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Abstract. This paper is based on the perception that the inertia of climate and socio-economic systems are

key parameters in the climate change issue. In a first part, it develops and implements a new approach based

on a simple integrated model with a particular focus on capital dynamics and an innovative transient impact

and adaptation modelling. In a second part, a climate-economy feedback is defined and characterized. It is found

that: (i) it has a 90-year characteristic time, which is long when compared to the system other time-scales, and

it cannot act as a natural damping process of climate change; (ii) mitigation has to be anticipated since the

feedback of an emission reduction on the economy is significant only after a 20-year delay and really efficient after

a one-century delay; (iii) a cost-benefit analysis over 100 years is unfair since it takes into account only a small

fraction of the benefits. This methodology allows also to define a climatic cost of growth as the additional climate

change damages due to the additional emissions linked to economic growth.

Keywords: Climate change, impacts, economic growth, feedback analysis

1. Introduction

One major challenge in the modeling of Climate Change is the taking into account of the

various characteristic times involved: the climate inertia, which may be responsible for quasi-

irreversibility and implies anticipated decisions, and the socio-economic inertia, which precludes

an instantaneous large reduction in anthropic emissions and makes human societies more or less
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vulnerable to brutal changes in climate patterns. To address this challenge, an analysis of the

dynamic behaviour of each sub-system involved is necessary, together with an understanding of

how their own behaviours interact in the coupled system.

Such a dynamic approach is a necessary complement to the enumerative approach, which

focuses on how climate change affects welfare at a particular point in time (see e.g. Nordhaus

(1991), Cline (1992) or Mendelsohn and Neumann (1999)). This complementarity has already

been discussed by Frankhauser and Tol (2002) and Tol (2002b), but faces many difficulties: (i)

the fundamental differences in the nature of the objects under scrutiny, and the corresponding

differences between socio-economic and physical science models; (ii) the variety of temporal

and spatial scales involved; (iii) the multiplicity of the influence channels between environment

and society; and (iv) the controversies surrounding both the value judgments at stake and the

confidence into scientific results.

This paper aims at demonstrating how the TEF/ZOOM approach, which has been applied

in a diversity of other fields, can be used to tackle these very difficulties. Its interest lies in

that it allows for precise analyses of the characteristic times, for dynamic characterizations of

feedbacks, and hence for an understanding of the roles of dynamics and inertia in the evolution

of the climate-economy system.

This paper focus on the dynamics of climate change impacts and on the characteristic times

of the coupled climate-economy system. It does not try to provide an assessment of the climate

change economic damages, but rather aims at providing robust information on the coupling pro-

cesses, which may help to understand the climate-economy system behaviour. It also disregards

the emission reduction issue, the abatement cost assessment and the decision-making problem.

These topics will be investigated with the same tools in future works.

The low complexity model whose results are used as a basis for the analysis is described in

part 2. It is implemented following a precise formalism, presented in part 3. It is then used

to study the climate-economy feedback through temporal simulations and a rigorous feedback

analysis (in part 4).
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Table I. Model common variables.

K Productive capital trillions U.S.$

Y Production trillions U.S.$

Ip Productive investment trillions U.S.$

τd Depreciation characteristic time years

L population (proportional to labour) millions of inhabitants

γL population growth % per year

A technical progress No unit

E Greenhouse gas emissions to atmosphere GtC/year

D Emission intensity No unit

Ts Surface air temperature K

Tada ”Economic” temperature K

X Climate change impacts on productivity No unit

2. Model

The simple model providing the basis for our analyses is composed of five modules: a climate

module; a macroeconomic module; a demographic module; an emission module and an impact

module. These models have in common the variables reproduced in Tab. I.

2.1. Climate module

A single column of atmosphere, containing only water vapour, CO2, and 3 layers of clouds,

is considered. The atmospheric column is divided into 2 layers (troposphere and stratosphere)

and caps an oceanic mixed layer 50 m thick. The lapse rate (i.e. the temperature change with

respect to altitude) is fixed in the troposphere and stratosphere and is null in the ocean. The
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temperature in each object is determined by: the sea surface temperature(SST) for the ocean;

the mid-troposphere temperature (Ttrp) for the troposphere; and the tropopause temperature

(Tstr) for the stratosphere. These 3 objects exchange water fluxes, sensible heat fluxes, latent

heat fluxes, and long wave (LW) radiative fluxes. These fluxes are modelled by a 1D radiative

model using a Malkmus narrow-band model with a water vapour continuum. The principles

behind this module were explored by Green (1967) and developed by Cherkaoui et al. (1996).

The 3 objects also receive short wave (SW) fluxes from space. The complete description of the

model is provided in Hallegatte et al. (2004), hereafter HLG04.

2.2. Macroeconomic module

The macroeconomic module is close to a classical Solow-Swan growth model, of comparable com-

plexity than other compact integrated climate-economy models (e.g. the DICE model developed

by Nordhaus (1994)). However, (i) it is written in a simulation formalism, without optimisation:

the saving ratio is fixed at 20%; (ii) a delay in the evolution of production is introduced to take

into account the production system inertia; (iii) it accounts for exogenous technical progress

(impacting productivity and CO2 emissions per unit of production).

The primary equations of the growth model are the following:

∂K

∂t
= Ip −

1

τd
·K (1)

∂Y

∂t
=

1

τY
· (Y∞ − Y ) (2)

Y∞ = X ·A · λ ·K1/3 · L2/3 (3)

Ip = αI · Y (4)

∂A

∂t
= γA ·A (5)

Where Y∞ is the potential production; λ is a production calibration parameter set so that

A = 1 at t = 0; αI is the saving ratio; and γA is the productivity growth. To facilitate analyses
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in terms of characteristic times, the depreciation is represented by a capital life-time (τd) rather

than by the classical depreciation rate.

This formalism differs from the Solow-Swan framework in that the real production is not equal

to the potential production: because present production depends on past production (through

intermediate consumption), and because of the inertia of the production, the real production is

linked to potential production through a relaxation time τY . In other words, if a productivity step

occurs at one point in time, the reaching of a new production equilibrium is not instantaneous.

To better understand the long-term behaviour of the model, it is useful to separate the effect

of population and productivity growth from the other effects: for a given technical progress and

labour supply, and if no impacts are considered, the equilibrium values of K, Y , Ip and ID

are proportional to (L · A3/2) (this property is derived from the previous equations where all

derivatives are set to zero). Consequently, the following ”normalized” variables are defined:

K∗ = K ·
L0

L
·A−3/2 (6)

Y ∗ = Y ·
L0

L
·A−3/2 (7)

I∗p = Ip ·
L0

L
·A−3/2 (8)

Where L0 is the initial population. Note that the normalized variables equal the original

variables at t = 0.

The equations read:

∂K∗

∂t
= K∗

[
I∗p
K∗
−

1

τd
−

1

L

∂L

∂t
−

3

2

1

A

∂A

∂t

]
(9)

∂Y ∗

∂t
= Y ∗

[
1

τY
·

(
Y ∗
∞

Y ∗
− 1

)
−

1

L

∂L

∂t
−

3

2

1

A

∂A

∂t

]
(10)

Y ∗
∞ = X · λ · L

2/3
0 ·K∗ 1/3 (11)

I∗p = αI · Y
∗ (12)

∂A

∂t
= γA ·A (13)
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Y ∗
∞ is the potential normalized production, i.e. the normalized production at equilibrium

(when capital and population are constant and outside climate change impacts). Finally, Eq. (9)

and (10) are rewritten as:

∂K∗

∂t
= γK ·K

∗ (14)

γK =
I∗p
K∗
−

1

τd
− γL −

3

2
γA (15)

∂Y ∗

∂t
= γY · Y

∗ (16)

γY =
1

τY
· (

Y ∗
∞

Y ∗
− 1)− γL −

3

2
γA (17)

2.3. Demographic module

The demographic module is the same as DICE’s. It reproduces a demographic scenario leading to

a stabilisation of the world population around 11.5 billions inhabitants in 2200, an intermediate

scenario between the SRES/A2 and the SRES/B2 (see IPCC (2000)).

The equations are the following:

∂L

∂t
= γL · L (18)

γL = γ0
L · e

−
t

τL (19)

To focus on economic dynamics, no impacts of climate change on population growth are ac-

counted, even though they could constitute a significant channel of climate -economy interaction

(see IPCC (2001a), Chp 9). The climate change impacts on labour productivity (as the malaria

impact discussed by Gallup et al. (1999)) are also neglected.
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2.4. Emission module

All greenhouse gases are modelled by an equivalent CO2 concentration. Emissions are assumed

to be proportional to production through a unique factor, modelling both energy intensity and

carbon intensity. An exogenous emission-intensity decrease compensates the growth in emissions

caused by a technical-progress-driven production growth.

E =
1

A3/2
· β · Y = β ·

L

L0
· Y ∗ (20)

For the sake of simplicity, no carbon cycle module is implemented into the model. Only a

natural carbon sink of 40% of the emissions is considered (it corresponds to the value observed

at present). Note that baseline emission growth without any abatement policy leads as in many

other studies to a doubling of the CO2-equivalent concentration in the end of the XXIth century.

Obviously, this rather crude modelling of emissions would welcome many improvements, but it

should be sufficient for our purpose.

2.5. Impact and Adaptation module

Climate change impacts on the socio-economic system have two components: an absolute com-

ponent, which measures the productivity change associated with a stabilized climate; a transient

component, which measures the costs associated to the adaptation of the socio-economic system

to a changing climate. In the following, it is assumed that there is no absolute impact of climate

change on productivity. This hypothesis is a very optimistic one since it assumes that society

is able to adapt to any climate and that no climate is better than the others. It focuses on the

transition period in which the socio-economic system is not adapted to climate and assumes that

iam.tex; 2/07/2004; 10:51; p.7



The Long Time Scales of the Climate-Economy Feedback and the Climatic Cost of Growth 8

if climate is stabilized for a long enough period, impacts disappear. Moreover, no direct climate

change impact on welfare is taken into account1.

The transient component cannot but involve an adaptation process: an endogenous adaptation

process is modelled by an ”adaptive temperature” (Tada). This temperature is equal to the

”climate temperature” at the equilibrium, but it diverges from it whenever climate changes

faster than the adaptation characteristic time of the socio-economic system (τada).

∂Tada

∂t
=

1

τada
(Ts − Tada) (21)

When Tada and Ts differ, the socio-economic system is not adapted and it faces impacts

(i) through productivity losses (modelled by X) and (ii) through a shortening of the life-time

of productive capital, justified by early capital retirements for adaptation reasons (modelled

by τd). Note that the capital life-time shortening is theoretically based on an optimal trade-off

between impacts and adaptation costs; but, because of the difficulties of detecting and attributing

damages, it is assumed that such a trade-off cannot be accurately carried out, making ground

for our simplification.

Both impacts are assumed proportional to the maladjustment of Tada and hence proportional

to the adaptation effort.

X = 1− αt · |Tada − Ts| (22)

τd = τ0
d · (1− ατ · |Tada − Ts|) (23)

Of course, the characteristic time of the adaptation τada is strongly related to the capital

depreciation time: the more frequently the productive capital is replaced, the easier and less

costly the adaptation process. In the following, τada is fixed by: τada = 5 ·τd. It means that, if the

1 It has already been mentioned that this article does not aim at providing an assessment of the climate change

damages to feed a decision-making process but aims at improving our understanding of the coupling processes

between climate and economy.
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real surface temperature is constant, 5 generations of productive capital are necessary to divide

the impacts by e. Because the model has only one sector, it is impossible to take into account

the productive capital heterogeneity and the differences in adaptation pace in different sectors.

An extension of the model with two sectors will be presented in a following paper.

This formalism takes into account the transition period in which the socio-economic system

is not adapted to climate. The advantages of this formulation are: (i) climate change intensity

and rate are both taken into account; (ii) present climate is not used as an absolute reference;

(iii) a characteristic pace of adaptation is introduced; (iv) any temperature change (increase or

decrease) has negative impacts. We argue this specification is more realistic than the classical

damage function (already criticized by Tol (1996)), which assumes that a temperature decrease

is always beneficial for the economic system and that damage intensity depends on the initial

temperature.

2.6. Parameter values

The parameters used by the model are a ”best guess scenario”. Their values are given in Tab. II.

Most of them are the DICE parameters (see Nordhaus (1994)), the others are assumptions.

Particularly, the initial productive capital is set so that the production function gives an initial

production consistent with the observed one.

In the ”moderate impacts” run, a 1◦C maladjustment reduces production by 2%. This is

slightly higher than usual assumptions (see Frankhauser and Tol (2002), Tol (2002a) and IPCC

(2001a), Chp.19), but is mostly compensated by the fact that adaptation is explicitely modelled

and by the fact that climate change impacts on population and labor productivity are neglected.

To assess the influence of this parameter, a simulation with a 4% productivity decrease for a 1◦

maladjustment is also carried out and is refered to as ”strong impacts”.

The climate change impact on depreciation time is less documented (although its existence

has been pointed out by Frankhauser et al. (1999)). The ”moderate impacts” scenario assumes
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Table II. Model parameters.

L0 Initial population 5632.7 millions (DICE)

K0 Initial productive capital 21 trillions U.S.$

Y0 Initial production 14.6 trillions U.S.$

T0 Initial surface temperature 287.0 K

T 0

ada Initial adaptive temperature 287.0 K

τ0

d Initial depreciation time 20 years

γ0

L Initial population growth 1.57% per year (DICE)

τL Time of population growth decrease 4.5 years (DICE)

β Initial emission intensity 0.5 GtC / trillion U.S.$

λ Production factor 0.01685 (DICE)

αI Saving ratio 20% (DICE)

τY Production characteristic time 1 year

γA Productivity growth 1.5% per year

τada Adaptation charateristic time 100 years

αt Productivity loss due to a 1 K maladjustment 2% in the ”moderate impact” run

ατ τd change due to a 1 K maladjustment 5% in the ”moderate impact” run

that a 1◦ maladjustment decreases the depreciation time by 5%; The ”strong impacts” simulation

assumes a 10% decrease of the depreciation time for a 1◦ maladjustement.

This parameter set is one of the possible sets of parameters. The aim of the next section is to

provide some robust information, that does not depend too strongly on the parameter choice.
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3. Model implementation.

Because of the high degree of uncertainty characterising the climate change issue, the range of

plausible values is large for most of the model’s parameters. As a consequence, almost any result

can be demonstrated by selecting a particular set of parameter values. This suggests the need of

a new approach, able to produce robust information and to rigorously quantify the robustness

of each produced information. To progress in this direction, the model is built according to

Transfer Evolution Formalism (TEF) prescriptions.

3.1. The Transfer Evolution Formalism Prescriptions

The TEF is a tool for system analysis and simulation (see Appendix A for a more detailed

description). The model presented in the previous section is mathematically represented by a

set of equations, belonging to two kinds:

1. A set of cells, which are elementary models and correspond to state equations such as:

∂ηα

∂t = Gα(ηα, ϕ1, ϕ2, ...)

∂ηβ

∂t = Gβ(ηβ , ϕ1, ϕ2, ...)

...

(24)

The ηα are the state variables of each cell and the ϕi represent the dependent boundary

conditions, i.e. the variables considered as boundary conditions by a cell, but that depend

on the complete model state. This dependent boundary conditions are required to make the

cells correspond to well-posed problems.

2. A set of transfers, which are associated to the dependent boundary conditions and correspond

to equations such as:

ϕ1 = f1(ηα, ηβ , ..., ϕ)

ϕ2 = f2(ηα, ηβ , ..., ϕ)

...

(25)
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Let also η be the state vector of the complete system and ϕ be the vector of the dependent

boundary conditions. When initial conditions are given at time t0, the system is a well-posed

problem.

The TEF solution for solving the system consists in building, for each time step, the differ-

ential of the dynamical system around its current state (η(tn)). It is proved in Appendix A that

the Borel transform of the obtained Tangent Linear System (TLS) can be written as:





B[̊δη](τ) = B[̊δηdec](τ) + F(τ) B[̊δϕ](τ)

B[̊δϕ](τ) =
[
1 + C(τ)

]−1
B[̊δϕins](τ)

(26)

where B[f ] is the Borel transform of f(t); τ is the Borel variable; δ̊η(t) and δ̊ϕ(t) are the

solutions of the TLS; and where the quantities δ̊ηdec, F , C, δ̊ϕins can be calculated from the

elementary Jacobian matrices and vectors at time tn.

The first equation of (26) describes the evolution of the state variables. The state variables

evolve because: i) of their internal inertial evolutions δ̊ηdec (which would be obtained if transfer

models were changed to constant transfer model with δ̊ϕ = 0) ; ii) of the evolution of their

boundary conditions (̊δϕ 6= 0). The matrix F describes the influence of transfer variables on

state variables, and independently of the type of model used for these transfers (F is independent

of the model of δ̊ϕ).

In the second equation, δ̊ϕins represents the variation of transfer variables if δ̊η = δ̊ηdec (i.e.

if the cell models were changed to decoupled models with F = 0). Consequently, C represents

the effect of cell and transfer coupling.

All numerical results presented in the paper use a software developed by the author and others

to implement models expressed with the TEF. Thanks to its use of the Crank-Nicolson scheme,

it is capable of computing numerically the Borel transform of the TLS matrix coefficients and

solutions on the real axis τ > 0. An approximation of the step-by-step evolution of the complete

system is obtained by solving the system (26) and through the relationships:
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δη ≈ 2B[̊δη]( δt
2 )

δϕ ≈ 2B[̊δϕ]( δt
2 )

(27)

where δη and δϕ are the state and transfer variable variations in the complete model during

a time step δt.

From these formulas, in addition to the time evolution of the model, one may assess separately

the decoupled and the coupled evolution of each subsystem (through the matrix F), and get

access to the subsystem interactions (through the matrix C).

4. The Climate-Economy Feedback.

The existence of a climate-economy feedback, coming from the emission variation due to climate

change impacts at a given emissions to GDP ratio, is one of the key issues in the building

of consistent climate change scenarios: a quantification of the involved time scales and of the

magnitude of this effect is necessary to achieve a rigorous design of the simulations with high

complexity models. The following part aims at providing some ideas on these essential figures.

4.1. Model Simulations

An extensive study of the climate module is available in HLG04. The version used in this study

is the ’Increasing cloud cover’ version, which assumes an increase in the high level cloud cover

with respect to temperature. The climate sensitivity of the model to doubling CO2 concentration

is found to be +2.8 K, which is within the GCM’s sensitivity spectrum (see IPCC (2001b), Chp

9).

A set of simulations is carried out to assess the validity of the complete model: a simulation

without climate change impacts (”no impact”), a simulation with ”moderate impacts” and
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Figure 1. CO2 concentration evolution (left panel) and difference between surface temperature and adaptive

temperature (right panel) over 200 years for the 3 runs.
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Figure 2. Production evolution (left panel) and γY evolution (right panel) over 200 years for the 3 runs.

a simulation with ”strong impacts”. The left panel of Fig. 1 shows that the doubling CO2

concentration (660 ppmv) is reached about 2100 for the 3 runs. The concentration in 2200 lies

between 1050 ppmv and 1150 ppmv. The right panel of Fig. 1 shows that, because of how

adaptation is modelled, the level of impact is stabilized from 2150, when the climate change

slows down.

The production evolution is reproduced in the left panel of Fig. 2. Apparently, the production

is not impacted so much: in 2100 the production growth is reduced by about 6% over one century

iam.tex; 2/07/2004; 10:51; p.14



The Long Time Scales of the Climate-Economy Feedback and the Climatic Cost of Growth 15

in the ”moderate impacts” simulation, which is negligible when compared to the economic growth

during the same period (a 2000% rise).

To understand the underlying processes, it is necessary to focus on another variable: the

normalized production growth γY , i.e. the growth in production for a given level of labour and

a given level of productivity. The right panel of Fig. 2 shows the evolution of γY on 200 years.

In the case without impact, the increase in normalized production (γY > 0) comes from the

decrease in the population growth rate (see Eq. (17)). Because adaptation takes time to change

the economic system, the growth reduction due to climate change impacts is significant over the

medium term: between 0.05% and 0.2% between 2025 and 2075 depending on the impact level.

After 2175, the climate change is slow enough to allow adaptation to compensate and prevent

damages. Because the absolute impacts are assumed to be null, the climate change damages are

null over the long-term and the normalized production growth pathways converge whatever is

the level of impacts. However, this does not prevent damages from being significant over more

than one century.

This figure allows to understand that, in the production evolutions, the final difference comes

mainly from invisible shocks in the first century, which are amplified by the economic growth

and become visible in the second century. The production figures hide the real damages: the

invisible shocks over the medium term are serious although the visible long-term difference

between scenarios does not really matter.

These results emphasize the fact that it is not trivial to analyse a model trajectory and to

characterize and quantify a selected process in the simulation. To address this issue, a new tool

is proposed in order to separate the different effects. It is the aim of the feedback analysis that

is carried out in the next section on this simple example, which is interesting per se but also

demonstrates the interest of the method.
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4.2. Feedback Definition

A feedback loop is defined as a set of processes interfaced by transfer variables {ϕi,i=1,..,n}

in which the evolution of each variable δϕj depends only on δϕj−1, and the evolution of δϕ1

depends only on δϕn.

Using the formalism proposed by Bode (1945) in electric circuit theory, a feedback is usually

characterized by its gain (g) or its factor (f), defined by:

(1− g) · δϕ∞
1 =

1

f
· δϕ∞

1 = δϕ0
1 (28)

where δϕ∞
1 is the equilibrium change in ϕ1, when a perturbation in the forcing is applied;

δϕ0
1 is the equilibrium change in ϕ1 for the same perturbation but in the absence of the feedback

(i.e. when at least one link between two variables of the loop is cut). The feedback gain is thus

defined by a difference between two equilibrium, and will be hereafter called the static gain .

However, feedbacks are dynamic processes and transient effects can be essential. In our case,

since the equilibrium costs are null, the transients are alone of interest. Hence, a feedback

characterization which describes the whole dynamics of the response is needed. The proposed

methodology aims at generalizing the feedback static gain to take into account the feedback

dynamics.

4.3. Feedback dynamic study

In order to analyze the dynamics of the feedback, the model Tangent Linear System (TLS) is

studied. Since the system is not linear, the TLS evolves with time. Leaving aside transient states,

the study will be limited to the equilibrium state, where the TLS is autonomous.

As is well known, poles of Laplace transform of TLS solutions are eigenmodes of the system.

The same holds for Borel transform: determining the poles of the Borel transform yields the

complete dynamics of the system. Since the Borel transform of TLS matrix coefficients and
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Figure 3. Scheme of a feedback (left) and illustration of the open-loop model (right).

solutions are numerically computed on the real axis τ > 0, the problem of describing the

dynamics of a system is thus reduced to that of determining the poles of the Borel transform of

the TLS solution from its numerical values on the positive real axis.

The method to study one feedback loop is very elementary: the TEF elimination process is

based on the fact that if one is pursuing the elimination procedure of all variables but one, say

δ̊ϕ1, from the second row of system (26), then the remaining scalar equation reads :

(1 + C′11(τ)) · B[̊δϕ1](τ) = B[̊δϕ1
′

ins](τ) (29)

where δ̊ϕ′
1,ins is the ϕ1 change predicted by the TLS when the rest of the system (that takes

into account all of the eliminated variables) is insensitive to ϕ1 variation (in other terms: when

the loop is cut just after ϕ1 in Fig. 3). The reduced matrix C ′11(τ), or rather g1(τ) = −C′11(τ),

represents the effect of closing the feedback loop: ϕ1 perturbation→ perturbation impact on the

rest of the system → further ϕ1 perturbation. Contrary to the feedback static gain, the feedback

dynamic gain g1 is a function of τ . Equation (29) may be rewritten as:

B[̊δϕ1](τ) = (1− g1(τ))−1 · B[̊δϕ1
′

ins](τ) (30)

Hence, the poles of δ̊ϕ1(τ) are i) the poles of δ̊ϕ1
′

ins, i.e. the poles of the open-loop model;

ii) the poles of (1 − g1(τ))−1, i.e. the poles corresponding to the feedback. The inverse Borel
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transform of Eq. (30) provides the full dynamics of the feedback, i.e. the temporal response of

the perturbed variable, and reads:

δ̊ϕ1(t) = B−1
[

1

1− g1(τ)

]
∗

d

dt
δ̊ϕ1ins(t) (31)

Note that the function g1(τ) generalizes the feedback static gain, since:

lim
t→+∞

B−1[g1(τ)](t) = lim
τ→+∞

[g1(τ)] = g (static gain) (32)

But where the feedback static gain only describes the response corresponding to an asymptotic

behaviour (the equilibrium value), Eq. (31) describes the whole response dynamic of δ̊ϕ1 and

thus the whole dynamics of the feedback. Moreover, this approach explicitly shows that feedbacks

are indeed a linear concept.

4.4. The Climate-Economy Feedback

Choosing the emissions E as the last retained variable, Eq. (31) becomes:

δ̊E(t) = B−1
[

1

1− gE(τ)

]
∗

d

dt
δ̊Eins(t) (33)

where δ̊E is the E change predicted by the TLS, in the closed loop case; δ̊Eins(t) is the

E variation obtained in the open loop case; and gE(τ) is the feedback dynamic gain of the

”climate-economy feedback”.

(B−1[(1 − gE(τ))−1](t) · ∆E0) may be interpreted as the complete change in δ̊E after a

perturbation by an artificial E0 step at t = 0 is applied. This response includes the perturbing

step, i.e. δ̊E(t) is not continuous at t = 0. In order to keep only the real feedback effect , the

feedback function is defined as:
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Closed loop (Feedback) Open loop (No feedback)
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Figure 4. Scheme of the climate-economy feedback (left); and illustration of the open-loop model (right).

δ̊FE(t) =

(
B−1[

1

1− gE(τ)
]− 1

)
· (1 GtC) (34)

The E feedback function corresponding to the climate-economy feedback, i.e. the additional

emissions change due to the climate-economy feedback after perturbing the E model by a 1 GtC

step in emissions, reads:

δ̊FE(t) = λ1 ·

(
1− e

−
t

τ1

)
+ λ2 ·

(
1− e

−
t

τ2

)
(35)

The numerical values in the two hypotheses on the impact levels are reproduced in Tab. III,

and the response functions are shown in Fig. 5.

The complexity of the model is here reduced to two poles: the response of the model to

a step in emissions has two components, each of them characterized by its intensity and its

characteristic time. Such a description of the model response is very rigorous and separates the

intensity of the phenomena and their characteristic time. This allows to produce more robust

information than single simulations and to question explicitly the problem of inertia.
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Table III. Climate-Economy feedback poles and static parameters for 3 hypothesis on impact

levels.

Hypothesis λ1 τ1 λ2 τ2 static gain static factor

Moderate imp. −1.1 · 10−1 89.0 yrs 2.6 · 10−2 18.6 yrs -9.2% 0.92

Strong imp. −2.4 · 10−1 77.0 yrs 6.3 · 10−2 20.5 yrs -21.5% 0.82

Several points can be made: First, the second pole (short-term and negative) represents the

resilience of the climate-economy feedback. It shows that, because of the the high inertia, an

emission reduction does not change the impacts for more than 20 years. It means that if emission

reductions are carried out, they do not have any influence back on the economy during about

20 years, highlighting the need for anticipation in the management of climate change.

Second, this emission feedback function can be equivalently expressed in terms of production

(cf Eq. (20)): if the production is increased by 1 trillion U.S.$, FE(t) shows how this additional

production is reduced by additional climate change. Finally, about 10% of any additional pro-

duction would be lost because of the corresponding additional climate change in the mean case.

This allows to define a climatic cost of growth as the additional cost of the impacts due to

the additional emissions due to economic growth. This value is an original and rigorous way of

quantifying climate change damages, that is less dependent on the emission scenario than other

quantification methods.

Third, the first pole, which is the most significant, is the main climate-economy feedback

and represents the race between climate change impacts and adaptation processes. One should

mention its very long characteristic times. It denotes the time needed by the whole system to

react to a perturbation and is due to the fact that climate change is a problem of stock: the

variable that matters is the concentration, which is a cumulative variable. In this case, an addi-

tional emission enhances the climate change, which will impact on the economy and then reduce
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Figure 5. ∆T feedback function of the climate-economy feedback. When emissions are perturbed by a 1 GtC step

at t=0, this function shows the emissions change (added by the TLS) caused by the climate-economy feedback.

the emissions. This process needs close to one century to act. Such length of time compared

with other characteristic times of the climate and of the socio-economic system shows that this

feedback is not capable to act as a natural ”damping process” which might automatically adapt

the anthropic emissions to the climate sensitivity. In other words, if impacts are found to be

serious, the emission reductions corresponding to economic damages will arrive too late to control

the climate change and avoid stronger damages over a time-scale of a few centuries: if climate

change is dangerous, an abatement policy is the only way to avoid it. Moreover, this shows that

a cost-benefit analysis made over one century is misleading: although the whole mitigation costs

are taken into account, only a small fraction of the benefits occurs during the 100 first years.

This raises a strong problem: considering very long time-scales is necessary even if our ability

to model up to this horizon is very questionable.

Four, if the feedback intensity varies with the impact level, the involved characteristic times

do not change much. The conclusion concerning the absence of a natural damping process that

control climate change is thus independent of the level of the damages.
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5. Conclusive discussion

Three types of conclusions can be derived from this exercise. First, in pure methodological terms,

it couples a conventional economic model to a simple climate module in such a way that the

characteristic times can be rigorously scrutinized. In particular, a new impact and adaptation

modelling is proposed: the absolute impacts linked to a stabilized climate state, and the transient

impacts caused by a changing climate, are explicitly differentiated. Transient impacts involve

an adaptive temperature, i.e. the temperature to which the socio-economic system is adapted.

Whenever the adaptive temperature differs from the real surface temperature, the socio-economic

system faces impacts (through a lower productivity). Moreover, an adaptation process drives

the adaptive temperature toward the real temperature with a given characteristic time; it thus

decreases the capital depreciation time by inducing an anticipated productive capital retirement.

Second, this paper demonstrates, based on a simple exercise, the interest of the TEF/ZOOM

methodology as a tool to overcome some limitations of classical simulations, which are often

difficult to analyse rigorously: the TEF/ZOOM methodology allows for a precise definition of

the feedback function characterizing the dynamics of a feedback loop (through the additional

change of a variable perturbed by a step). Applied to the climate-economy feedback, this method

leads to the conclusion that the climate-economy feedback has a feedback static gain of -10%,

with a 90-year characteristic time. The feedback gain can also be interpreted as the elasticity

of the final emissions (or, equivalently, of the final production) with respect to a permanent

increase of the emissions (respectively of the production): if a constant additional amount of

goods is produced each year, about 10% of this amount will finally be lost each year because of

climate change impacts. In other words, a 1% growth rate results only in a 0.9% growth rate

over the long-term. This can be interpreted as a climatic cost of growth. This is an original way

of measuring the climate change damages. This precise definition and assessment of the emission

feedback could also be a useful information in the development of consistent emission scenarios

to be used as inputs to high complexity climate models.
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Last, this model brings out three insights that deserve further investigation: (i) the absence

of impact over the long-term (thanks to adaptation) does not preclude significant mid-term

impacts, making it essential to take into account the time profile of the climate change impacts;

(ii) The time scale of the climate-economy feedback indicates that, because of the inertia of the

climate and economic systems, the damages cannot act as a natural damping process controlling

climate change: if strong impacts happen, their influence on concentration occurs too late to

control climate change and avoid stronger impacts. The weak sensitivity of the feedback char-

acteristic times to changes in the impact level demonstrates the robustness of this conclusion.

(iii) This time scale shows that climate change management requires a large anticipation, since

the first effect of a mitigation effort influences back the economy only 20 years later. Moreover,

a cost-benefit analysis over 100 years is not fair since it takes into account the whole mitigation

costs and only a small fraction of the climate benefits.
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Appendix

A. Appendix: the Transfer Evolution Formalism

A.1. Tangent Linear System Analysis

As explained in the article, the model is mathematically represented by a set of equations of

two kinds:

1. cells:

∂ηα

∂t = Gα(ηα, ϕ1, ϕ2, ...)

∂ηβ

∂t = Gβ(ηβ , ϕ1, ϕ2, ...)

...

(A-1)

2. transfers:

ϕ1 = f1(ηα, ηβ , ..., ϕ)

ϕ2 = f2(ηα, ηβ , ..., ϕ)

...

(A-2)

Let η be the state vector of the complete system and ϕ be the vector of the dependent

boundary conditions. With initial conditions at time t0, the system is a well-posed problem.

The method consists in building the first order development of the dynamical system around

its current state (η(tn)). For each cell α, it reads:

∂(ηα(tn)+δηα(t))
∂t = Gα(ηα(tn), ϕ(tn)) + (∂Gα

∂ηα
)(ηα(tn), ϕ(tn)) · δηα(t)

+(∂Gα

∂ϕ )(ηα(tn), ϕ(tn)) · δϕ(t) +O((t− tn)2)

(A-3)

where δηα(t) = ηα(t)− ηα(tn), and δϕ(t) = ϕ(t)−ϕ(tn).

The Tangent Linear System (TLS) corresponding to system (A-3) is, for each cell α:

iam.tex; 2/07/2004; 10:51; p.24



The Long Time Scales of the Climate-Economy Feedback and the Climatic Cost of Growth 25





∂δ̊ηα(t)
∂t = Gα|tn + ∂Gα

∂ηα

∣∣∣∣
tn

δ̊ηα(t) + ∂Gα

∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)

δ̊ϕ(t) =
∑

β
∂f
∂ηβ

∣∣∣∣
tn

δ̊ηβ(t) + ∂f
∂ϕ

∣∣∣∣
tn

δ̊ϕ(t)

(A-4)

where the suffix β sweeps the list of sub-domains.

We approximate the true time evolution of the model (δηα(t) and δϕ(t)) by δ̊ηα(t) and

δ̊ϕ(t), the TLS solutions, since they differ only by O((t− tn)2).

In formulation (A-4), the Jacobian matrices appear contain critical information for the anal-

ysis of the interactions between variables. The TLS can be solved by various methods, including

Laplace transforms. Rather than Laplace transformation, we shall use the more convenient Borel

transformation defined by:

f(t)
B
→ B[f ](τ) =

1

τ

∫
∞

0
e−t/τf(t)dt =

1

τ
f̃(

1

τ
) (A-5)

where f̃(p) stands for the Laplace transform of f(t). Contrary to the Laplace variable, the

Borel variable τ is real and homogeneous with time.

Because B[∂f/∂t] = (1/τ)B[f ], the Borel transform of Eq. (A-4) reads:





B[̊δηα] =

B[̊δηα,dec]︷ ︸︸ ︷
1− τ

∂Gα

∂ηα

∣∣∣∣∣
tn



−1

τ Gα|tn +

F

︷ ︸︸ ︷

τ


1− τ

∂Gα

∂ηα

∣∣∣∣∣
tn



−1

∂Gα

∂ϕ

∣∣∣∣∣
tn

B[̊δϕ]

B[̊δϕ] =
∑

β
∂f
∂ηβ

∣∣∣∣
tn

B[̊δηβ ] + ∂f
∂ϕ

∣∣∣∣
tn

B[̊δϕ]

(A-6)

If the cell variables δ̊η are eliminated from the second equation, the complete system of

equations (which includes cells) becomes:




B[̊δη] = B[̊δηdec] + F B[̊δϕ]
[
1 + C

]
B[̊δϕ] = B[̊δϕins]

(A-7)

where the quantities B[̊δηdec], F , C, B[̊δϕins] depend on τ and can be calculated from the

elementary Jacobian matrices and vectors at time tn.
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The first equation of (A-7) describes the evolution of the state variables. The state variables

evolve because: i) of their internal inertial evolutions δ̊ηdec (which would be obtained if transfer

models were changed to constant transfer model with δ̊ϕ = 0) ; ii) of the evolution of their

boundary conditions (̊δϕ 6= 0). The matrix F describes the influence of transfer variables on

state variables, and independently of the type of model used for these transfers (F is independent

of the model of δ̊ϕ).

In the second equation, δ̊ϕins represents the variation of transfer variables if δ̊η = δ̊ηdec (i.e.

if the cell models were changed to decoupled models with F = 0). Consequently, C represents

the effect of cell and transfer coupling.

The developed expression of the matrix C shows how the partial derivatives defined at the

cell and transfer level combine. The coefficients of the coupling matrix are rational fractions of

the variable τ . This is the way the full dynamic of the system bounds the remaining variables

after an elimination process.

A.2. Numerical solution of the Transfer Evolution Formalism

For large systems, the above matrices are huge and sparse, and exhibit an internal structure that

depends upon the connections between cells and transfers. The full algorithm of the ZOOM2

solver follows a technique called “relaxed super-nodes hyper multi-frontal method” (cf. (Liu,

1992)). We focus here on the principles of the resolution that explain how the system dynamics

is described by the coupling coefficients.

A.2.1. Equivalence between Borel transform and the Crank-Nicolson scheme

It is easily shown that the Crank-Nicolson resolution of the system (A-4) with a time step

δt, is identical to its Borel transform (A-7), with the correspondence τ ←→ δt
2 .

2 ZOOM is a TEF dedicated solver developed by authors and colleagues.
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To demonstrate this equivalence, let δ̂X be the time evolution of variable X approximated

by a Crank-Nicolson scheme, and consider the linear system:

∂η(t)

∂t
= A · η(t) (A-8)

If η(t) = η0 + δη(t), with δη(0) = 0, it may be rewritten as:

∂(η0 + δη(t))

∂t
= A · (η0 + δη(t)) (A-9)

If a Crank-Nicolson scheme is applied to the system (A-9), with a time step δt, the discretized

equation reads:

δ̂η(δt)

δt
= A

1

2
(2η0 + δ̂η(δt)) (A-10)

which gives the time evolution of η, since δ̂η(δt) ≈ δη(δt) for small δt.

For any t > 0, δ̂η(t) is given by:

δ̂η(t) =

(
1−

t

2
A

)−1

Aη0 · t (A-11)

Now, the Borel transform of the system (A-9) reads:

B

(
∂δη(t)

∂t

)
=

1

τ
B(δη)(τ) = B(A · (η0 + δη(t))) = AB(η0) + AB(δη)(τ) (A-12)

which can be rewritten (because B(k) = k) as:

B(δη)(τ) = (1− τA)−1Aη0τ (A-13)

Equations (A-11) and (A-13) show that the Crank-Nicolson integration of a linear system is

equivalent to the Borel transform of the system, through the relationship:
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δ̂η(t) = 2 · B(δη)(
t

2
) (A-14)

A.2.2. Time evolution of the model

For each time step, the ZOOM solver solves the second matrix equation of (A-7) for B[̊δϕ]. The

first equation is then solved for B[̊δη]. Thanks to the property (A-14), this gives an approximation

of the temporal evolution of the model variables between tn and tn + δt.

A.2.3. TLS Analysis

As is well known, poles of Laplace transform of TLS solutions are eigenmodes of the system.

The same holds for Borel transform: determining the poles of the Borel transform yields the

complete dynamic of the system.

ZOOM is able of computing numerically the Borel transform of the TLS solution (B[̊δη](τ)

and B[̊δϕ](τ)) on the real axis τ > 0. The problem of describing the dynamics of a system is

thus reduced to that of determining the poles of the Borel transform of the TLS solution from

its numerical values on the positive real axis.

In particular, in Eq. (A-7), the poles of B[̊δϕ](τ) are i) the poles of B[̊δϕins], i.e. the poles

of the model without taking into account the interactions between sub-systems; ii) the poles of

(1+C)−1, i.e. the poles corresponding to the sub-system interaction. The inverse Borel transform

of Eq. (A-7), obtained by an identification of simple elements, provides the full dynamics of the

model. The methodology consists here in fitting the Borel transform with a linear combination

of sigmoid and bump functions, which are the only possible Borel transforms of linear differential

equation solutions. From the characteristic times of the corresponding poles and their residue,

the original function can easily be reconstructed without inverse Borel transform.
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