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The object of this paper is to study the linear stability of an unbounded stably stratified shear 
layer in an inviscid, Boussinesq fluid. The flow is modeled by the velocity and buoyancy 
frequency profiles: U= Us tanh(z/d) and N’=iVt+Ni 1 tanh(z/d) Ia, where a > 0. 
It represents a shear layer which has already been mixed, to a certain extent, since the 
stratification is smaller inside the shear layer than outside. This flow can generate propagating 
wave instabilities if the layer of less static stability is sufficiently broad (i.e., a sufficiently 
large) as compared to the layer of large velocity shear: when a < 2, the flow only generates 
Kelvin-Helmholtz instabilities; when a > 2, the flow generates both Kelvin-Helmholtz 
and propagating wave instabilities. In three specific cases (a=O,2,4), the neutral modes are 
derived systematically using an analytical transform of the Taylor-Goldstein equation 
into the hypergeometric equation. Furthermore, the neutral modes, associated to propagating 
wave instabilities, correspond to gravity waves with infinite critical level reflection and 
transmission (i.e., resonant overreflection). It is to be noted that resonant overreflection is 
possible in the present model as long as the minimum Richardson number of the flow 
is smaller than 0.25. In the conclusion, the importance of the results obtained is discussed, in 
relation with the spontaneous generation of gravity waves in a stratified shear layer. 

I. INTRODUCTION 

For the last 20 years, the reflection and the transmis- 
sion of an internal gravity wave that is incident upon a 
stratified shear layer has been studied extensively. In a 
well-known paper on this subject, Booker and Bretherton’ 
have shown that an incident wave is absorbed when the 
Richardson number at the critical level is larger than 0.25. 
When it is smaller than 0.25, overreflection can occur (i.e., 
the reflection coefficient of an incident wave is larger than 
1) (Jones,’ McKenzie,3 Eltayeb and McKenzie,4 and 
Achesor?). Furthermore, Miles6 and Howard7 have shown 
that the flow is stable when the minimum Richardson 
number is larger than 0.25; instabilities can arise when the 
minimum Richardson number is smaller than 0.25 
(Drazin*). The fact that the behavior of both instabilities 
and gravity waves is indicated by the Richardson number, 
has led many authors to investigate the connection between 
unstable modes and overreflection (Lalas and Einaudi,g 
Davis and Peltier,” and Rosenthal and Lindzen”). An 
overreflected gravity wave can lead to an instability when it 
is reflected back toward its critical level by a rigid wall (or 
by a turning point beyond which the wave is evanescent). 
This “overreflection hypothesis” applies to very different 
types of instabilities in geophysical flows (Lindzen12). As 
noted by Smyth and Peltier,13 it sometimes fails to explain 
the existence of unstable Kelvin-Helmholtz modes in 
HolmbSe-type flow when the Richardson number at the 

critical level is larger than 0.25. A complementary idea of 
this “overreflection hypothesis” is that of propagating 
wave instabilities where gravity waves are spontaneously 
emitted by the stratified shear layer, without being re- 
flected back toward it. The neutral modes associated with 
these instabilities correspond to gravity waves with infinite 
reflection and transmission coefficients at the critical level. 
Using the terminology often seen in the literature, we shall 
name this phenomenon resonant overreflection. Note that 
this terminology is sometimes used for instabilities whose 
dynamic is related to the aforementioned “overreflection 
hypothesis” (Davis and Peltier”). In this paper, this 
“overreflection hypothesis” is not examined. 

Most of the studies of linear resonant overreflection of 
gravity waves assume that the minimum Richardson num- 
ber, Jr, is zero at the critical level. This often results from 
the use of discontinuous wind profile (the so-called vortex 
sheet) (McKenzie,3 Grimshaw,14 Lindzen,” and McIntyre 
and Weissman16). In continuous wind profiles, this results 
when the buoyancy frequency vanishes at the critical level 
( Grimshaw,17 Lindzen and Barker,‘* and Lott and 
Teitelbaumlg) . In the linear picture of resonant overreflec- 
tion, an instability provokes a disturbance at the shear 
layer, and this disturbance has a real phase speed and an 
horizontal wave number which equal those of gravity 
waves that propagate vertically outside of the shear layer. 
We can therefore presume that resonant overreflection is 
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with nonzero phase velocity can exist (Smyth and 
Peltier13). There are advantages of studying unstable 
modes in the flow defined by ( 1). First, when the profiles 
are smooth, the reflections occurring at the knees of piece- 
wise linear profile (Jones2 and Eltayeb and McKenzie4), 
are suppressed. Second, the modes found analytically in 
such a profile can serve as benchmarks for finite-difference 
numerical models calculating the temporal evolution of a 
free shear layer. Finally, the study of this type of profile 
allows a generalization of the Drazin,’ Menkes,21 and Van 
Duin and Kelder22 analytical studies of neutral modes in 
profile ( 1) with N$=O, and of the Lott and Teitelbaumlg 
analytical study of resonant overreflection in profile ( 1) 
with NT=O. In this paper, the determination of unstable 
modes is done analytically and numerically. When a = 0, 2, 
and 4, the neutral modes are calculated by transforming 
the wave equation into the hypergeometric equation. The 
determination of the unstable modes and the estimation of 
their influence on the background flow are done numeri- 
cally by solving the wave equation using the method of 
Burlish and Stoer23 adapted in Teitelbaum et a1.24 This 
model is also used to determine the neutral modesjn profile 
( 1) when a#O, 2, and 4. 
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FIG. 1. Definition diagram for the velocity and stratification profiles. 

favored when the stratification is smaller inside the shear 
layer than outside. On the one hand, inside the shear layer 
the static stability is small, so that the flow generates 
Kelvin-Helmholtz instabilities when the minimum Rich- 
ardson number, Jt, is smaller than 0.25. On the other hand, 
the large stratification outside of the shear layer favors the 
onset of vertically propagating gravity waves. Troitskaya 
and Fabrikant2’ have shown that in a mean flow configu- 
ration such as this, resonant overreflection is possible for 
long gravity waves, even when the minimum Richardson 
number is not zero at the critical level. In these circum- 
stances, when propagating wave instabilities occur, there 
must be a transition from Kelvin-Helmholtz instabilities 
(which are generally “trapped” at the shear layer) to the 
propagating wave instabilities. The purpose of this paper is 
to describe such a transition. 

In this paper, the basic flow is 

U=Uo tanh(z/d), N2=Nf+Nt]tanh(z/d) lDL, (1) 

where a > 0. These profiles are represented in Fig. 1, for 
a=2 and 4. It represents a flow in which the depth of the 
layer of less static stability and the depth of the shear layer 
are different: when the parameter a increases, the depth of 
the layer of small stratification increases as compared to 
the depth of the shear layer. The fluid is incompressible, 
inviscid, and Boussinesq. Furthermore, we are studying 
unstable modes which admit a critical level at the inflection 
point of the wind profile. In fact, we know that unstable 
modes with nonzero real phase velocity (the so-called 
Hijlmbiie modes) cannot occur in this flow since the buoy- 
ancy frequency and the Richardson number are minima at 
z=O. This configuration is opposite to Holmboe’s, in which 
the buoyancy frequency and the Richardson number van- 
ish outside of the shear layer, and where unstable modes 

II. STATEMENT OF THE PROBLEM 

The propagation of internal gravity waves is governed 
by the Synge-Taylor-Goldstein equation: 

( N2 UZZ ~_ w.?z+ ( uAc)2-( u-4 k2 ) w=of (2) 

where w is related to the vertical velocity w’ by, 

w’(x,z,t>=Real(w(z)exp[ik(x-ct)]}, 

k and c being the horizontal wave number and the phase 
velocity of the disturbance, respectively. Assuming that U 
and N2 are given by ( 1 ), and introducing the transforma- 
tion of the independent variable, z, 

r=s2= [tanh(z/d)12, 

Eq. (2)) for a neutral mode with zero real phase velocity, 
becomes 

(3) 

where J1 = Nfd2/Ui is the minimum Richardson number 
and J2 = Nid2/Ui is a “pseudo” Richardson number char- 
acterizing the stratification outside of the shear layer. 
Equation (3) has three singularities at r=O, 1, and CO. 
These singularities are regular when a =O, 2, and 4 and 
therefore Eq. (3) can be solved analytically. The singular 
point r=O is of particular interest since it separates the 
upper and lower half-plane: the solution relative to this 
point has to be made single valued. This is usually done by 
introducing a small dissipation (Booker and Bretherton’). 
In this case, the argument of U--b in Eq. (2) passes from 
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0 to -rr when z passes from + ~0 to - UJ . Then, the choice 
of the correct branch in the complex plane is equivalent to 
write, s=exp(-z%) ]sI, when s<O. 

The inviscid boundary conditions also need to be de- 
scribed. For large values of Iz[ , Eq. (2) writes, 

(4) 

When -/2’= J1 + J2-k2d2 < 0, the neutral solutions of 
(2), outside of the shear layer, are nonpropagating evanes- 
cent modes. In this case, the boundary conditions simply 
require that the vertical velocity vanishes at infinity: 

w~A*exp(--/ZIz/dI), for z=fco. (5) 

According to (4)) when m2 = J1 + J2 - h?d2 > 0, the neutral 
modes are propagating gravity waves on both sides of the 
shear layer. In this case, an incident gravity wave forced at 
z= - CO arrives at the shear layer. It gives rise to a reflected 
wave below the shear layer and to a transmitted wave 
above. When the incident wave is normalized to unity, the 
solution of (2) below the shear layer is 

wzexp( +imz/d) i-R exp( -imz/d). (64 

Above the shear layer, the solution of (2) takes the form 

w=:Texp(-imz/d), (6b) 

R and T being the amplitude of the reflected and transmit- 
ted wave, respectively. Thus (6a) and (6b) are boundary 
conditions to be imposed on the solution of (2). In this 
case a neutral mode exists when the shear layer emits spon- 
taneously vertically propagating gravity waves. This is 
equivalent to the resonant overreflection condition: 

Ill. SOLUTION FOR (~=2 

A. Trapped modes: J,+J2-k%?<O 

Equation (3) has three regular singular points of 
which the exponent pairs are real, 

r=O, a;= [@= (;-J,)“‘]/2, (74 

r=l, y;=*(k2d2-J1-J2)1’2/2, Ub) 

r=cO, &=(11,2* 

Then, Eq. (3) can be transformed into the hypergeometric 
equation (Olverz5) by considering the new variable, 

w=Pl( l--r)YiW, 

and becomes 

wrr+ ( I-cXt--(Y2 l--yi--y2 
Y - r-l ) 

W, 

+(~l+Bl+~l)(~l+&+~l) 

r(r- 1) w=o. 
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FIG. 2. Neutral curves and separation line (J1=&fz-Jz) in the 
(J,,/cW) plane for ten values of J2, a=2. 

The boundary conditions (5) are now that W is regular at 
r=O, 1. As in Drazin,* Eq. (8) has a simple solution, 
W=A =cte, when the exponents satisfy 

~1+/32+Yl=o (94 

(equation CX, +fl, + yt =0 has no solution). The same pro- 
cedure, but changing “I into o2 in the preceding transfor- 
mation of Eq. (3)) leads to a second simple solution when 
the exponents satisfy 

az+Bz+y1=0. 

These two relations lead to the condition: 
(9b) 

J1=(k2d2-J2j(1-k2d2+J2). 

When Ji-=0, we find again the relation of Drazin8 

J1=k2d2( l-J?&, 

which delimitates in the (J1, k2d2) plane, the domain 
within which the Kelvin-Helmholtz instabilities exist. In- 
creasing J2 (Fig. 2), and in the corresponding ( J1, k2d2> 
plane, this neutral curve is translated along the pd2 axis 
with an unchanged shape. The constant of translation is J2 
and the neutral curve remains on the right-hand side of the 
line, J, = k2d2 - J2. 

B. Propagating modes: J, + J2-k%f>0 

Equation (3 ) is similarly reduced to the hypergeomet- 
ric equation (8) (Van Duin and Kelder”), the exponents, 
yi, corresponding to the singular point r= 1 are now imag- 
inary: 

r=l, y~=*i(J1+J2-#d2)1’2/2. 

The exponent pairs corresponding to r=O and r= CO are 
unchanged [(7a) and (7c)]. With respect to the singularity 
r=O, the solution is given by 

w(r)=~l(l-r)yl[p~~(r)+p~~(r)l, (10) 
with e(r) =F(a,b;c;r) and G(r) =r’-“F( 1 +a--c, 
1 +b--;2-c;r). 
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The symbol F denotes the hypergeometric power series 
and, 

c= 1 +cf, -a2. 

In the next development, the wave solution (10) is made 
single valued in the vicinity of r=O and is rewritten with 
respect to the singularly r= 1. Then, an equivalent form of 
( 10) is found at z= f 03 and the reflection and transmis- 
sion coefficients are determined by comparing this equiva- 
lent form to (6a) and (6b). Such a procedure is carefully 
described in Van Duin and Kelder,” and the reader is 
referred to this paper for more details. Finally, the reflec- 
tion and transmission coefficients can be expressed in terms 
of I? functions: 

R= 
-2iAd1 sin(rp) 

A34 exp( -h-p) -AlA exp( +is-p) ’ 

T= 
A&--AA 

A& exp( -h-p> -AlA exp( +irp) ’ 

(lla) 

(lib) 

where 

A,= 
r(c)l?(c--a--b) r(c)r++b--c) 
r(c--a)r(c--b)' 

AZ= 
rww 9 

r(2--c)r(c---a--b) 
A3= r(i--ami--b) 9 

A4= 
r(2--c)r(a+b--cl 

r(i+a--c)r(i+b-4' 

and, 

We found that resonant overreflection only occurs when 
J1 =O, for all wave numbers corresponding to propagation 
wave: k2d2<J2 (Fig. 2). This result is an extension of Van 
Duin and Kelder” who found resonant overreflection in 
the Drazin8 profile [profile (1) with J2=O] for infinitely 
long waves (i.e., J, = k2d2 = 0). This also covers the results 
of Lott and Teitelbaumlg who found resonant overreflec- 
tion in profile ( 1) when the buoyancy frequency vanishes 
at the critical level, Nf=J, =O. In this case, the neutral 
curve formed by those modes fits with the axis J1 =0 (Fig. 
2). It does not delimitate a domain of instability in the ( J1, 
k2d2) plane. Furthermore, the neutral curves correspond- 
ing to the trapped modes found in Sec. III A, connect with 
the curves of resonant overreflection at the points ( J1 =O; 
k2d2=J2). 

These results, added to those found in Sec. III A, show 
that when a=2, and for a given value of J2, the domain of 
instability in the (J1,k2d2> plane, found by Drazin,’ is 
translated along the pd2 axis. The value of the constant of 
translation is J2 and the unstable modes remain on the 
right-hand side of the curve, J, + J2- k2d2=O: no instabil- 
ity corresponds to propagating wave modes. 

FIG. 3. Neutral curves and separation lines (J,=@d2-&) in the 
(J,,R&) planes for 11 values of J2, a=4. 

Furthermore, the onset of resonant overreflection 
when J1 =0 indicates that the configuration with a=2 in 
profile ( 1) is a limit above which propagating wave insta- 
bilities exist. In fact, increasing a in the profile ( 1) desta- 
bilizes the shear layer because the depth of the layer where 
the buoyancy frequency and the Richardson number are 
close to their minimum value, NT and J1, grows (Fig. 1). 
For a > 2 we have found that propagating wave instabili- 
ties occur, while for a < 2, such instabilities do not occur. 
Two examples can be treated analytically: a = 0 and 4. The 
configuration a = 0 can be simply reduced to the case stud- 
ied by Drazin’ and Van Duin and Kelderz2 since it corre- 
sponds to a profile of constant buoyancy frequency: no 
propagating wave instability occurs. The study of the con- 
figuration a =4 provides interesting results. 

IV. SOLUTION FOR cx=4 

The analytical treatment of Eq. (2) is similar to that 
presented in Sec. III, except that the exponent pair corre- 
sponding to the singular point r= CO becomes 

r=m, &=[~f($-J2)1’2]/2. 

A. Trapped modes: J1+J2-k28<0 

The neutral curves corresponding to the simple solu- 
tion for which relations (9a) and (9b) are satisfied are 
represented in Fig. 3 for ten values of J2. Contrary to the 
results found when a = 2, when J= 2, when J2 increases, 
the neutral curve corresponding to the trapped unstable 
modes is distorted compared to the Drazin’ curve (J,=O). 
Furthermore, when J2<2 and when approaching the sep- 
aration line J1+J2-pd’=O, in the (J1,k2d2) plane, the 
value of J, for which a neutral mode exists does not go to 
zero. Note also that when J2 > 2 no instability occurs, while 
for a=2 unstable modes exist. 

B. Propagating modes: J, + J,-/&f>O 

Figure 3 also represents the locus of resonant overre- 
flection in the (Jl, J2, k2d2) space, R and T being deter- 
mined by the formulas ( 1 la) and ( 1 lb). Furthermore, we 
verify numerically that above the curve of resonant over- 
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FIG. 4. Same as Fig. 2, for three values of J2. The curves of constant normalized growth rates a=kd Im (c/U,) are also represented. 

reflection, unstable modes exist (Fig. 4). First, we found 
that as long as 0 < J2 < 2, resonant overreflection can occur 
for J,#O. The case J1=O was treated by Lott and 
Teitelbaumlg who found resonant overreflection when 
J2 = 2 and unstable modes when J2 < 2. Figure 3 also shows 
that, in the (JI,k2d2) planes, the curves of neutral trapped 
modes connect to the curves of resonant overreflection 
through the separation plane J1 + J2 - k2d2 = 0. This con- 
nection corresponds to a transition from the Kelvin- 
Helmholtz instabilities to propagating wave instabilities. 

sharper as J2 approaches 2 (Fig. 3)) the maximum value of 
the minimum Richardson number, J1, below which unsta- 
ble modes exist decreases when J2 increases. It approaches 
0 when J2 approaches 2. 

As can be seen in Fig. 3, the nature of this transition in 
the (J#d’) plane, depends on whether J2 is larger or 
smaller than 1.25. When J2 < 1.25 the transition is smooth 
and when 1.25 < J2 < 2 it is sharp. When the transition is 
smooth the value of the minimum Richardson number J1, 
for which a neutral mode occurs, decreases rapidly when 
passing the separation plane from the “trapped modes” 
zone to the “propagating modes” zone. Figure 4 further 
shows that in a given mean flow configuration (i.e., J1 and 
J2 are fixed) the growth rate of propagating unstable 
modes is significantly lower than those of the trapped 
modes. Nevertheless, when J2 increases, this situation 
starts to reverse and the maximum value of the minimum 
Richardson number, J1, for which resonant overreflection 
occurs, becomes larger and larger: it approaches 0.25 when 
J2 approaches the critical value 1.25. At the limit J2= 1.25, 
resonant overreflection occurs as long as J, < 0.25. When 
the transition is sharp, 2 > J2 > 1.25, the area for which 
propagating unstable modes occur becomes significantly 
larger than the area for which trapped unstable modes 
occur. In this case it is important to note that in a given 
mean flow configuration, the propagating unstable modes 
grow more rapidly than the trapped modes (Fig. 4). It can 
also be seen in Fig. 3 that the form of the neutral curve in 
the (J,, k2d2) plane becomes sharp in the vicinity of the 
separation plane. This curve becomes narrower and 

As noted earlier, the critical value of J2, which sepa- 
rates smooth and sharp transitions, is of great interest. It 
separates configurations for which the most unstable 
modes are trapped to those where they are propagating. 
We have also found, solving numerically the Taylor- 
Goldstein equation (2) for different values of a, that this 
critical value of J2 decreases when a increases. It means 
that when the depth of the layer of small static stability 
increases as compared to the depth of the shear layer, the 
generation of propagating wave instabilities is favored. 

C. Wave-mean flow exchanges 

In order to get better physical insights into the mech- 
anisms driving both types of instabilities, it is convenient to 
consider their energy exchanges with the background flow, 
as well as the resulting mean flow distorsion. The linear 
theory, neglects this mean flow changes, and does not de- 
scribe the time evolution of the different energy reservoirs. 
Nevertheless, it can provide information about the first 
steps of the nonlinear processes when the disturbance and 
the related mean flow distortions are very small. Defining 
the horizontal velocity u’ (x,z,t), and the buoyancy force 
cp’(x,z,t) associated to the_wave, the corresponding mean 
flow distortion, z?(z,t)and cp(z,t), follow the equations 

dii a u’wl -= -- 
dt a.2 ) 

d@ Q)‘w’ -= -- 
dt az ’ 

where the overbar means (-) = k/2n-.FF’kdx. 
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Here, u’(x,z,t) and rp’(x,z,t) are related to the vertical 
velocity w’(x,z,t> by the relations 

{U’,@,w’)=Real({U,Q),w}exp[%(x-ct)]), 

aw 
iku+x=O, 

and 

ik( U-c)q+iV2w=0. 

The wave mean flow exchanges also satisfy an energy clo- 
sure close to that presented by Klassen and Peltier.26 With- 
out dissipative effects, it involves the following energy res- 
ervoirs: 

z=f<uT2), the mean kinetic energy; Ur=U+ii, 
-- 

K’ =i( ZL’~+ wf2), the wave kinetic energy, 

p= - (z@), the mean potential energy, 

where the brackets mean, ( ( ) ) =.f f z ( )dz. 
Assuming that the eddy interaction terms are suffi- 

ciently small, third-order nonlinear terms can be neglected 
and the energetic balances can be written as 

dz 
-&= -C(K,K’), 

dK’ 
~=+C(K,K’)+C(P,K’), 

dp 
a= -C(P,K’), 

where 

C(K,K’)= (UT), (13d 

C(P,K’)=- (,F). (13b) 
Here, the notation C(a,/3) denotes the conversion of 

energy from reservoir a! to reservoir /3. The relations (13a) 
and (13b) show that these energy transfers are mainly 
related to the divergence of the momentum and buoyancy 
fluxes (12a) and (12b) transported by the wave. Those 
forcings are represented in Fig. 5, for four different unsta- 
ble modes, and for a given amplitude of the disturbance. 
According to expressions (12a) and (12b), it shows that 
whatever the nature of the mode considered (trapped or 
propagating), the instability tends to take the mean hori- 
zontal momentum and buoyancy from above the critical 
level and restore them below. According to expression 
(13a) and (13b), this naturally induces a positive (nega- 
tive) transfer of kinetic (potential)energy from the mean 
flow toward the wave. These energy transfers are charac- 
teristics of Kelvin-Helmholtz instabilities in stratified 
flows. In fact, in order to grow, Kelvin-Helmholtz insta- 
bilities pick up kinetic energy to the mean flow from 
around the critical level. Nevertheless, part of this kinetic 
energy returns to the mean how as potential energy instead 

--_z,+ 0.73 
0.2 , f’ I 

-0.49 0.00 0.49 

0.2 7’ / 
z/d 0.0 k Outgoing mode 

J2 = 0.75, J’ = 0.026 
k2d2 = 0.5 

/ 0 = 0.03 

-.2 -0.26 0.00 0.26 

0.2 I 
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$2=&;;;; =O.Olg 

-.2 + -1.37 1.37 

I 
_ $a”- (-) 

--r-7 
2nd -Ll- 3,vo I---, 

a2 NIT al 

FIG. 5. Divergence of the vertical fluxes of horizontal momentum and 
buoyancy, for four different unstable modes; a=4. 

of contributing to the growth of the wave. This last effect is 
a natural consequence of the stabilizing influence of the 
background density stratification. Thus, from an energy 
point of view, the physics of the processes generating 
trapped instabilities and propagating wave instabilities are 
very similar. This is particularly evident in Figs. 5(b) and 
5 (c), where two unstable modes, existing in close mean 
flow configuration (a and J2 are identical) and with simi- 
lar growth rates, are compared. While these modes are 
very different outside of the shear layer [Fig. 5(b) corre- 
sponds to a trapped instability and Fig. 5 (c) corresponds 
to a propagating instability], the shape of the momentum 
forcings are very close to each other. The same goes for the 
buoyancy forcings. These resemblances between the phys- 
ical mechanisms driving both types of unstable modes sup- 
port the basic assumption of this paper, i.e., that propagat- 
ing wave modes are forced at the shear layer by a Kelvin- 
Helmholtz-type shear instability. This shear instability 
then supports wave radiation when the density stratifica- 
tion outside of the shear layer is sufficiently large. 

Another interesting aspect of this analysis concerns the 
modification of the mean flow stability by the wave. The 
wave, by transporting downward momentum through the 
critical level, stabilizes the mean flow by decreasing its 
velocity shear. Nevertheless, since it also transports down- 
ward mean buoyancy, it destabilizes the mean flow by de- 
creasing its stratification. The relative importance of these 
opposite effects can be measured by considering the tem- 
poral evolution of the mean flow stability (measured by the 
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Richardson number, Ri) around the critical level: 

z-0 

This tendency can be estimated by comparing the slopes of 
the momentum and buoyancy fluxes divergence around the 
critical level in Fig. 5. When the mean stratification is 
initially uniform in the whole fluids [J,=O, Fig. 5(a)], and 
for the most unstable mode occurring in a given mean flow 
configuration (here, for J1 =0.206), the amplitude of the 
fluxes is such that the mean flow is destabilized. It shows 
that in an initially uniformly stratified flow, the most un- 
stable mode mixes the mean density more rapidly than it 
mixes the velocity. This leads to a more unstable flow in 
which stratification is smaller around the critical level than 
outside of the shear layer. Even if the resulting mean flow 
configuration is certainly very different from those studied 
here, in the vicinity of the critical level, it has some resem- 
blance to cases studied where the stratification is smaller at 
the shear layer than outside. As was shown in Sec. IV B, 
such a configuration can favor the onset of propagating 
wave instabilities. Figure 5 (c) shows that this type of in- 
stability, as well as the most unstable trapped instability 
which can occur in a mean flow configuration such as this 
[Fig. 5(b)], stabilizes the shear layer. This stabilization 
becomes very efficient when the most unstable mode is a 
propagating wave instability [Fig. 5 (d)]. 

V. CONCLUSION 

This study of the linear stability of an unbounded strat- 
ified shear layer has provided several new results. It has 
shown that resonant overreflection and propagating wave 
instabilities can exist for all values of the minimum Rich- 
ardson number, J1, smaller than 0.25, when the back- 
ground profiles are continuous and smooth. Furthermore, 
the mean flow configuration used allows analytical solu- 
tions that are extensions of well known studies (e.g., 
Drazin’) of such layers. Energy analysis indicates that the 
physical mechanisms driving trapped modes and propagat- 
ing modes are very similar. For those reasons, the radiating 
wave instability can be viewed as the linear excitation of 
propagating waves by a Kelvin-Helmholtz unstable mode 
existing at the shear layer. This mode becomes propagating 
because the stratification is large outside of the shear layer. 
This complements the “overreflection hypothesis” 
(Lindzen”) where overreflected waves give rise to insta- 
bilities. In some cases we also find that the most unstable 
modes correspond to propagating wave instabilities. 

From a more general point of view, this study shows 
that the nature of the unstable modes which develop in a 
stratified shear layer strongly depend on the background 
density stratification. Furthermore, the case for which the 
density stratification is smaller inside the shear layer than 
outside is studied. The existence of this mean flow config- 
uration in geophysical fluids is not usual. Nevertheless, 

when instabilities develop in a uniformly stratified shear 
layer (i.e., with N2 constant), they trend to decrease both 
the velocity shear and the density stratification at the shear 
layer. As Churilov and Shukhman27 have shown in the 
weakly nonlinear viscous case, at Pr > 1, and as it was 
shown in Sec. IV C in the inviscid case, these changes do 
not necessarily lead to a stabilization of the background 
flow. This reduction of the mean stratification at the shear 
layer is also found in the fully nonlinear two-dimensional 
case (Klaassen and Peltier26). Their results seem realistic, 
even if Winters and Riley28 have shown that the critical 
level dynamics is certainly three dimensional, and that 
two-dimensional simulations filter convective unstable 
modes which can be predominant during the disturbance 
breakdown (Winters and D’Asaro2’). Nevertheless, we 
can presume that the three-dimensional wave overturning 
also tends to homogenize the potential temperature profile. 
This study indicates that turbulent shear layers such as 
these can be propitious to the spontaneous generation of 
propagating gravity waves through resonant overreflection. 
In this context, another important result of this paper is 
that the onset of propagating modes is also related to the 
depth of the “mixed” area, where the stratification is small. 
In this study, this was indicated by the parameter a. When 
a increases, the depth of the layer of less static stability 
increases as compared to the shear layer, and the genera- 
tion of propagating waves is favored. This study further 
shows that contrary to the primary instability which tends 
to destabilize the flow, this second instability stabilizes it 
very efficiently. For these reasons, we can presume that 
propagating unstable modes can play an important part in 
the late development of an unstable stratified shear layer. 

The applicability of our results to shear layer problems 
is limited by the linear hypothesis adopted, their dynamics 
being essentially nonlinear. Nevertheless, we can expect 
that the generation of propagating waves will be efficient 
when the unstable modes, which mix the mean potential 
temperature, combine together through vortex pairing 
(Collins and Maslowe3’) and excite longer propagating 
wave unstable modes, like those presented here. Another 
interesting problem would consist in forcing an incident 
gravity wave below an unstable stratified shear layer, 
where trapped instabilities develop and mix the potential 
temperature. 
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