approximation. Also, the dissipative terms in (15a) and (15b) result from the linearizations121

122

Λ2
0

 ∂u∂z  ∂u

∂z
≈ Λ2

0

(
dU

dz

)2
+ 2Λ2

0

(
dU

dz

)
∂u ′

∂z
= u2∗ + 2Λ0u∗︸ ︷︷ ︸

ν′

∂u ′

∂z
, (16a)

123

Λ2
0

 ∂u∂z  ∂b

∂z
≈ u∗b∗ + Λ0

(
u∗∂z b

′ + b∗∂zu
′) , (16b)

respectively.124

3.1 | Outer solution125

The scale analysis of the various terms in Eqs. 15 have been done systematically in Part I and for the case where the126

limit value of the mixing length is much smaller than the characteristic horizontal scale of the waves λ << L. In this127

case it was shown that all dissipative terms on the RHS of (15) are small and can be neglected at the leading order.128

This simplification does not allow to satisfy all the boundary conditions and can only be applied in an "outer region"129

defined by z >> hi . After verification that hi > λ in the cases we consider, in this outer region the background wind130

and stratification can be approximated by,131

U ≈ u∗d
λ

tanh ( z + za
d

)
, N 2 ≈ b∗

λ
. (17)

With these simplified form, the "outer solutions" in the constant shear case d = ∞, are expressed in terms of Hankel132

functions whereas in the variable shear case solutions are expressed in terms of hypergeometric functions all of them133

exhibiting a critical level at −za (i.e below the surface, see appendix for details). What is important is that in all cases134

we can use analytical solutions with asymptotic behaviours,135

wI (z ) ≈︸︷︷︸
z/L→ ∞

e−m (z+za ) , wD (z ) ≈︸︷︷︸
z/L→ ∞

e+m (z+za ) (18a)

136

wI (z̄ ) ≈︸︷︷︸
z/L→ 0

a1 (z + za )1/2+i µ + a2 (z + za )1/2−i µ ,

137

wD (z ) ≈︸︷︷︸
z/L→ 0

a3 (z + za )1/2+i µ + a4 (z + za )1/2−i µ , (18b)

with more details in the appendix. In (18a) and (18b),138

m =

√
|k 2 − F −2L−2 |, and µ =

√
|J − 1

4
|, (19)
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PPPPPPPPλ (m )

z0 (m ) 0.5 1 2
5 32 24 16
20 196 162 128
50 604 518 432

PPPPPPPPλ (m )
z0 (m ) 0.5 1 2

5 22 (29) 23 (29) 24 (29)
20 36 (73) 40 (73) 43 (73)
50 50 (135) 52 (135) 57 (135)

TABLE 1 Values of za (left) and of hi (1/L ) (δ (1/L )) (right) for different values of λ and z0 (see Eqs. (11), (3) with
ν′ in (16a) and (21) )

respectively, µ being changed in i µ when J < 1/4 and m in −im when k 2 < F −2L−2. With these conventions, wI139

exponentially decays as z increases or is an upward propagating wave when m is imaginary, whereas wD grows as z140

increases or is a downward propagating gravity wave.141

As we shall see and to calculate surface reflections when J < 0.25 we will need to analyse the outer solutions in142

the far field and in the variable shear case rather than just above the inner layer. In this case and to "de-activate" the143

ducting region we will use hydrostatic solutions. In the outer region this is simply done by changing m in (19) by144

m = − i

F L
: (20)

there is no turning levels and trapped harmonics. For completeness, note that the hydrostatic approximation is always145

made in the very thin inner region.146

3.2 | Inner solution147

To find solutions that match the outer solution and satisfy the 3 surface boundary conditions on the wind (u,w)148

and buoyancy b we evaluated numerically in Part I 4 solutions of the inner equations. Note nevertheless that for149

mathematical convenience, the inner equations we derive do not use vertical distances scaled by the inner scale hi150

but by the scale151

δ (k ) =
(
λ2

k

)1/3
. (21)

We have verified that in all cases we analyse the two scales compare in amplitude hi always being 1 − 3 times smaller152

than δ (see table 1). Beyond this technical issue, the most important result is that near aloft the inner layer, the153

background wind shear is almost constant and the 4 inner solutions needed have asymptotic behaviour154

wv1 ≈︸︷︷︸
z/δ→∞

(z + za )1/2−i µ , wv2 ≈︸︷︷︸
z/δ→∞

(z + za )1/2+i µ , (22a)

155

wv3 ≈︸︷︷︸
z/δ→∞

(z + za )−
9+2J
4 e

− 2
3

√
i
(
z+za
δ

)3/2
,wv4 ≈︸︷︷︸

z/δ→∞

(z + za )−
5−2J
4 e

− 2
3

√
i
2

(
z+za
δ

)3/2
. (22b)
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The interest here is that when J > 0.25, we know from Booker and Bretherton (1967), that the asymptotic behaviour156

ofwv1 in (22a) corresponds to that of a downward propagating wave and that ofwv2 to an upward propagating wave157

(in the convention k > 0). When J < 0.25, the two solutions need to be combined to build vertically propagating158

disturbances which complicates the analysis (see next section). Finally, wv3 and wv4 decay exponentially when z159

increases, they are entirely "dissipative" solutions as indicate their exponential decay rate scaled by the inner layer160

scale δ .161

4 | ABSORPTION BY THE SURFACE LAYER162

The absorbing properties of the surface can be estimated using the solution above the inner layer. Following Lott163

(2007), the solution can be expressed as the superposition of the four viscous solutions with asymptotic behaviour164

given in (22), i.e.165

w = wv1 + Rwv2 + cwv3 + dwv4, (23)
with similar expressions for the horizontal wind and buoyancy. From the numerical integration of the four viscous166

solutions to the surface described in Part I we then evaluate the coefficients R , c, and d so as to satisfy the three167

surface boundary conditions,168

w(z = 0) = u(z = 0) = b(z = 0) = 0, (24)
while imposing "unit" amplitude upward propagating solution (wv1 see (23)).169

a) b)

F IGURE 2 Surface reflection coefficient : a) Aloft the inner layer; b) In the far field in the hydrostatic variable
shear case with F = 1. Also in b) the values of the "critical level depth" za are given in place of the λ and z0 given in a).

Figure 2a) shows the amplitude of the reflection R for different roughness length (z0) and mixing length (λ) as a170
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function of J and for the dominant wavenumber k = 1/L = 10−3m−1. When J > 0.25, we see that this coefficient171

decreases with stability, which is consistent with the fact that solutions with larger µ oscillate more rapidly in the172

vertical when J increases and are therefore more absorbed. This behavior is illustrated in Fig. 3: for a given and173

quite small za , the inviscid solution (black curves) oscillates much more when J is large, at least in the region where174

dissipative effects start to be significant (region arbitrarily placed below 5hi here).175

We can also notice that the reflection coefficient decreases with the roughness length, consistently with the fact176

that enhanced roughness length leads to more dissipation. This has been shown and quantified by Jiang et al. (2006)177

in a simple model of wave reflection. Quite surprisingly nevertheless, one also sees that absorption decreases (R178

increases) when the limit value of the mixing length λ increases as if more dissipation results in less absorption. To179

interpret this, one needs to recall that the oscillatory behaviour in the solutionswv1 andwv2 is more pronounced near180

the surface when the apparent critical depth is not too large (za in Eq. (11)). As shown in table 1, this depth decreases181

when z0 increases but increases when λ increases, which explains the absorbing behaviour seen in Fig. 2a. Again, the182

fact that absorption becomes less sensitive to J when za is large is also illustrated by the red curves in Fig. 3: when183

za = 162m, the differences in oscillatory behaviour oscillations between J = 0.3 and J = 4, are not as pronounced184

when za is smaller. Accordingly the decrease in reflection when J increases is therefore less pronounced (compare185

the dashed blue and red dot curves in Figs. 2). Finally, it is important to notice that |R | is not sensitive to the choice186

of k because the inner equations we solved in Part I become independent of k when inner varibles are used. This of187

course stays true in the limit of validity of our analysis, that is when:188

λ < δ (k ) < d . (25)

The results for |R | when J < 0.25 are more problematic to interpret because in this case wv1 and wv2 in Eq. (23)189

cannot be associatedwith downward and upward gravitywaves. To circumvent this difficulty one needs to look further190

aloft for instance where the wind becomes constant in the variable shear case. There, as the two solutions wD and191

wI in (18) only represent downward and upward propagating waves when m is imaginary, we make the hydrostastic192

approximation to ensure that it is always the case (see (20)). With this approximation, the harmonics are no longer193

trapped and we can analyse the wave reflection in z → ∞ by writing the solution in the outer region under the form,194

w = UpwI + DowD ≈︸︷︷︸
z→0

(Up a1 + Do a3 ) (z + za )1/2+i µ + (Up a2 + Do a4 ) (z + za )1/2−i µ , (26)

the matching with the inner solution in being done by neglecting the viscous solutions in (23) that are exponentially195

small when z/δ → ∞. This yields the total reflection coefficient,196

q =
Up

Do
=

a4 − a3R

a2 − a1R
. (27)

As shown in Fig. 2b), when F = 1 (d =
√
JL), the amplitude of this coefficient |q | behaves almost as |R | when J > 0.25197

and becomes near 1 (near total reflection) when J < 0.25. Again, as in the outer layer the hydrostatic solutions are198

such that the ai s do not depend on k and as |R | does not depend on k , |q | does not vary much with k either. There199

is nevertheless a weak sensitivity: keeping values in the range 0.5/L < k < 2L we found that slightly more absorption200

occurs when k decrease, i.e. when the inner layer hi get closer from the boundary layer depth d (not shown).201

This interpretation that the surface reflection is near 1 when J < 0.25 nevertheless has a limit. Indeed, the202

coefficient q is more than a surface reflection coefficient since partial reflections of the incident wave can occur where203



Lucile Pauget et al. 11

the wind curvature is large (around z = d and even in the hydrostatic case because the Scorer parameter varies there).204

We verified that these partial reflections have small qualitative impacts by making sensitivity tests of our results to the205

Froude number F (and hence d , not shown). This weak sensitivities to the curvature around d probably follows that206

the tanh function used to stop the infinite growth with altitude of the boundary layer wind Uv in (9) is very smooth.207

This tanh profile was chosen in Lott (2007) to minimize these partial reflections. It permits to say with confidence that208

the amplitude of the hydrostatic approximation of q essentially measures surface reflection.

-1 -0,5 0 0,5 1 1,5 2

u’~i(1/2-iµ)(z+z
a
)
-1/2-iµ

0

100

200
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400
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700
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900

1000

z
(m

)

z
a
=16m, J=4

z
a
=160m, J=4

z
a
=16m, J=0.3

z
a
=160m, J=0.3

5h
i

5h
i

F IGURE 3 Schematic representation of the horizontal velocity field associated with the Booker and Bretherton
(1967)’s downward solutions u1 = i

k (1/2 − i µ ) (z + za )−1/2−i µ for za=16m, 162m, and J = 0.3, 4. Only the real part
is shown for conciseness.

209

5 | TRAPPED LEE WAVE DEVELOPMENT210

To determine themanner in which the trappedwaves change as flow stability and dissipations change, we next use the211

model presented in Part I, and where the mountain is represented by a 2D gaussian ridge of characteristic horizontal212

length L:213

h (x ) = He
− x2

2L2 (28)
where H is the maximum mountain height. The ratio S = H /L is fixed to 0.2 keeping L = 1 km. With these param-214

eters, the gaussian mountain forces harmonics with dominant wavenumber around k = 1km−1. In this model where215
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disturbances come from the surface, and in contrast with the previous section, we recall that each harmonicsw(k , z )216

varies in the vertical and when z >> d according to217

e−m (z+za ) where m =

{
−i

√
F −2L−2 − k 2 for k < kc = (F L )−1

√
k 2 − F −2L−2 for k > kc

(29)

where kc is the cutoff wavenumber separating trapped and freely propagating harmonics.218

5.1 | Wave field219

 b)    J=0.5 a)    J=0.2

 d)    J=2  e)    J=3.5  f)    J=4.5

 g)    J=0.2  h)    J=0.5

 j)    J=2  k)    J=3.5  l)    J=4.5

 c)    J=1

 i)    J=1

 “C
onstant S

hear” (F=     )
“Variable S

hear” (F=1)

F IGURE 4 Vertical velocity fields w (x , z ) for a roughness length z0 = 1 m and a mixing length λ = 20 m
(za = 162 m). The 6 top figures are for the "constant shear case" (F = ∞), and the 6 bottom figures are for the
"variable shear case" with F = 1. Between panels in each two case only varies the Richardson number J . In all panels,
the contour interval is fixed to 0.01 m.s−1 and the color represents the amplitude of w . The red dashed lines give the
altitude where the characteristics of the dominant trapped waves are extracted (see section 5.2).

The vertical velocity fields are plotted in Figure 4 for different values of the Richardson number J and for z0 = 1m220

and λ = 20 m. The 6 top panels show the wave field for the constant shear case, i.e. for F = ∞, and thus m = k (see221
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(29)). The wave fields obtained with the variable shear (F = 1) are sketched in the 6 bottom panels.222

When F = ∞ the 6 top panels show that the wave field decreases rapidly with altitude, as a result of the presence223

of turning heights (and hence real m ’s) for each wavenumber. For small J , these turning heights ht (k ) in (2) are close224

to the surface compared to the horizontal scale (i.e. ht (1/L )/L < 1), whereas they are quite far for large J . Accordingly225

and for small J the trapping region is too narrow vertically compared to the horizontal scale of the waves and trapped226

modes do not emerge as Figs. 4a), 4b) show. Some signal downstream the mountain start to appear at J = 1 (Fig. 4c)),227

downstream decaying trapped waves dominating the response for J > 1. For J = 2, we observe one dominant mode228

confined at low level and substantially decaying downstream (Fig. 4d)) whereas for J = 3.5 twomodes coexist (Fig. 4e)):229

the longest mode appears at higher altitude than for smaller J whereas the second much shorter mode emerges from230

the lower part of the flow, immediatly downstream the mountain and confined near the surface. Note that for J = 4.5231

this low level mode is extremely attenuated consistent with the fact that the surface is strongly absorbing. The fact232

that the responses present multiple modes and that the dominant one is confined near the surface for small J and233

developing higher for larger J ’s are studied further in section 5.2.234

When F = 1, the six lowest panels in Fig. 4 show that an important feature of the wave field arises from the235

harmonics that do not encounter a turning altitude (i.e. for which we have k < kc ). These harmonics are free to236

propagate in the far-field and combine to form a system of upward propagating waves. When J = 0.2, in Fig. 4g) this237

far-field component dominates aloft, there is very small downstream signal at low level (somehow reminiscent of the238

very small low-level signal in the constant shear case in Fig. 4a)). As when F = ∞ in Fig. 4a) the turning levels are239

too close from the surface for trapped modes to emerge. Low level trapped waves become more substantial when J240

increases (4h), 4i), 4j)), due to the fact that the ducting region thickens. Interestingly, for J = 0.5, the trapped wave241

merges with the system of upward propagating waves above the mountain. As we shall see in the next section, this242

occurs because the dominant trapped mode that first arise when J increases have horizontal wavenumber near the243

"cut-off" value separating trapped and propagating harmonics (e.g. k = 1/(F L ) , see (19)). As J increases further, the244

wave signal near the surface becomes distinct from that in the far field . It also decays downstream faster when J245

increases from J = 1 to J = 2 (see Fig. 4i) and 4j) below z = 2km). This low level signal becomes very small for J = 3.5246

(Fig. 4k)), we presume that in this case the surface absorption is too large for low level trapped modes to develop247

downstream. For even larger J in Fig. 4l), and similarly to the case with F = ∞ in Fig. 4j) a second mode emerges248

above the first one, which is no longer confined near the surface but quite significant and much less attenuated.249

5.2 | Trapped waves250

The downstream evolution of dissipated trapped mountain waves can be characterized using a description in term of251

wavepacket of complex wavenumber (Teixeira and Argaín (2022)). To follow this approach in a diagnostic context we252

will use surrogates of the form253

wS = Ae i k x−αx (30)
where the amplitude A is a complex, α denotes the downstream decay rate and k the horizontal wavenumber. To254

evaluate α and k , we minimize the misfit betweenw(x , zmax ) and the surrogate, where zmax is the altitude at which255

the trapped waves present a relative maximum in the amplitude of w. This altitude is obtained by averaging between256

5km < x < 40km the envelope of w obtained by combining w and its Hilbert transform in the horizontal direction257

(see figure 5a)). The parameters α and k are finally estimated by minimizing the square distance between w and wS258

at zmax, Fig. 5b) illustrate the obtained values when J = 2 and za = 162m (λ = 20m z0 = 1m).259



14 Lucile Pauget et al.

a) b)

F IGURE 5 Extraction of α and k for za = 162 m and J = 2. (a) Amplitude of the vertical velocity perturbations
obtained by combining w and its Hilbert transform (colors), amplitude averaged between x = 5 km and x = 40 km
(blue) and altitude zmax of the corresponding maximum amplitude (red). (b) vertical velocity w at zmax and
mountain (grey).

Figure 6 shows how the decay rate α and the wavenumber k are affected by the Richardson number J and the260

critical level depth za . For a fixed za = 162m , the decay rate in Fig. 6a) tends to increase with J consistent with the261

fact that the waves are more absorbed by the surface (see Fig. 2b)). Nevertheless the approach for tracking the low262

level wave properties produces a jump for k (J ) and α (J ) as J increases. This behaviour is related to the co-existence263

of two damped modes and indeed, when the transition occurs, the pair (k , α ) that minimizes w − wS captures the264

wave that is less absorbed. In general, the less absorbed wave is that which is less confined at low level. This upper265

level trapped wave is clearly apparent when J = 4.5 in both the constant shear and variable shear case in Figs. 4f)266

and 4l) respectively. This is in contrast with the cases at lower J where the lower level trapped wave is dominant (for267

J = 2 see Figs. 4d) and 4l)). Note that after the jump in α , the decay rate continues to increase when J increases, but268

the increase is less pronounced because for such waves the interaction with the surface is not as strong. Note also269

that the decay rates are more pronounced in the constant shear cases (F = ∞) then when F = 1, again because the270

waves are more confined and return faster to the surface where they are absorbed. Note also that in the cases with271

F = ∞ the dominant modes often have smaller k ’s than in the variable shear case, which simply follows that waves272

with k < 1/L cannot be trapped when F = 1. Similarly, Figs. 6c), 6d) show α and k respectively and as functions of za273

for fixed values of J . It is interesting to emphasize here that for a given J , the damping rate is larger for small za , as274

a result of more dissipation in the lower layer. This is consistent with the results of section 4 showing that waves are275

more absorbed when the critical level is near below the surface (za small).276

Some prediction of the preferred wavenumbers can also be obtained using the reflection coefficient resonances,277

that is from |q (k ) | in (27) but without making the hydrostatic approximation: for trapped waves and when |q (k ) |278

presents amaximumwhen k varies beyond the cut-offwavenumber (kc = 1/(F L ) see (19)), the exponentially decaying279

inviscid solution (wI in (18a)) largely dominates the exponentially growing one (wD in (18a)). As the Richardson number280

at the surface Ri (z = 0) = 0 we follow Lott (2007) and assume that the resonance that corresponds to trapped281

waves are those occurring near the cut-off wavenumber (kc = 0 in the constant shear case and kc = 1km−1 in the282

variable shear case). In the following, we therefore only keep the first trapped wave modes with values of k larger283

than the cut-off wavenumber and giving maxima in |q (k ) |. Figure 6b) shows that in the constant shear case there is284

good agreement between the first two modes obtained from the resonances of |q | and the mode captured using the285
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model. In this case when multiple modes are possible, the diagnostics from the model presented before capture the286

mode with smaller wavenumber k since it is less confined near the surface. In the variable shear case, we find some287

correspondence as well, at least when J < 3 and for the first maximum of |q | , but proliferation of adjacent resonances288

in |q | when J is larger make the correspondence less straightforward (not shown).289

a) b)

c) d)

F IGURE 6 Spatial decay rate α (a,c) and wavenumber k (b,d) extracted from the model. (a,b) for za = 162m and
as function of the Richardson number J ; (c,d) For two values of J and as a function of the critical level depth za . Thethin solid lines with dots give the results obtained from the minimization problem when the Froude number F = ∞
(blue) and F = 1 (red). The thick solid lines in shades of grey in b) give the first two modes from the maxima of |q (k ) | ,
and for k increasing beyond kc = 1/(F L ) , i.e. kc = 0 when F = ∞ and kc = 1km−1 when F = 1

5.3 | Agreement with the inviscid theory290

Figure 6b)a and 6d) also shows that the dominant wavenumber of the trapped modes have a tendency to increase291

when J increases and to decrease when za increases. To a large extent this is more related to inviscid dynamics than292

to dissipations. To establish this, we next ask ourselves if the much simpler inviscid theories developed in the past293

stay valid. For this purpose, we consider solutions to the inviscid Taylor Goldstein equation taking for incident flow294

(17). For such flow where the surface "log"-layer is absent, the potentially resonant inviscid solutions for F = ∞ and295

F = 1 are given by the wI in (33a) and (36a)) respectively and for wavenumbers k such that wI (k , z = 0) = 0.296

Figure 7a) and 7b) plots thewavenumbers extracted from the full dissipative theories as a function of thewavenum-297

bers predicted by the inviscid theory and in the constant shear case (F = 0). In these two figures all the parameters of298

interest are changed (z0, λ, J ) but we managed to distinguish two quite separate regimes. On the left panel (Fig. 7a),299
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c)

a) b)

d)

za  < 3hi za  > 3hi

F IGURE 7 Wavenumbers evaluated with the full dissipative theories as a function of the wavenumbers
predicted by the inviscid theory. The upper panels show the constant shear cases d = ∞, the lower panels show the
variable shear case, d =

√
JL. On the left (right) are cases with critical level near (far) below the surface (i.e. za < 3hiand za > 3hi respectively).
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the depth of the critical level za < 3hi on the right (Fig. 7b) za > 3hi . It therefore shows that the inviscid theory is300

quite right when the critical level is far below the surface compared to the inner layer depth, but fails when it is quite301

near. The same comparison in the variable shear case (F = 1) in Figs. 7c) and 7c) deliver about the same message302

except maybe that the inviscid predictor is more accurate than in the constant shear case since the inviscid predictor303

work quite well when za is quite near below the surface (compare Figs. 7a) and 7c)).304

6 | SUMMARY305

The purpose of this paper is to analyse the trapped waves that can occur when a turbulent boundary layer interacts306

with a low mountain ridge. We use for that a linear theory developed in a companion paper (Part I), and where307

turbulence is represented by a viscosity which amplitude varies according to the mixing length theory. We are aware308

that such a theory oversimplifies the interaction between turbulence and the obstacle, for instance neglecting the309

impact of the disturbance on the mixing length, or the dependence of the mixing length on flow stability. It also310

neglects that the disturbances produce turbulence in the outer part of the flow, i.e. that turbulence and dissipative311

effects penetrate in the outer layer. Much more fundamentally it also neglects that at the horizontal scales we analyse312

the turbulent eddies can backscatter on the large scale, effect that is entirely absent when representing turbulence313

with eddy viscosity (see Sun et al. (2015)). This being said, we believe that our theory stays more realistic than the314

theories developed so far to describe the interaction between mountains and boundary layers (Smith et al., 2002;315

Lott et al., 2020a). Also, the closure we analyse is somehow representative of the turbulence closures adopted in the316

atmospheric mesoscale models that are used to do large-eddy simulations in mountainous areas (Doyle et al., 2011).317

In this respect, our theory could help interpreting what occurs in these models.318

The first message is that near the surface the undisturbed boundary layer flow has null Richardson number by319

construction, and is less absorptive than in the constant viscosity case analysed for instance in Lott (2007) (compare320

Figs. 2a) and 2b) with and Figs. 2 and 3 in Lott (2007) respectively). We interpret this by the fact that the surface321

critical level absorption at work in Lott (2007) is less effective because the critical level migrates below the surface322

in the cases considered here. As an illustration, we find that absorptions only compare to those in Lott (2007) when323

the critical level depth za is small. We also find that this depth is large and absorption is small when the limit value324

of the mixing length is large, as if more dissipation resulted in less absorption! This is because at fixed roughness325

length, increasing λ yields a larger critical level depth za . Due to the central role of this parameter, we could suggest326

to diagnose it in practice, for instance by fitting a linear function to the boundary layer winds above the surface layer327

and identify at which depth this function is null below the surface. We also found that absorption increase with the328

Richardson number value of the background flow in the boundary layer, and this occurs because more oscillatory329

behaviours near the surface result in more absorption, as in Lott (2007).330

We next relate the absorptive properties of the inner layer to the decay rate of the trapped waves downstream331

and found that they are indeed well related. We also found that the trapped waves often has horizontal wavenumbers332

quite near the cut-off value √
N (∞)/U (∞) , a behaviour we also found when the Richardson number at the surface333

is null in Lott (2007), as is always the case here. For quite large Richardson numbers aloft the inner layer J , which334

are cases where the surface absorption is strong, the analysis also reveals the presence of gravity waves propagating335

downstream. Their decay rate is quite small despite the fact that the surface is supposedly absorbing them substan-336

tially. This new class of waves are characterized by the fact that they have small amplitude near the surface, and large337

amplitude at the boundary layer height and above. As these waves appear when J is quite large, the fact that the338

ducting region depth becomes quite large is presumably central. Indeed they are reflected back toward the surface339
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at turning points much higher than when J is small and we can presume that they reach the surface at much larger340

distance downstream than when J is smaller. These waves are therefore absorbed at the surface at a much longer341

distance from the obstacle than those that stay confined near the surface.342

We have also tried to test if the more classical inviscid theories can still be applied to predict trapped waves,343

and when considering boundary layer flow without surface "log"-layer. We found that it is general the case, at least344

for predicting the horizontal wavenumbers. Some discrepancies can nevertheless appear when dissipations are large,345

which in our case means that the critical level depth za is small.346

Data availability statement347

The theoretical model used to support the findings of this study is available from the corresponding author upon348

request.349

A | OUTER SOLUTIONS IN THE CONSTANT SHEAR CASE350

In the outer region, the solutions are the inviscid solutions of the Taylor Goldstein equation,351

d 2w
dz 2

+
(
N 2

U 2
− Uzz

U
− k 2

)
w = 0 (31)

which in the constant shear case approximates into the Bessel’s equation352

d 2w
dz 2

+
(

J

(z + za )2
− k 2

)
w = 0. (32)

A solution in term of Hankel function and for exponentially decaying disturbances in the farfield is developed in353

Lott et al. (2020b), it is extended here to include exponentially growing solutions, and writes when k > 0:354

wI = i

√
πk (z + za )

2
e−µπ/2H (1)

i µ
(i k (z + za ) ) ≈︸︷︷︸

z→∞

e−k (z+za ) , (33a)
355

wD =

√
πk (z + za )

2
e+µπ/2H (2)

i µ
(i k (z + za ) ) ≈︸︷︷︸

z→∞

e+k (z+za ) , (33b)

where µ is given in (19). In the far field, the asymptotic behaviours of (33) are as in (18) keeping in mind that m = k356

in (19) when d = ∞. Near the surface, (33) are as (18) as well (see 9.1.3, 9.1.4, and 9.1.7 in AS), and by taking,357

a1 =
−i

√
π

sinh(µπ )Γ (1 − i µ )

(
k

2

)1/2−i µ
, a2 = a∗1, (34a)

358

a3 =

√
πeµπ

sinh(µπ )Γ (1 − i µ )

(
k

2

)1/2−i µ
, a4 = −

√
πe−µπ

sinh(µπ )Γ (1 + i µ )

(
k

2

)1/2+i µ
. (34b)
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B | OUTER SOLUTIONS IN THE VARIABLE SHEAR CASE359

In the variable shear case d , ∞, the solution for upward propagatingwaveswas developed in the appendix of Soufflet360

et al. (2022) and the calculation is extended again here to include downward propagating waves. More precisely, and361

when taking r = tanh2 ( (z + za )/d ) , the Taylor-Goldstein equation (31) becomes Eq. A1 in Soufflet et al. (2022)) it is362

there transformed into an hypergeometric equation when accounting for the change of variable:363

w = r
1
4 +i

µ
2 (1 − r )−

m d
2 W , (35)

where µ and m are in (19) again (see also Eq. 8 in Lott et al. (1992)). Two inviscid solutions are :364

wI = 2−md r 1/4+i µ/2 (1 − r )−md/2W2(1) ≈︸︷︷︸
z→∞

e−m (z+za ) (36a)
365

wD = 2+md r 1/4+i µ/2 (1 − r )−md/2W1(1) ≈︸︷︷︸
z→∞

e+m (z+za ) (36b)

And where wI and wD are unique amplitude waves propagating upward and downward respectively when m is366

imaginary. The solutionsW1(1) andW2(1) are expressed with the hypergeometric function F :367

W1(1) = r −i µF

(
− 1

4
− i µ

2
− md

2
,
5

4
− i µ

2
− md

2
; 1 − md ; 1 − r

)
(37a)

368

W2(1) = (1 − r )md F

(
i µ

2
+ 5

4
+ md

2
,
i µ

2
− 1

4
+ md

2
; 1 +md ; 1 − r

)
(37b)

Then, to evaluate the solution near the surface, we use relations (15.3.6) given in Abramowitz and Stegun (1964), to369

linkW1(1) ,W2(1) ,W1(0) ,W2(0)with the help of A1,A2,A3,A4 calculated in the appendix of Soufflet et al. (2022):370

W1(0) = A1W1(1) + A3W2(1) , W2(0) = A2W1(1) + A4W2(1) . (38)
That leads to a total solution (combination of upward and downward propagating waves),371

DowD +UpwI = r α1 (1 − r )γ1 (Do (a4w1(0) + a3w2(0) ) +Up (a2w1(0) + a1w2(0) ) ), (39)
where w1(0) (w2(0) ) is related toW1(0) (W2(0) ) by using Eq. 35 and372

aj =


(−1) j −1

2−mdAj

A1A4 − A3A2
d −1/2+(−1) j −1i µ for j=1,2

(−1) j
2mdAj

A1A4 − A3A2
d −1/2+(−1) j −1i µ for j=3,4

(40)
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