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ABSTRACT

The object of this paper is to describe the generation of mountain gravity waves when the inci-
dent wind is transient. The incident flow is a stably stratified fluid which velocity starts from zero
at a given time and returns to zero after a finite time. For the mountain, both a single harmonic
and a single ridge topography are considered. The nature of transient effects on the disturbance
is discussed according to the value of the parameter, ¢ = U,t;/L, which measures the ratio
between the time scale ¢; of the temporal variation of the incident wind and the advective time
scale L/U,. L and U, characterize the horizontal extension of the mountain and the incident
wind intensity respectively. Situations for which ¢> 1 are referenced as quasi-steady and the
wavefield can be conveniently described using ray-tracing techniques. Situations for which ¢ < 1,
are referenced as very unsteady, and essentially reduce to a ground vibrating disturbance
generated in a fluid at rest. In this paper, we consider both limit configurations as well as inter-
mediate ones. This allows us to describe various mechanisms of generation of unsteady mountain
waves. The incidence of the unsteadiness on the amplitude of the gravity wave momentum flux

and on the location of the mountain wave breaking level are also discussed.

1. Introduction

The first comprehensive theoretical description
of the atmospheric mountain gravity waves was
made in the linear case by Queney (1947) and
Scorer (1949). Thereafter, linear and nonlinear
studies have been developed in order to give a
comprehensive picture of these waves and of
the associated severe downslope windstorms
occurring in the lee of mountains (Long, 1953;
Peltier and Clark, 1979; Durran, 1986; Durran and
Klemp, 1987; Klemp and Lilly, 1975; Bacmeister
and Pierrehumbert, 1988). These studies typically
assume that the incident flow is steady, although
some unsteadiness in the wave field can result from
the start up of the incident flow (Palm, 1953;
Jusem and Barcilon, 1985) or from local insta-
bilities of the main wave (Laprise and Peltier,
1989; Bacmeister and Schoeberl, 1989). Never-
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theless, the energy of the disturbance remains
transported by a main stationary wave because the
incident flow becomes steady after a finite time.
Observations show that this assumption is not
always valid. Some atmospheric examples can be
found in Buzzi and Tibaldi (1977) which depicts
a cold front interacting with a mountain range.
More common geophysical examples of transient
flow interaction with topography have been
studied by oceanographers (Bell, 1975; Hibiya,
1986) in the context of the interaction between the
fluctuating tides and the bottom topography (see
Maas and Zimmerman (1989) for a review and a
complete reference list). In this oceanic context,
the mean flow varies as a single harmonic in time,
allowing certain simplifications in the mathemati-
cal treatment of the problem. Nevertheless, in the
atmospheric case, such a temporal structure of the
incident flow is not relevant, the time variations
induced by the atmospheric tides being small in the
troposhere as compared to those induced by the
synoptic disturbances. This is not true in the upper
stratosphere where the daily fluctuations induced
by tides and planetary waves of short period may
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have significant influence on the gravity waves
propagating toward the mesosphere. To approach
the atmospheric context, Bannon and Zehnder
(1985) add a steady component to such a sinus-
oidally varying flow. Studying the influence of
transience on the mountain drag, they found that
some evanescent modes, which do not participate
in the mountain drag in the steady case (Smith,
1979) can contribute to the instantaneous moun-
tain drag in the unsteady case. Large drag states
are then found during the accelerating periods
of the flow. In a previous paper (Lott and
Teitelbaum, 1993) have investigated theoretically
the quasi-steady mountain waves when the time-
varying wind is not a single temporal harmonic
but when the mountain is a single horizontal har-
monic. In order to provide a simple description of
the transient effects of the incident wind on the
mountain waves, attention was limited to cases for
which the incident wind has at most one acceler-
ating phase and one decelerating phase. This was
taken as an idealization of winds in situations such
as the interaction between a synoptic disturbance
and a topography. It is very different from the case
of a sinusoidally varying wind where an infinite
number of accelerations and decelerations of the
incident wind contribute to the wave field. The
purpose of the present paper is to extend these
previous results to cases for which the mountain
has a complex horizontal structure and to cases
for which the temporal fluctuation of the incident
wind is more rapid.

It is now generally accepted that breaking
gravity waves provide a major source of momen-
tum in the atmosphere. They play an important
role in the general circulation of the mesosphere
(Lindzen, 1981; Holton, 1983). More recently,
Schoeberl (1985) and Palmer et al. (1986) have
shown that mountain gravity waves are important
in the general circulation of the stratosphere and of
the upper troposphere respectively. The incidence
of these waves on the general circulation of the
atmosphere strongly depends on three salient
features: their phase velocity, the quantity of
momentum they carry and the altitude where they
break. In the parametrization scheme of mountain
waves presently used in large scale circulation
models, the phase velocity of mountain waves is
zero and the determination of their breaking level
is based on stationary concepts. This can have
serious consequences on the incidence of these
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waves in the general circulation models. For
instance, the assumption of zero phase velocity
makes these waves encounter critical level where
the large scale flow is zero. This would not occur
(or would occur elsewhere) if the phase velocities
of the waves were different, as can occur in the
unsteady case.

In the present study, we investigate the structure
of the mountain gravity waves generated by a
transient wind which has one accelerating phase
and one decelerating phase. In the second part, the
model used is described. In the third part, we study
the waves forced on a single horizontal harmonic
mountain. This profile is adopted because in
many parametrization schemes, the physical back-
ground is based on the theory of monochromatic
mountain gravity waves. More physically, this
type of profile also schematizes a mountain massif,
where successive ridges are present. The quasi-
steady case is presented in subsection 3.1, where
we describe again some of the results found in Lott
and Teitelbaum (1993). Subsection 3.2 presents
the very unsteady case. In Section 4, we consider
a single mountain ridge. In Subsections 4.1 and
4.2 the quasi-steady and the very unsteady cases
are presented respectively. In Subsection 4.3, the
incidence of the unsteadiness on the breaking level
of mountain waves is analysed. All the results are
discussed according to the unsteady parameter,
e=U,t;/L, and a particular attention is paid to the
horizontal phase velocity of the waves and to the
horizontal momentum they carry. The appendixes
show analytical results which simplify the inter-
pretation of the simulations presented.

2. Numerical model

We modify the well-known Queney (1947)
problem, to allow the spatially uniform incident
wind to be a function of time. The model atmo-
sphere is a stably stratified, inviscid, anelastic fluid
in a nonrotating reference frame. The basic state
velocity field is a zonal wind of the form

uO(t) = UO uv(t)’

where U,=20ms~". In all the cases considered,
the time variation of the wind intensity is given by

Tellus 45A (1993), 3
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N -

u,(t) =

<1 +cos (?)) for |t| <t
f

and u,(t)=0 for |t} >t¢. (1)
The wave dynamics is then investigated using
a two dimensional (x, z), linear time-dependent
model. The stream funcion, ¥,, the buoyancy
force, ¢, and the vorticity, {,, associated with the

internal wave field are defined by:

uool0®, o 1o¥,
YU 0z 7o ox
and _.(?=0@
=g @(Z) )
where
Cou, dw, L[, 109, 8,
Cl_(?z_@x_p<622 H oz ol (2)

@ is the total potential temperature, @(z) and p(z)
are the basic state potential temperature and
density profiles respectively. In the experiments
presented, the density scale height is constant,
H= —p/p,=7000m. Then, the equations of
motion are written in the streamfunction vorticity
form:

0 0 0, 1dboy,
<at+”"ax> bt ox +bcl+p dz oz =0 (3
0 0 N2oY,

— — - =0. 4
<at+u06x> @ P) ax +b(pl 0 ( )

Here, N>=410"% "2, is the buoyancy frequency
and b is a linear damping coefficient. At the bottom
boundary, the topographic gravity waves are
forced through the condition:

¥i(x,2=0,1)= —p(z=0) uy(?) h(x), (3)

where the mountain profile, 4(x), is characterized
by its maximum height H,=450m, and by its
width L=15km. The quite small value of H,
justifies the use of the linear approximation. In
fact, it corresponds to a characteristic Froude
number, Fr=NH,/U,=0.45 < 1, for which Long
(1953) has shown that the steady nonlinear solu-
tion is close to the linear one. In order to prevent
undesirable wave reflection at the upper boundary,
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a 30-km sponge layer is used. In this layer, the
damping coefficient b smoothly increases from zero
to 2.5U,/L, and the upper boundary condition is,

Y(x,z=1z,,1)=0.

It ensures that no mean transport occurs in
addition to the one specified through u,. In the
horizontal direction, we apply periodic boundary
conditions. The spatial derivatives in the x and
z directions are calculated with centred finite
differences. The temporal integration of (3) and
(4) are performed using the predictor corrector
algorithm used by Lindzen and Barker (1985).
The vertical integration of the stream function
Eq. (2) is performed with a Gaussian elimination
technique.

In Section 3, we consider that the wave is forced
by a single harmonic mountain,
h(x)= H, cos(kx), where k=mn/L. (6)
In the horizontal direction, 32 points are used, and
the horizontal period of the domain is 2L. In the
vertical direction, the domain extension is 190 km
(including the 30 km sponge layer), the grid is
uniform and 512 points are used. Our numerical
experiments revealed that these horizontal and
vertical resolutions are sufficient for convergence
of the solution.

In the Section 4, we consider that the wave is
forced by a single ridge mountain,

H,L?
x>+ L%

h(x)= (7)

As we shall see in Section 4, the unsteady moun-
tain waves can propagate rapidly in the horizontal
directions. Then, the sizes of the domain are
chosen so that most of the windward (leeward)
propagating waves can get away the domain
through the upper boundary, before re-entering in
the domain (and affect the solution by a pseudo-
periodic effect) through its leeward (windward)
vertical boundary. For this reason, the horizontal
domain extension we impose is very large as
compared to L: it is 800 km and 640 points are
used. In the vertical direction the domain exten-
sion is 80 km and 256 points are used. We further
verified, that these resolutions are sufficient for the
convergence of the solution.
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To simplify the comparison of our results with
the other studies of mountain waves, we will report
them measuring the time in units of #;, the lengths
in units of mountain half width L, the depths in
stratification units U,/N, the momentum flux in
units of p(z=0) NUGH2Z, the streamfunction
in units of U2/N and the vertical velocity in units
of U2/NL.

3. Single harmonic mountain

3.1. Quasi-steady case

In the quasi steady case (¢=43.2, #;=9h),
the temporal fluctuations of the incident wind,
indicated by ¢, are very slow compared to the
advective time scale, t,=L/U,. This advective
time scale also characterizes the rapid fluctuations
induced by the wave in the reference frame fixed
in regard to the basic flow. This means that the
quasi-steady hypothesis is equivalent to the slowly
varying hypothesis (Lighthill, 1979) and the
propagation of the ground generated waves can
be described using ray-tracing techniques. At
each initial time #;, —#;<t;<{t; a stationary
mountain wave packet is generated at the ground.
Its absolute frequency, w,, is zero so that its
intrinsic frequency, ., is,

w, = —ku(1y). (8)
Its vertical wavenumber is given by the dispersion
relation,
N2 1 1/2
=k|——s———55-1 9
m(tl) (wr(tl)z 4k2H2 ) ) ( )

which is the dispersion relation for internal gravity
waves in the anelastic approximation. Thereafter,
since the medium doesn’t change in z, the vertical
wavenumber, m, of the wave packet is conserved
(Lighthill, 1979). As m is linked to the intrinsic
frequency through the dispersion relation (9), w, is
also conserved and the wave packet propagates
along a straight ray in the (z, t) plane,

z=Cg(t)(1—1y),

—o.(t;)’ m(t;)

where Cg ()= N7

(10)

Note that the negative value of w, (8) ensures that
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the ground forced waves propagate upward (10).
In Fig. 1, 13 rays are shown for 13 values of ¢,
—t;<ty<t;. It appears that the (z, t) plane is
separated in 3 regions. In the upper region, no
wave arrives. In the intermediate region, the
solution is the superposition of waves, generated
during the ascending phase of the mean flow. The
caustic of this system of rays designs, for a given ¢,
the maximum height the ground generated wave
packets have arrived: it is the wavefront of the
solution. Initially, this front is tangent to the t-axis,
indicating a slow initial vertical propagation of
the waves. As ¢ increases, this front propagates
faster and faster and asymptotically approaches
the ray corresponding to the packet of waves
generated at =0, and which intrinsic frequency is,
w,o= —kU,. In the lower region the solution is
the superposition of waves, generated during the
ascending phase of the mean flow, and of waves
generated during its descending phase.

On Fig. 2, the vertical profile of the function,
¥, exp(z/2H), and of its amplitude,

¥y ) exp(z/2H)
1 +L 172
=<ZJ._L ¥, exp(z/ZH)lzdx) , (11)

are shown at the two different times, 1 =0, ¢;. The
multiplicative factor, exp(z/2H), is introduced to

160. T
120. |
[}
jow)
> o
—~ 80.
N
40. |
0.
1 0 +1
t/te
Fig. 1. Rays of wave packet propagation in the (z, t)

plane, £=432 (1;=9h). The dashed lines show the
packets generated during the ascending phase of the
wind; the solid lines show the packets generated during
the descending phase of the wind.
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suppress the effect of the compressibility in the
representation of the solution. Fig. 2 first shows
that at each time, the wave field presents well
developed oscillations in the vertical direction.
This is natural since in the slowly varying context,
the characteristic time, ¢,, required for the wave
energy to propagate over one vertical wavelength,
t,x A, /Cy, = 2LJU,, is small as compared to #:
t,/t;=2/e < 1. Nevertheless, at t=0 (Fig. 2), the
vertical extension of the wavefield is quite small as
compared to what happens later (t=¢;, Fig. 2).
This is due to the slow vertical propagation of
the wave packets during the increasing phase
of the incident wind. After the incident wind
maximum (>0, Fig. 2), the wavefront, which is

160 T T
t/tf=0

. t/tf=1

0 .
Uy Uy/ N

UO UO/ N
Fig. 2. Single harmonic mountain, ¢=43.2 (4 =9h),

time evolution of the function ¥, exp(Z/2H) (solid line)
and of its amplitude { ¥, ) exp(Z/2H) (dashed line).
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chosen to be the highest maximum of the wave
amplitude in the numerical simulation, propagates
at 0.8zUZ/NL=3.5ms . This is also consistent
with the rays propagation (Fig. 1), the caustic of
the rays approximately propagating at the group
velocity,

KUZ(N? 1 1
ngo = ng(wro = N_ZO <_ a2 kz)

2
~ 0 _ —1
~1t—L—4.2ms ,

when ¢ > 0. Near the front, the wave amplitude is
maximum. This first results from a well known
effect of accumulation around caustics in wave
dynamics (Lighthill, 1979). When > 0, this also
occurs because the waves present at the front were
generated at the ground when the wind was nearly
maximum. This last effect is indicated on Fig. 1 by
the thickness of the rays that is proportional to the
wind intensity existing when the wave packets
were generated at the ground. Below the wave-
front, the solution presents successive bulges and
nodes (Fig. 2). It is a signature of the interference
between the groups of waves generated during the
increasing wind phase with the groups of waves
generated during the decreasing wind phase
(Fig. 1).

After the wind stops, the horizontal phase
velocity is equal to the intrinsic horizontal phase
velocity since the background wind is zero. At the
front, it is close to — U, (the intrinsic frequency
being close to —kU,). It smoothly approaches 0
when z approaches zero. This vertical variation of
the horizontal phase velocity after the wind stops
can be indirectly observed on Fig. 2 at = t;, where
the vertical wavelength,

k2 N2 1 —1/2
A(w,)=2n <w—f—m—k2) N (12)
decreases when z approaches 0. At the front, it
is close to 2nN/U,, it corresponds to a phase
velocity, cx~ — U,.
On the Fig. 3, the momentum flux,

+L
Fc,w:J puw, dx (13)

carried by the mountain waves is represented as a
function of time. It is estimated at the first level of
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the model (i.e., at zN/U, 2 0.19) so that it designes
the gravity wave contribution to the instantaneous
mountain wave drag. It is compared to the gravity
wave drag predicted by the linear stationary
theory, this “stationary value” being calculated at
each time. As shown on Fig. 3, when the wind
starts, this momentum flux increases very slowly
as compared to the “stationary” value. This is a
natural consequence of the slow initial vertical
propagation of the wave field, when only waves
of small vertical group velocity are present.
Nevertheless, at 1= —0.3¢;, the momentum flux
rapidly increases and attains values exceeding the
stationary one. Thereafter, it oscillates suiting
the beats described above. Nevertheless, these
oscillations are quite small and the “stationary
value” remains a very good estimate of the actual
momentum flux, as long as the wind blows.

£=43.2
o T 1
ja; 1.5 2.0
=3
54
o
a
~
»
=]
&=
=
=
[
g
1
2O 2.0
1.0 T
’ .
‘ Ay
0.8 / \
. )
I’ ®,
0.6 K =04
I’ “
‘ Ay
0.4 , \
- Ay
’ A
! Ay
024 \
’ Ay
/’ \]
0.0 = T T T T T 1
1.0 0.5 0.0 0.5 1.0 1.5 2.0

t/t;

Fig. 3. Single harmonic mountain, normalized gravity
wave momentum flux as a function of time. The solid line
shows the model estimation at ZN/U, = 0.19; the dashed
line shows the steady estimation.
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These behaviours of the wavefield and of the
wave momentum flux are qualitatively unchanged
as long as ¢>» 1, and we further find that the
number of bulges present decreases with e: it
approaches 1 when ¢ approaches 1. For instance,
when ¢ =4.8 (t;,=1 h, Fig. 4), the vertical profile of
the wave field after the wind stops (¢ =2¢) con-
tains two bulges, the lowest bulge being very small
as compared to the highest one. Furthermore, at
the maximum wind (¢#=0), only one vertical
wavelength is present. This is natural since the
characteristic time scale, t,, required for the
formation of the wave field over one vertical
wavelength, approaches t;, when ¢ approaches 1.
In this case, the momentum flux (Fig. 3) is
significantly lower than its stationary value as long
as, t < —0.5¢;. This delay, is a signature of the slow
formation of the wavefield at the beginning of the
wind. Thereafter, and before r=0, all the waves

160 T '
t/tf=0
o
o
~ 80} 4
z
N
0 - ;I‘
075U, Uy/ N 0 75 Uy Uy/ N
160 - .
t/tf=2
o
o
~ 80| 4
z
N
0 1 L
075U, Uy/ N 0 075 Uy Uy/ N

Fig. 4. Same as Fig. 2 fore=4.8 (1;=1h).
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generated during the increasing wind phase are
located just above the topography. This accumula-
tion induces a peak of the momentum flux, which
value is 40 % larger than the maximum stationary
momentum flux. When the node of the wave solu-
tion passes, the momentum flux rapidly decreases.
According to these results, when e~ O(1), the
stationary estimation of the momentum flux is
a bad approximation of the actual momentum
flux, even if their order of magnitude remain
comparable. )

3.2. Very unsteady case (e <1)

In the very unsteady case (Fig. 5, £¢=04,
t;=300s), the temporal variations of the incident
wind are rapid as compared to the advective time
scale, L/U,, and the ground generated disturbance
has not enough time to develop as a mountain
gravity wave when the wind blows. Accordingly, at

160 T .
t/tf=0
I ]

ZN/ U,
8

0 .
025Uy U/ N

160

ZN/Uq
8

0
025Uy Uy/ N 0

025 Uy Uy/ N
Fig. 5. Same as Fig. 2 for 6= 0.4 (f;= 5 min).
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t =0, the disturbance is very large near the ground
and the sign of the streamfunction, changes at
most twice over 25U, /N: the scale of this fluctua-
tion differs from the steady mountain wave charac-
teristic wavelength, 1,~2nU,/N. Furthermore,
the amplitude of the wave field decreases with
height and becomes negligible above 25U, /N.

After the wind stops (¢ =2¢;), the disturbance is
no longer forced at the ground and disperses in
the vertical direction. At this moments, the local
vertical wavelength significantly varies over one
vertical wavelength. Its characteristic value, which
is measured in the middle of the wavefield at
t=2t;in Fig. 5 is A;=15.7U,/N. Accordingly, the
radiating waves amplitude and frequency are
directly linked to the time Fourier transform of the
varying wind. In fact, the characteristic frequency
of the ground forcing, w;=1/t;=e " 'Uy/L~
2.5Uy/L, corresponds to a characteristic wave
which vertical wavelength is A;. Fig. 5 also shows
that the front of the wave system (here chosen as
the highest maximum of the wavefield) approxi-
mately propagates at the velocity, 28U2/NL =
38ms . It is qualitatively coherent with the value
of the fastest group velocity, Cy, max = Cp{ @) =
25U3/NL=33ms™!, where w,=11.7U,/L=
1.56 10~ %5, is the inflection frequency for which
the vertical group velocity passes by a stationary
point:

0C,, _
<W>w:wn B 0'

This front propagates nearly 10 x faster than the
quasi steady front. Below this front, the wavefield
presents successive oscillations which vertical
wavelength increases with height at a given time,
and decreases with time at a given height. In
fact, for the major part of the waves forced at
the ground, the vertical group velocity increases
with the amplitude of the intrinsic frequency, and
with the vertical wavelength. This is due to the fact
that in the simulation presented here the inflec-
tion frequency, w,,, is large as compared to the
characteristic frequency of the forcing, w;. Thus,
the waves of largest frequency and vertical wave-
number reach the highest altitude, the other waves
remain closer to the ground.

Furthermore, as shown on Fig. 5, the wave
amplitude has two minima over each vertical
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wavelength. At a given time, this can be expressed
by writing the square of the wave amplitude as:

(¥, exp(z/2H)>* = |A|* +|B|* + AB*

x exp(2ig(z)) + A*B exp(—2ig(z)). (14)
Here, ¢ represents the vertical phase of the wave-
field, A(z) and B(z) ar2 two functions which varies
slowly in the vertical direction as compared to
2n/¢,. Since the disturbance is monochromatic in
the horizontal direction, it can be written as,

¥, exp(z/2H) = Real[ C(z) exp(ikx)],
and its amplitude,
C(z)= £ [4 exp(ig(z)) + B exp(—ig(z))],

according to (11) and (14). This shows that two
wave systems of opposite vertical phase are pre-
sent. Since these two wave systems have opposite
vertical wavenumbers, they also have opposite
horizontal phase velocities to ensure the upward
propagation of energy. This result is opposed to
what occurs in the quasi-steady case, where the
horizontal phase velocity of the waves is always
negative after the end of the wind. It means that
in the very unsteady case, no horizontal direction
is privileged. This description suggests that the
wavefield looks like a ground vibrating distur-
bance, generated in a fluid at rest. This last
problem is treated analytically in Appendix A, in a
simple configuration (Boussinesq + Hydrostatic)
allowing analytical treatments. Most wave charac-
teristics found in Appendix A, recover the pre-
ceding description. Nevertheless, in this section,
we only consider a situation for which ¢e=0.4 <1,
because in the atmospheric context, it seems
unrealistic to consider synoptic wind variations
of shorter time scale. As a consequence, the
barotropic advection of the wavefield by the mean
flow is not exactly negligible and the wavefield
simulated also presents some difference with a
ground vibrating disturbance in a fluid at rest. For
instance, Fig. 5 shows that the wave amplitude
does not fall to zero twice by vertical wavelength.
The two waves of opposite phase, which amplitude
are indicated by 4 and B in (14), do not have
the same amplitude. In this case, the waves with
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negative horizontal phase velocity are larger than
those with positive horizontal phase velocity. This
is important for the momentum flux value. In fact,
when a ground vibrating disturbance is generated
in a fluid at rest, the momentum flux ts zero (see
Appendix A), the momentum fluxes carried by
waves with positive and negative phase velocity
balance. Physically, this compensation occurs
because there is no incident flow to be dragged
when the background fluid is at rest. In the
numerical simulation with ¢ = 0.4, this momentum
flux (Fig. 3) is not exactly zero, the waves with
negative horizontal phase velocity being larger
than those with positive horizontal phase velocity.
Nevertheless, the steady evaluation of the momen-
tum flux largely overestimates its actual value
(Fig. 3).

In this type of simulation, the reduction of the
momentum flux observed, can also be due to the
onset of trapped modes with frequency larger than,

wr= Nk/(k* + LH?)2 = 142U, /L,

and which do not contribute to the gravity wave
momentum flux. When & approaches 0, the
characteristic frequency of the disturbance, w;,
increases and approaches wy. The proportion of
trapped modes in the wavefield increases. In the
simulation presented herein, this trapped modes
are not important since ;< wy. Furthermore,
Appendix B shows that the reduction of the
momentum flux, observed when ¢ decreases,
similarly occurs even when these trapped modes
are neglected (i.e., when the Boussinesq and the
hydrostatic approximations are both adopted).

4. Single ridge mountain

4.1. Quasi-steady case

For a single ridge mountain, the linear wave
solution is a sum of horizontal harmonics such as
those presented in Section 3. To determine the rays
of propagation of these waves, we consider that the
wave packets, associated with each particular
zonal harmonic, are generated at the location of
the mountain. Then, at each time, #;( —1,< 1; < ;)
a wave packet of intrinsic frequency, w,=
—kuy(t;), and of a given horizontal wavenumber

Tellus 45A (1993), 3
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k, is generated at the ground. Its trajectory in the
(x, z) plane is given by the parametric equations,

x=CgX(tI)(t—t1)+f’ uy(s) ds, (15a)
Z=ng(tl)(t_tl),
where
Cule) =240 (1- 24T
k2 2
= —uo(tl)(l _%ﬁ) (15b)

and C,(¢) is given by (10). Nine of these rays,
corresponding to 9 values of ¢;, are shown on
Fig. 6. The horizontal wavenumber is fixed to the
characteristic value, k=1/L. Furthermore, the
thickness of the rays is proportional to the wind
intensity, u,(¢;). As we consider a long mountain,
Uy/LN =0.07, at the time it is generated at the
ground, the horizontal intrinsic group velocity
nearly balances the mean flow advection, u(#;).
Thus, in the steady case, the mountain waves
remain located above the topography. Note that
for a short mountain, U,/LN = O(1), the intrinsic
horizontal group velocity is significantly larger

50. T T T

37.5 g, .

z N/ Ug

-6.67 0
x/L

Fig. 6. Rays of wave packet propagation in the (x, z)
plane, e =43.2 (t;=9 h), k =1/L. The dashed lines show
the packets generated during the ascending phase of the
wind; the dashed lines show the packets generated during
the descending phase of the wind. The numbers charac-
terize the location attained by each packets at the times:
Q) 2= —1;/3,(3) =0, (4) t=1;/3, (5) t=21;/3, (6) t = t.
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than the opposite of the incident wind, and the
waves tend to propagate leeward of the mountain
(Queney, 1947). Once generated at the ground the
intrinsic group velocity of a wave packet, Cy.(1;),
does not change because its intrinsic frequency,
w.(t;), does not change. Nevertheless, as the mean
flow changes, this wave packet no longer remains
in the vicinity of the mountain. As shown on Fig. 6,
the wave packets forced during the ascending wind
phase (dashed lines) are first advected leeward
since the wind continue to increase after their
generation. For this reason, when the incident
wind is maximum (z =0, symbol 3 on Fig. 6), all
the waves present are slightly located alee of the
mountain. This can be seen on Fig. 7, where the
stream function is shown at different times. When
t =0, the wave pattern is mainly located leeward.
For instance, the minima and the maxima of the
streamfunction are located in the semiplane (x > 0,
z>0). Nevertheless, this leeward shift remains
slight, because the wave packets which propagate
leeward the most efficiently also have the smallest
amplitudes. This effect adds to the very large
dispersion of these waves, indicated by the initial
divergence of the dashed rays in Fig. 6. This
leeward shift at 1=0, is more evident when the
vertical velocity is shown (Fig. 8). In fact, the effect
of compressibility tends to enlarge the amplitude
of the waves which have reached the highest
altitude. At this moment, these waves have
been generated at the ground significantly before
t =0, and have efficiently experienced the leeward
advection described precedingly. Note that this
linear mechanism provides an explanation for the
generation of lee waves, during the ascending
wind phase. After =0, the incident wind starts
to decrease and the largest amplitude waves
propagate windward, their advection by the mean
flow being smaller than the opposite of their intrin-
sic group velocity. This windward propagation is
first slight, (Fig. 7, t = 1;, and symbol 4 on Fig. 6),
it becomes very pronounced when = 2, (Fig. 7
and symbol 5 on Fig. 6). At r=1¢; (Fig. 7, and
symbol 6 on Fig. 6), the largest waves have left the
domain represented and the wave amplitude is
small everywhere.

Fig. 9 presents the temporal evolution of the
momentum flux,

+oc
FGW=J~ pu;w;dx.
—o0
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Fig. 7. Single ridge mountain, & = 43.2 (£,=9 h). Time evolution of the function ¥, exp(Z/2H), negative values are

dashed and breaking areas are shaded.

As in Section 3, at the beginning of the wind,
Fgw displays a temporal delay as compared to
the steady case. The delay is related to the slow
establishment of the wave pattern at the beginning
of the wind. Thereafter, the momentum flux is very
close from its stationary estimation and contrary
to what was found in Subsection 3.1, it does not
oscillate. It means that the continuous super-

position of horizontal harmonics, destroy the
interference figures observed in Subsection 3.1.
When £¢=4.8 (Fig. 10), the wavefield roughly
follows the preceding picture. At ¢ =0, the wave is
mostly located above the mountain. As in Subsec-
tion 3.1, in the vertical direction the wave field
extends over one wavelength: when ¢~ Q(1), the
ground forced gravity waves, did not have enough

Tellus 45A (1993), 3
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Fig. 9. Single ridge mountain, normalized gravity wave
momentum flux as a function of time. The solid line
shows the model estimation at ZN/U, = 0.19; the dashed
line shows the steady estimation.
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time to develop far above the topography during
the ascending wind phase. As a consequence, the
momentum flux is very lower than its steady value
during the ascending wind phase (Fig. 9). During
the decreasing wind phase, the vertical extension
of the wave enlarges, and the momentum flux
approaches its steady value. After the end of the
wind, the waves propagate windward.

4.2. Very unsteady case

In the very unsteady case (Fig. 11, e=04), the
wave field is nearly symmetric around x =0. At
t =0, the wavefield is very large near the ground,
its amplitude decreases with height. At this
moment, it did not have enough time to develop as
a mountain gravity wave. Thereafter, the forcing
decreases and ceases rapidly, the induced distur-
bance starts to disperse radiating gravity waves in
both semi-planes (x > 0) and (x <0). This disper-
sion presents successive “V-shape” pattern similar
to those shown in Mowbray and Rarity (1967),
in which the inclination, relative to the x-axis,
decreases with time. The horizontal wavelength
of the disturbance also decreases with time.
This behaviour can be explained as follows. As
calculated by Bougeault (1983), a gravity waves
field, forced at the ground by a bell-shaped source
oscillating at a given frequency, has a V-shaped
pattern. The wave energy propagates in two
branches, in which the inclinations, relative to the
x-axis, is given by the ratio, C,,/C,,. These
branches are also the branches of constant phase,
because for internal gravity waves, the group
velocity is perpendicular to the phase velocity. This
inclination decreases when the frequency of the
source decreases. In the case considered herein,
the ground forcing is a sum of temporal har-
monics such as those studied by Bougeault (1983).
Furthermore, for the major part of the spectra of
waves generated, the vertical and horizontal group
velocities increase with the frequency and decrease
with the horizontal wavenumber. The waves of
large frequency and small horizontal wave number
propagate away the domainthe most rapidly.
Consequently, the solution presents V-shape
pattern in which the inclination and the horizontal
wavenumber decrease with time. This picture is
strictly true when the Boussinesq and hydrostatic
approximattons are adopted and when the baro-
tropic advection is neglected. Such a configuration
is treated analytically in the Appendix A, where
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many wave characters observed on Fig. 11, are
reproduced.

In the anelastic approximation, the group
velocity of the waves possesses a maximum value.
Thus, the ground generated disturbance cannot
propagate beyond a spatial front which propaga-
tion in the (x,z) plane is given by the zeros
of the Jacobian J{(C,,, C,.)/(k, m)}, (Lighthill,
1979). Its position is shown on Fig. 12 at different
times. As seen comparing Fig. 11 and Fig. 12, the
areas designed by the successive fronts (Fig. 12)
qualitatively correspond to the areas where the
waves are located (Fig. 11). It is reasonable to have
a qualitative agreement at this point, since the
wave dispersion theory (Lighthill, 1979), is only
valid in the slowly varying context or “very far”
from the source.

Another difference between the numerical and
analytical results, is the small leeward shift of the
solution observed on Fig. 11. It is due to the mean
flow advection (the basis of the V-shape pattern is
located alee of the maximum mountain height).
This indicates that the simulation does not strictly
reduce to that of a ground vibrating disturbance in
a fluid at rest. Nevertheless, the difference remains
very small, considering the very small value of the
momentum flux (Fig. 9).

4.3. Minimum breaking level

The impact of mountain waves on the large scale
flow also depends on the location where they break
and deposit the horizontal momentum they carry.

t/tf=3

x/L

Fig. 12. Theoretical position of the “anelastic” front
corresponding to the time dispersion of a ground
generated disturbance propagating in a fluid at rest.
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Here, the breaking zones correspond to the areas
where the total potential temperature, 8, decreases
with height (ie, 0 _,<0). The wave breaking
mechanisms being essentially nonlinear, the linear
approach used herein cannot allow to study them
in details. Nevertheless, it allows to predict, at
least qualitatively, the minimum level of breaking.
In the atmosphere, most of the gravity waves
generated in the troposphere breaks, because their
amplitude (such as the amplitude of the physical
quantities u;, w;, @) grows with altitude. In the
steady case, these quantities grows as p~'? as a
consequence of the conservation of the momen-
tum flux with altitude and the minimum level of
breaking can be predicted using a stationary WKB
analysis (Lindzen, 1981). When the incident wind,
U,, is uniform and when the mountain is a single
horizontal harmonic, this stationary value of the
minimum breaking level is,

Z,=2HIn(Uy/NH,). (16)

When the mountain is a single ridge, the breaking
can occur at most one vertical wavelength higher
than this value (Schoeberl, 1988). Here we find
Zp.=17U,/N.

Nevertheless, the dispersion of the wave field
resulting from the unsteadiness of the flow, has
an opposite effect to that of compressibility. This
clearly appears in the Figs. 7, 10 and 11. In the
steady case, the function, ¥, exp(z/2H) nearly
has a constant amplitude with height. In the
unsteady case, the amplitude of the wavefield is the
largest at ¢=0. Thereafter, it disperses vertically
and horizontally, its amplitude decreases accord-
ingly. The decrease of the amplitude clearly
depends on the duration of the wind. For instance,
in the various experiments presented here, we
roughly observed that the maximum amplitude of
¥, exp(z/2H) at t =t; is two time smaller than its
value at = 0. Consequently, the minimum break-
ing level, raises when ¢ decreases (Fig. 13). It is
close to its steady value when 60 <¢ < 120. For
larger values of ¢, the minimum breaking level is
lower than its steady value. This is natural since for
very large ¢, expression (16) can be applied at all
times. In this cases, as Z,, decreases with the
amplitude of the incident wind, the waves break
during the ascending phase of the incident wind. In
the range 0 <e¢ <40, the value of the minimum
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Fig. 13. Single ridge mountain, minimum breaking
level as a function of e.

breaking level increases rapidly with the decrease
of ¢ and reaches co, when ¢ approaches 0.

The location of the breaking areas, which are
darken in Fig. 7 and Fig. 8, also deserves com-
ments. At =0, the waves have not reached suf-
ficiently high altitude and no breaking occurs. At
t=1%t;, the breaking starts to occur above the
mountain beyond z=35U,/N. At this time, the
waves that break are not the largest amplitude
waves since the area of breaking do not corre-
spond to the area of maximum amplitude of the
function, ¥, exp(z/2H). Therefore, those maxi-
mum amplitude waves reach higher altitude and
start to break, the altitude of the breaking zone
decreases (¢=3t;). At the same time, the lower
breaking zone spreads and is shifted windward
following the wave field propagation. At this
moment, the lowest breaking area is close from
the area of maximum wave amplitude, and
the minimum breaking level is found. Thereafter,
the lowest breaking area continue to propagate
windward along the waves and the minimum
breaking level moves upward because the largest
amplitude waves propagate upward.

5. Conclusions

We have investigated in some detail the process
of internal gravity wave generation by a transient
flow of a stably stratified fluid over an obstacle. To
isolate the essential physics of the phenomenon,
we have retained only the essential elements of a
constant density stratification and a simple time
dependence in the background flow. For the
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mountain, we have considered both an infinite
single harmonic mountain and a single ridge
mountain. Special attention was given to the
behaviour of the solution in several important
limiting cases, to the unsteadiness of the wavefield,
to the estimating of the flux of horizontal momen-
tum and to the minimum breaking level. The
results obtained have been found to depend
strongly on the parameter ¢= Uyt/L, which
characterizes the unsteadiness of the incident flow.

When ¢> 1, the configuration is quasi-steady,
and the internal wave field can be described using
ray tracing techniques. The wave packets gener-
ated at each time at the ground correspond to
stationary mountain waves. The unsteadiness of
the wavefield then results from the time variation
of the ground forcing and from the temporal
changes of the background flow occurring after
their generation. In the case of a single zonal
harmonic mountain ridge, it allows interpretation
of the wave structure in terms of the interference
between the group of waves generated while the
wind lasts. In this case, the wavefront of the
solution is the caustic of the rays. Once the wind
stops, it propagates at the velocity:

U3 /N2 1 2\ 1/2
ng:u(____f_ ,

The largest waves are located near this front, and
their horizontal phase velocity is close to — U,.
This indicates that these waves will not encounter
critical level at levels of zero mean wind, contrary
to what occurs in the stationary theory (Eliassen
and Palm, 1960). This is evident in the simulations
presented in the present paper, where the waves
continue to propagate vertically after the end of
the wind. When the mountain is an isolated ridge,
the ray tracing technique makes it possible to
follow in space the largest amplitude waves.
During the ascending phase of the wind, most of
the waves propagate leeward of the mountain.
Thereafter, they tend to propagate windward. As
in the case of a single harmonic mountain, the
largest amplitude waves have a phase velocity
close to — U, once the wind stops. Furthermore,
the wave field is the superposition of zonal
harmonics such as those described precedingly.
This superposition destroys the interference
pattern existing when the mountain is a single
zonal harmonic.

Tellus 45A (1993), 3
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This strong dependence of the wavefield struc-
ture on the mountain shape, also has consequences
on the temporal evolution of the gravity wave
momentum flux. When the wind starts, the
momentum flux increases slowly as compared to
the incident wind. This is related to the very slow
initial establishment of the wavefield in the vertical
direction. When the mountain shape is a single
harmonic, this flux oscillates as a signature
of the interference mentioned above. In some
cases, the amplitude of this oscillations becomes
large. Then, at a given time the momentum flux
can significantly exceed the value estimated
by the stationary theory. When the mountain is
an isolated ridge these interferences disappear.
Furthermore, in all mountain configurations, and
when ¢ approaches 1, it is found that the total
momentum carried by the waves, becomes smaller
than that predicted by the stationary theory.

When ¢ < 1, we find that the wavefield looks like
a ground vibrating disturbance generated in a fluid
at rest. When the wind blows, a disturbance is
forced at the ground, it has not enough time to
radiate away through mountain gravity waves.
This disturbance disperses after the end of the
wind. When the mountain is a single zonal har-
monic, this results in the ground generation of
two wave systems of opposite phase velocities.
Consequently, the momentum flux carried by the
mountain waves is close to 0: the positive flux
of momentum carried by waves of positive phase
velocity is balanced by the negative flux of momen-
tum carried by waves of negative phase velocity.
In this case, the dominant pulsation of the wave
field ts we=1/¢;. It corresponds to the dominant
temporal harmonic of the ground forcing. Further-
more, the front of the wavefield nearly propagates
at the largest group velocity,

c 2/3 N

gzmax — 9 %H2+752/L’

which is generally very fast as compared to the
propagation velocity of the quasi-steady front.
When the mountain is a single ridge, the wavefield
and the solution presents suecessive “V-shape”
pattern, whose inclination decreases with time.
This is due to the rapid energy propagation
of the waves of large frequency, which get away
from the vicinity of the mountain the most rapidly.
As in the case of a single harmonic mountain,
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the momentum flux approaches O when ¢
approaches 0.

We also find that the minimum breaking level is
very sensitive to ¢ Studying a configuration for
which the mountain wave breaks in the low
stratosphere (Z,,~17U,/N in the stationary
case), we find that it actually breaks significantly
above (&x25U,/N), when ¢ is as large as 43.2.
Furthermore, the actual minimum breaking level
rapidly increases when ¢ approaches 0. For ¢ > 60,
the minimum breaking level is correctly described
by the stationary theory. It is smaller than 17U, /N.
In this case, the minimum breaking level occurs
before the moment of maximum wind. This is
natural since the steady breaking level decreases
when the wind intensity decreases. In the quasi
steady case, we further found that the displacement
of the breaking areas partly follows the rays of the
largest mountain waves. After the end of the wind,
these breaking areas are located far windward of
the mountain. It indicates that the momentum
transfers between those waves and the mean flow
do not occur above the mountain location,
contrary to the linear stationary theory.

These results can have important implications
for the current gravity wave parameterization
schemes used in general circulation models and
suggest that such schemes crudely estimate the tra-
jectory and the breaking levels of mountain waves.
This study further shows, that in the very unsteady
case, the stationary theory gives a bad estimate
of the mean flow deceleration by the waves.
Nevertheless, in most of the unsteady configura-
tions relevant for atmospheric modelling, the
parameter ¢ is certainly larger than 1. Then, the
unsteady structure of the wave field can be
described using (time-varying) ray-tracing techni-
ques. Roughly, the momentum flux remains that
predicted by the stationary theory. These two
results could provide a basis for the improvement
of those schemes including non stationary effects.
Furthermore, we believe that better parameteriza-
tion schemes are needed to define more accurately
the role of gravity waves in the general circulation
of the middle atmosphere. In this context, we
presume that the unsteady effects such as those
described herein are important. In fact, because of
the large vertical extension of the middle atmo-
sphere, and also because of its large stratification,
the gravity waves stay a longer time there than
in the troposphere. There, they can efficiently
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experience the temporal fluctuations of the large
scale winds such as those induced by the planetary
waves of short period.

6. Appendix A

Disturbance generated by an unsteady ground
forcing in a fluid at rest

In this Appendix, we present analytical solutions
of a ground generated disturbance in a back-
ground fluid at rest. Assuming the hydrostatic
approximation and the Boussinesq approxima-
tion, the disturbance follows,

0w
ox?
Yi(x,z=0, t)= —uo(t) A(x).

02 2
9 Y +N

1 —
or* 922 ! =0,

(AD)

Here, the stream function ¥,, is related to the
vertical and horizontal velocities by,

9%, _

Tz e

T ox

L]

To simplify the Fourier analysis used, the ground
forcing temporal variation follows,

uo(1) = Ug exp(—|1l/17).

6.1. Single harmonic mountain

When the mountain height varies in the
horizontal direction as a single harmonic,

h(x)= H, Real[exp(+ikx)], where k=n/L,
the stream function is given by,

U,H,
Y., x, z)=—~;(;~t-—9 Real
f

t exp(ikx — i (kNz/w) + wt))
8 U o’ +17° d

w:l (A2)

—oo

In (A2), the sign of the vertical wavenumber has
been chosen so that each particular modes
propagate vertically.

When 7<0, the integral in (A2) has been
directly computed using a Fast Fourier Transform
algorithm. Suiting conventional techniques, the
singular point, w = 0, has been passed round intro-
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ducing a small dissipation in the wave equations. It
is shown at r=0, on Fig. 14, and the constant
parameters correspond to those used in the “very
unsteady” experiment presented in Subsection 3.2.
As discussed in the text, the disturbance remain
located just above the bottomn boundary: the
dispersion by internal wave being to slow to com-
pensate the input of energy at the lower boundary.

When ¢>0, the integral in (A2) can be
estimated using the method of the stationary phase
(Lighthill, 1979). It indicates that the disturbance
starts to differentiate radiating gravity waves of
identifiable frequency. Then, the integral equation
(A2), admit two stationary points,

kNz\'?
“’s=i(—z'> ’
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Fig. 14. Single harmonic mountain, ground generated
disturbance in a fluid at rest, e=0.4 (z;= 5 min): time
evolution of the function ¥,. The Boussinesq and
hydrostatic approximations are adopted.
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and the asymptotic form of (A2), for ‘large’ z, is
(Lighthill, 1979),

UoHy (kNzt)

Yt x, z)= —_—
i ) "2 kNzt;+ t/t;

x Real[exp(+i((kNzt)"? + kx + n/4))

+ exp(—i((kNzt)'* —kx + n/4))]. (A3)
Furthermore, the accuracy of this asymptotic form
has been verified, by comparing it with the exact
solution (A2), estimated with the FFT algorithm
mentioned above. The wave field given by (A3) is
shown at t=2¢;, in Fig. 14. As seen in (A3), the
solution is the superposition of two waves which
phase, at a given x, have opposite signs. For each
of those waves, the frequency and the vertical
wavelength,

12
w=0,((kNzt)'?) =% ("TNZ) ,

" 2 \12
A,=2 = i
. =2n/0,((kNzt)"*)=4n (th> s

increase with height. At a given height, these quan-
tities, decrease with time. This is natural since in
the context adopted herein, the group velocity of
internal waves increasing when the frequency
increases, the most rapid waves reach the highest
altitude. Note also that this quantities, signifi-
cantly varies over one vertical wavelength.

Concerning the momentum flux, it can be easily
seen in equation (A2) that the function ¥, is
symmetric relatively to x =0. Consequently, u, is
also symmetric but w, is antisymmetric, and the
momentum flux (13), Fgw =0.

6.2. Single ridge ground forcing

When the ground forcing intensity varies in the
horizontal direction as a single ridge (7), the
analytical form of the stream function is

1 p+> r+e HoLUyexp(— k| L)
Y=z | N
TJ_wo ¥—o e W+t

X eXp (i (kx—%—wt)) dk dw.

Here again, the sign of the vertical wavenumber is
chosen so that each harmonic propagates upward.

(A4)
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It is noteworthy that (A4) can be calculated
exactly. When 7<0, the stream function (A4) is
given by,

H,L
it %, 7)== ug(1)(x’ + L?)

f
Nz+ Ljt;

N2+ (NzL+ 2+ L)) (A5)

This is shown at t=0, in Fig. 15. As in the
preceding case, as long as <0, the disturbance
does not present a wave structure. When ¢ > 0, the
stream function (A4) is given by

H,L
V(1,2 z) ="

u()(x*+ L?)
I

% Nz — L/t[
N2z22x2 4 (NzL — (x® + L?)/t,)?

ZHOLNZu NzLtt,
tr C\x*+ L2

Nzxt
X {(N222 - (L2 —xz)/t?) cos <m)

Nzxt
—2Lx/t?sin | ———
X/t sin <x2 n L2>}
N*2* —2N?23(L2 — x?)/2 + (L* + x?)Y/1?

(A6)

This is shown at t=1;, 2t in Fig. 15. The first
right-hand term in (A6) is very close to that found
when <0 (AS). It corresponds to the part of the
disturbance which continues to be forced at the
ground and which has not enough time to disperse
through gravity waves. This part rapidly decreases
since its amplitude is directly linked to the decreas-
ing forcing intensity, u,(z). The second part corre-
sponds to the dispersing internal wave field. Even
if its structure is very complex, it is possible to
recognize a phase, ¢,

Nzxt

X, Z, t)=—5.
¢( z ) x2 + LZ

In this case, the frequency increases with height,

and the vertical wavenumber decreases with time.
The “V-shape” pattern of the solution, can be
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Fig. 15. Single ridge mountain, ground generated
disturbance in a fluid at rest, e=0.4 (;= 5 min): time
evolution of the function, ¥,. Negative values are
dashed. The Boussinesq and hydrostatic approximations
are adopted.
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characterized by the lines of constant phase. For
large x, these are given by,

Nzt
—— 2 cOnst,
X

and their inclination relatively to the x-axis
decreases with time, as observed on Fig. 15. This is
a signature of the rapid evacuation of the waves of
large frequency.

Concerning the momentum flux, it can be easily
seen in equation (A4) and (AS), that the function
¥, is symmetric relatively to x = 0. Consequently,
uy is also symmetric and w, is antisymmetric.
Thus, the momentum flux (13), Fgw =0.

7. Appendix B

Momentum transfer

As in Appendix A, we assume the hydrostatic
and the Boussinesq approximations, but the
mean flow advection is no longer neglected in the
internal wave equation and the incident flow is
given by (1). When the mountain is a single zonal
harmonic, #=Real(H,exp(ikx)), the stream
function, ¥, =Real(¥ exp(ikx)), is given by the
equations,

0 2 9% 2 o2y
—+i — ¥y —=0
(6! lkuO(”) oz* N ox? ’

P(z=0,1)= —uy(t) Hy.

(B1)

Following Bell (1975), we solve (B1) in the
reference frame fixed with respect to the basic flow.
This is done by introducing the function, ¥,

1

@ = Pexp <ikf Uols) ds).
0

Then, (B1) becomes,

62 62

ya—;imzv%lff:o,

P(z=0, 1) = —uy(t) Hyexp <ik .r uo(s) ds).
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Fig. 16. Ratio between the actual momentum flux and
its steady estimation as a function of ¢. The Boussinesq
and the hydrostatic approximations are adopted.

In this reference frame, the wavefield, ¥, can be
solved as the sum of monochromatic waves, which
frequency, w, and vertical wavenumber, m, satisfy
the dispersion relation, m = —kN/w. Returning to
the reference frame fixed with respect to the
topography, the final solution writes:

¥, =Real [exp < —ik Jl uo(s) ds)
0
X Jj: F(w) exp (i (kx—wt—%kz)) dw:|,

(B3)

where F(w) characterizes the amplitude and the
initial phase of the mode of frequency, w:

219

+o0

1
Flo)=5- j —ug(t) Hy

—aC

X X (+ ik f ug(s) ds + iwt) dt. (B4)
0

Similarly, the horizontal and vertical velocity, u,
and w), can be calculated, replacing F(w) in (B3),
by Nk/wF(w) and —ikF(w), respectively. These
velocities can then be computed using a Fast
Fourier Transform algorithm close to the one used
in Appendix A. Then, the momentum Fgy (13), is
calculated at z=0 and the total momentum Mgy
carried by the waves during the wind,
+ !

Mgy = Fow (z=0,1)ds,

—1

is estimated and compared to that predicted by the
stationary theory, this theory being applied at each
moment:

+ 1

My = porNH ug(t) dt = t;ponNH 2 U,.
f

—

The ratio between this quantities is shown on
Fig. 16, as a function of the parameter &. When ¢
decreases below 1, and approaches 0, this ratio
rapidly falls to zero, the wavefield approaching
the configuration of a ground-generated distur-
bance propagating in a fluid at rest studied in
Appendix A.
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