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Preface

The following report outlines the results from the work done during my re-
search internship under the supervision of Alain Lahellec at the Laboratoire
de Météorologie Dynamique, Université Pierre et Marie Curie (Paris VI) in
Paris, France. The internship started with an introduction to fundamental
climate concepts as well as the current state of climate research. Follow-
ing these preliminaries I familiarized myself with the concept of feedbacks
in climate studies and the formal analysis methods already developed by
Alain Lahellec and Jean-Louis Dufresne on the topic. The remainder of the
project involved work on the application of Floquet theory to the analysis of
the seasonal cycle of climate feedbacks. In particular, the work was focused
on developing a new method for the numerical determination of Floquet
vectors previously indeterminable with the standard methods. Theoretical
solutions were tested and implemented with the modeling tool Mini ker.

1 Introduction

Climate change and greenhouse gas emissions are common topics in political
and social debate. While questions loom about what society, industries, and
governments should be doing regarding the issue, climatologists are working
to continue increasing understanding about the climate and the effects of hu-
man activity on it. It is not surprising that the massive yet intricate climate
system has demanded in their work the creation of similarly complex models
in order to anticipate and imitate its behavior. These models, termed global
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circulation models (GCM’s) within the climate research community, repre-
sent through mathematical systems physical processes in the ocean, on land
surfaces and in the atmosphere[2]. Their numerical implementation is done
using a discretisation to a three dimensional grid over the globe. Within
the larger goals of understanding the climate and predicting climate change,
one possible aspect of the models is their use in analysing climate feedbacks.
Climate feedbacks are the results of interactive climate mechanisms in which
the reaction of an initial perturbed mechanism prompts a secondary process
which in turn effects, either amplifying or diminishing, the changes due to
the initial perturbation. Long-term climate feedbacks are analysed using
variables’ annual averages, however, the amplitude variation experienced
by the climate at equilibrium due to the seasonal solar cycle surpasses the
moderate forcings of many feedback experiments[4]. Therefore, important
aspects of climate feedbacks may require a look not only at annual averages
but also at the effect of the seasonal cycle. Instead of using GCM’s to per-
form the analysis the decision was made to use a perfectly periodic simple
climate model in which all the needed operators could be calculated and
where Floquet theory can be used to inform the analysis. Already Lahellec
has advanced a formal analysis of climate feedbacks developed by Lahellec
et al.(see [3], hereafter LAH:I) to incorporate the use of Floquet theory in
analysing the effect of the seasonal cycle (see [4], hereafter LAH:II). Numer-
ical difficulties arise, however, in finding the final and evanescent Floquet
vectors; vectors which are important for the comprehensive analysis. A new
method for their determination is described here along with results from
the method applied to the simple climate model. This method has partial
success by increasing the number of numerically tractable Floquet vectors
from the previous method but failed to provide a means for determining all
of the Floquet vectors in the four dimensional simple model. The simple
climate model, formal feedback analysis, Floquet Theory and the resulting
extension to the feedback analysis already developed by Lahellec et al. are
presented briefly below as a background to the new method for determining
evanescent Floquet vectors.

2 Background

2.1 Simple Climate Model

The perfectly periodic simple model used to determine the seasonal cycle’s
effect was developed by Lahellec from the model ClimSI used in Hallegatte
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et al.[1]. By Lahellec it has been re-written in Mini ker1, a solver which
symbolically determines all partial derivatives and thus the Jacobian ma-
trices. It is a single atmospheric column model with four state variables;
the temperature of a 50 m mixed ocean-layer, the temperatures of both a
tropospheric layer and stratospheric layer with constant lapse rates and the
tropospheric water-content. The radiation equation, however, is integrated
on a 60 layer grid for the two major greenhouse gases of the atmosphere
(H2O and CO2) using a Malkmus narrow-band model. The model is stable
and has no intrinsic oscillatory component, thus all periodic behavior is due
to a forcing which represents the incoming seasonally varying solar flux. A
detailed description of the model, which is called Mini-Clim, can be found
in Appendix A of LAH:II.

2.2 Formal Feedback Analysis

The following short summary of the formal feedback analysis derived in
LAH:I explains how a feedback system is derived from a simple atmospheric
state-space model such as the one described above.
Letting η be the corresponding n-dimensional state vector and F x(t) an
external forcing, consider the general simple climate state-space model

∂tη = g(η,F x(t)) .

Once initial conditions η(t= 0) = η0 are known a particular reference tra-
jectory may be found. The process of linearizing the system around such
a trajectory, selecting a test variable with which to measure the feedback
and decomposing the system’s response to perturbation into both a base
response and an effective response produces the following effective response
system, {

∂t∆η
r(t) = M [(t) ∆ηr(t) + |b(t)> (∆θ + ∆θ0(t))

∆θ(t) =<c |∆ηr(t) , (1)

where ∆ηr = ∆η − ∆η0 is the deviation of the perturbed system from
the reference trajectory (∆η) minus the base response (∆η0) and < c |
is a standard basis vector selecting a single component of ∆ηr(t).2 Here
∆θ0 =< c | ∆η0 is the prescribed perturbation and M [(t)+ | b(t)>< c |=

1cf http://www.lmd.jussieu.fr/ZOOM/
2Dirac bra-ket notation (< |,| >) is used for row and column vectors to be consistent

with both LAH:I and LAH:II and, as there, because the scalars can clearly be identified
in the algebraic developments.
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M(t) = ∂ηg(t) is the linearized system’s Jacobian. This system is in the
feedback form which describes the response to the prescribed perturbation.
It is linear because the Jacobian matrices are known independently of the
unknown vector ∆ηr. The general solution of the effective response system
is

∆ηr(t) = Φ(t, 0)∆ηr(0) +

∫ t

0
Φ(t, τ) |b(τ)> ∆θ0(τ)dτ

where Φ(t, τ) is the propagator (or the state-transition matrix). The state-
vector effective response is defined as the state response in (1) to the basic
perturbation with no initial perturbation; ∆ηr(0) = 0, so

∆ηr(t) =

∫ t

0
Φ(t, τ) |b(τ)> ∆θ0(τ) dτ (2)

and correspondingly the effective feedback component is defined as

∆θ(t) =<c |∆ηr(t).

It is the presence of the propagating matrix Φ(t, τ) which invites a furthering
of the feedback analysis with Floquet theory. The following introduction to
the theory highlights a decomposition of Φ(t, τ) which suggests climatic
interpretations and provides information on the asymptotic behavior of the
effective feedback components.

3 Floquet Theory

Floquet theory applies to systems of differential equations for which the
corresponding Jacobian matrix, M(t), is periodic. If the period length is
T this means M(t+ T ) = M(t), ∀t. As the following demonstration shows,
the theory provides useful properties of Φ(t, τ), the system’s propagating
matrix.
To begin let X(t) be a matrix such that Φ(t, τ) = X(t)X−1(τ). Since Φ(t, τ)
is the solution matrix of the system

∂tΦ(t, τ) = M(t)Φ(t, τ) , Φ(τ, τ) = I

then
∂tX(t) = M(t)X(t)

and, furthermore,
∂tX(t+ T ) = M(t)X(t+ T ) .

4



Hence X(t+ T ), like X(t), is a fundamental set of solutions for the system
and may be expressed as X(t + T ) = X(t)H for some constant matrix H.
Thus in a certain way the periodicity of M(t) is passed on to the propagator;

Φ(t+ T, τ + T ) = X(t+ T )X−1(τ + T )

= X(t)HH−1X−1(τ)

= Φ(t, τ) ,∀t .

The equality X(t+ T ) = X(t)H also implies for the propagator that

Φ(t+ T, t) = X(t+ T )X−1(t) = X(t)HX−1(t) ,∀t . (3)

Equation (3) demonstrates that for all t the transition matrix on one period,
Φ(t+T, t), is similar to H and thus they have the same eigenvalues. Letting
t = 0 and writing the eigendecomposition of H in terms of T ;H = PeΛTP−1

with Λ both complex and diagonal and hence eΛT diagonal, this implies
further that

Φ(T, 0)Z = ZeΛT (4)

where Z = X(0)P . So Z = [zik] is both the matrix of right eigenvectors for
Φ(T, 0) as well as a fundamental set of solutions at t = 0. The coefficients of
Λ are called the Floquet exponents and it will be assumed their real parts
are negative (the system is stable) and arranged in decreasing order. Each
entire eigenvalue eλkT is called a Floquet multiplier. These eigen elements of
Φ(T, 0) are essential to Floquet Theory. They will be referred to collectively
as Floquet elements.
From Z yet another fundamental solution matrix Y (t) = [yik(t)] may be
defined by

Y (t)
def
= Φ(t, 0)Z ,

Y (0) = Z .

Then the relation between Y (t) and its replica at t+ T is

Y (t+T ) = Φ(t+T, 0)Z = Φ(t+T, T ) Φ(T, 0)Z = Φ(t, 0)Z eΛT = Y (t) eΛT .

So over any period interval each kth column of Y is damped by eλkT , where
λk is the kth coefficient of Λ. The Floquet vectors, ΨF (t) =

[
ψFik(t)

]
, are

retrieved finally by preventing the damping of Y ,

ΨF (t)
def
= Y (t)e−Λt = Φ(t, 0)Ze−Λt . (5)
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With this definition, the Floquet vectors are easily seen to be periodic,

ΨF (t+ T ) = Y (t+ T )e−ΛT e−Λt

= Y (t)e−Λt

= ΨF (t) .

From the definition of the Floquet vectors in equation (5) also comes the
equality Φ(t, 0) = ΨF (t)eΛtZ−1 and thus

Φ(t, τ) = Φ(t, 0)Φ−1(τ, 0)

= ΨF(t)eΛtZ−1[ΨF(τ) eΛτZ−1]−1

= ΨF(t)eΛtZ−1Ze−ΛτΨ−F (τ)

= ΨF(t)eΛ(t−τ)Ψ−F (τ) .

It is this decomposition

Φ(t, τ) = ΨF(t)eΛ(t−τ)Ψ−F (τ) , (6)

which can be written also as
∑

k e
λk(t−τ) | ψFk (t) >< ψ−Fk (τ) |, that allows

for a determination of the asymptotic behavior of the effective feedback
components.

3.1 Floquet Theory in Feedback Analysis

As described in LAH:II, Floquet theory furthers the formal feedback analy-
sis by providing both a link to climatic interpretations as well as information
on the asymptotic cycle of the effective response.
The climate interpretation comes from viewing the eigenvalues in terms of
their characteristic times and their respective Floquet vectors as describ-
ing the set of climate mechanisms which correspond to those characteristic
times. With this view the vectors of Z describe the initial perturbations to
each of these mechanisms. In this way the separate effects of rapid, moder-
ate and slow mechanisms can be deciphered in the feedback analysis and the
phase space decomposed into a direct sum of Floquet subspaces associated
with the characteristic times.
Considering only periodically forced stable systems, the asymptotic behav-
ior of the effective feedback components can be determined by plugging the
decomposition of Φ(t, τ) from (6) into equation (2) - a complete derivation
can be found in LAH:II;

lim
n→∞

∆θ(t+ nT ) =
∑
k

1

1− eλkT
∆θk(t)
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where

∆θk(t) = <c |ψFk (t)>

∫ t+T

t
eλk(t+T−τ)<ψ−Fk (τ) |b(τ)>∆θ0(τ)dτ .

So mechanisms of all characteristic times are constantly perturbed and
adding to the limit feedback cycle. It is this need for even the fast dy-
ing mechanisms that proves difficult numerically. In the previous method
ΨF (t) is calculated directly from the definition given in equation (5). With
this method, since the components of Φ(t, 0) which correspond to fast dy-
ing eigenvalues are inaccurately determined by the end of the period, it is
numerically tractable to determine only those Floquet vectors associated to
Floquet multipliers still alive at the end of the first period.
In the case of the simple climate model being used, the standard method
accurately determines only the first and second Floquet exponents and vec-
tors. The Floquet exponents are λ1 = −0.000794823 per day and λ2 =
−0.009000927 per day respectively. They correspond to characteristic times
of about 3.5 years for the first Floquet multiplier and 3.7 months for the
second. The third and fourth Floquet multipliers, which are both less then
10−14 at the end of the first period, are damped too quickly for accurate
values to be taken from the results of the standard method. A new method
is needed.

4 Weighted Projection Method

4.1 Essential Ideas

Amplification along time of the rapidly damped Floquet multipliers provides
an intuitive solution for retrieval of the so far undetermined Floquet vectors.
The decomposition of Φ(t, 0) into the sum of spaces spanned by each of the
Floquet elements,

Φ(t, 0) =
∑
k

eλkt|ψFk (t) >< z−1
k | , (7)

highlights a means for such an amplification. From this view, the ampli-
fication may be implemented by creating a new propagating matrix, call
it Φρ(t, 0), in which a weighted projection on the true propagator, Φ(t, 0),
amplifies continuously the spaces spanned by the rapidly damped solution
vectors;

Φρ(t, 0)
def
= Φ(t, 0)ZeKtZ−1 . (8)
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Here K is a diagonal matrix of the same dimension as the system which
simultaneously selects the spaces to be amplified and designates the magni-
tude of the amplification. From now on the term ZeKtZ−1 will be referred
to as the projector. Those spaces spanned by Floquet vectors already accu-
rately determined need not be modified and thus the corresponding diagonal
entries of K are set to 0. The rapidly damped spaces, however, are selected
for amplification by a non zero entry in the corresponding entries of K. All
non-zero entries of K have the same value, let it be denoted by ρ, and thus
each amplification has a time dependent magnitude of eρt. Thus, based on
earlier assumptions regarding the eigenvalues ordering, the matrix K in its
general form is K = [0 . . . 0 ρ . . . ρ]diag. Expanding Φ(t, 0) in the definition
of Φρ(t, 0) and again simplifying it becomes evident that the new projec-
tion matrix is similar to the true projection matrix, however, with selected
eigenvalues amplified;

Φρ(t, 0) = Φ(t, 0)ZeKtZ−1 = ΨF eΛtZ−1ZeKtZ−1 = ΨF e(Λ+K)tZ−1.

Thus this new propagator changes the system only by extending the char-
acteristic times of rapid mechanisms. The significance of this is highlighted
at time t = T ,

Φρ(T, 0)Z = Ze(Λ+K)T ,

where the fundamental eigen elements of equation (4) remain “visible” and
even the same except for the amplified eigenvalues.
It may be noted that this solution may be expressed equivalently as

Φρ(t, 0) = ΨF eKtΨ−FΦ(t, 0) (9)

since

ΨF eKtΨ−FΦ(t, 0) = ΨF eKtΨ−FΨF eΛtZ−1

= ΨF e(K+Λ)tZ−1

= ΨF eΛtZ−1ZeKtZ−1

= Φ(t, 0)ZeKtZ−1 .

4.2 The Method

With this new projection matrix the Floquet vectors not numerically tractable
with the standard method may be determined successively in order of de-
creasing characteristic times as follows. At each step the code used to im-
plement the method in Mini ker for the simple model is included.
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Suppose the first k−1 Floquet exponents and vectors are already determined
accurately. Then the kth elements must be determined only in terms of this
accurate information. With this in mind the projector may be defined as

ZeKtZ−1 =
[
I − |z1 >< z−1

1 | − · · · − |zk−1 >< z−1
k−1|

]
eρt

+ |z1 >< z−1
1 |+ · · ·+ |zk−1 >< z−1

k−1| . (10)

Mini ker

In Mini ker the necessary information is read and the basic elements of the
projector are calculated in ZINIT; a portion of the full Mini ker code that
is executed once at the beginning of the run. These basic elements are

Projk =
|zk><z−1

k |
<z−1

k | zk >

where the denominator is included to account for numerical inaccuracies
in the identity ZZ−1 = I. Afterwards the full projector is calculated in
ZSTEP; another portion of the Mini ker code that is executed after each
time step.

+SELF,IF=FLOQUET2.

;

...

;

!initialise Z^(-1)

OPEN (50, File=’floVPl.init’, status=’OLD’); "is still the transpose"

READ (50,1009) tata, ((Flo_Zinv(i,j),tata,i=1,np),j=1,np);

CLOSE(50);

Z_pr/Z inverse/: ((j,Flo_Zinv(i,j), i=1,np),j=1,np);

;

Do i=1,n

<zeta_1(i)=Flo_Z(i,1); "|z_1>"

>;

Do i=1,n

<zeta_2(i)=Flo_Z(i,2); "|z_2>"

>;

Do i=1,n

<zeta_3(i)=Flo_Z(i,3); "|z_3>"

>;

Do i=1,n

<zeta_4(i)=Flo_Z(i,4); "|z_4>"

>;

;

!=========================

! for finding psi_2, psi_3, psi_4

!=========================

sprod1=0. ;

Do i=1,n

<sprod1=sprod1+Flo_Zinv(i,1)*Flo_Z(i,1);
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>;

Do((i=1,n), j=1,n)

<Proj1(i,j)=Flo_Z(i,1)*Flo_Zinv(j,1);

>;

call scamat(1/sprod1,Proj1,Proj1,n,np,n,np);

;

!=========================

! for finding psi_3, psi_4

!=========================

sprod2=0. ;

Do i=1,n

<sprod2=sprod2+Flo_Zinv(i,2)*Flo_Z(i,2);

>;

Do((i=1,n), j=1,n)

<Proj2(i,j)=Flo_Z(i,2)*Flo_Zinv(j,2);

>;

call scamat(1/sprod2,Proj2,Proj2,n,np,n,np);

;

!=========================

! for finding psi_4

!=========================

sprod3=0. ;

Do i=1,n

<sprod3=sprod3+Flo_Zinv(i,3)*Flo_Z(i,3);

Do((i=1,n), j=1,n)

<Proj3(i,j)=Flo_Z(i,3)*Flo_Zinv(j,3);

>;

call scamat(1/sprod3,Proj3,Proj3,n,np,n,np);

;

Now in ZSTEP, below is the code used to calculate the projector to deter-
mine the third Floquet vector. The projectors used to determine the second
and fourth Floquet vectors are built similarly.

!+++++++++++++++++++

+SELF, IF=FLOQUET2.

!+++++++++++++++++++

;

scal = exp(rho*dt);

;

!======================

!calculate the projector to determine psi_3

! := Z*exp(Rho*dt)*Z^(-1)

! = [I-|z_1><z_1^(-1)|/<z_1^(-1)|z_1>-|z_2><z_2^(-1)|/<z_2^(-1)|z_2>]e^(rho*dt)

! +|z_1><z_1^(-1)|/<z_1^(-1)|z_1>+|z_2><z_2^(-1)|/<z_2^(-1)|z_2>

!-------------------

call initmat(0. ,Proj,n,np,n,np); "clear Proj"

Do i=1,n

<Proj(i,i)=1. ;

>;

Do((i=1,n), j=1,n)

<Proj(i,j)=Proj(i,j)-Proj1(i,j)-Proj2(i,j);

>;

call scamat(scal,Proj,Proj,n,np,n,np);

Do((i=1,n), j=1,n)

<Proj(i,j)=Proj(i,j)+Proj1(i,j)+Proj2(i,j);

>;
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;

Once the appropriate projector has been calculated the determination of
the Floquet vector is a two step process. The first step is to determine
| zk >. This may be done by advancing Φρ(t, 0) = Φ(t, 0)ZeKtZ−1 with
the projector in (10) along the first period. Although the definitions (8)
and (9) are equivalent the former is used to determine the advance of Φρ.
This decision stems from both the ease of computing with the constant
eigenvectors of the Z matrix as opposed to the time dependent Floquet
Vectors as well as the availability of equations which have been found for
advancing the first expression of the propagator. Since Φρ(0, 0) = I is
known,

Φρ(0, 0) = ΨF (0)e(Λ+K)0Z−1 = ZIZ−1 = I ,

the new propagator Φρ may be advanced iteratively using the final following
equation,

Φρ(t+ dt, 0) = Φ(t+ dt, 0)ZeK(t+dt)Z−1

= Φ(t+ dt, t)Φ(t, 0)ZeKtZ−1ZeKdtZ−1

= eM(t)dtΦρ(t, 0)ZeKdtZ−1

if dt is taken small enough

=

[
I +M(t)dt2
I −M(t)dt2

]
Φρ(t, 0)ZeKdtZ−1

using a Padé approximant of the exponential.

Once Φρ has been advanced along the entire period since

Φρ(T, 0) = Ze(Λ+K)TZ−1

then |zk> may be found through an eigendecomposition of Φρ(T, 0). Note if
k < n, where n is the dimension of K, then <z−1

k | should also be determined
from this decomposition in order that it may be used in the next projector(s).

Mini ker

The modified projector is advanced in ZSTEP;

if (time.eq.0.)

< call INITMAT(0.,Phi_Rho,n,np,n,np);

Do i=1,n

<Phi_Rho(i,i)=1.;

>;
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>;

! ========================================

! advance of Phi_Rho by aspha where aspha:=M(t)

! Phi_Rho(t+dt)=exp(aspha*dt)Phi_Rho*Proj

! exp(aspha*dt)=(I+(dt/2)aspha))/(I-(dt/2)aspha)

! ========================================

! Calculation of I-dt/2aspha

! ----------------------

call oscamat(-dt/2.,n,n,aspha,np,padDen,np);

Do i=1,n

< padDen(i,i)=1.+padDen(i,i);

>;

;

! Product (I+dt/2aspha)Phi_Rho(Proj)

! --------------------------

call oscamat(dt/2.,n,n,aspha,np,padNum,np);

Do i=1,n

< padNum(i,i)=1.+padNum(i,i);

>;

call matmlt(Phi_Rho,Proj,Phi_Rho,n,np,n,np,n,np);

call omatmlt(n,n,n,padNum,np,Phi_Rho,np,Phi_Rho,np);

call Sgesv(np,np,padDen,np,iPiv,Phi_Rho,np,infores);

;

Now, using the well determined |zk>

|ψFk (t)>= Φρ(t, 0) |zk> e−(λk+ρ)t

may be determined along the entire first period. Choosing ρ = −λk simplifies
the results further;

|ψFk > (t) = Φρ(t, 0) |zk> .

With ρ = −λkthe space spanned by the k+ 1 Floquet elements is kept from
damping at all and the necessary information is retrieved. Finally, the newly
determined values of | zk > and <z−1

k | may be updated and the procedure
repeated for the k+1st Floquet vector if necessary.

Mini ker

Portions of the following code in ZSTEP must be excluded as necessary to
coordinate with the value of k.

! Calculating Psi^(F)

!=============================

!------------

! Calculate |psi_1(t)>=Phi_Rho(t)*|z_1>exp(-lambda(1)t)

!------------

! zeta_1 := |z_1> already calculated in $ZINIT

amp = exp(-Flo_lambda(1)*(time+dt));

call MATVEC(Phi_Rho,zeta_1,y_1,n,np,n,np);

call SCAVEC(amp,y_1,psi_1,np);

;
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! !------------

! ! Calculate |psi_2(t)>=Phi_Rho(t)*|z_2>

! ! IF rho.eq.-lambda(2)

! !------------

! ! zeta_2 := |z_2> already calculated in $ZINIT

! call MATVEC(Phi_Rho,zeta_2,psi_2,n,np,n,np); "calculate psi_2"

! ;

;

!------------

! Calculate |psi_2(t)>=Phi_Rho(t)*|z_1>exp(-lambda(2)t)

! IF rho.neq.-lambda(2)

!------------

!zeta_2 := |z_2> already calculated in $ZINIT

amp = exp(-Flo_lambda(2)*(time+dt));

call MATVEC(Phi_Rho,zeta_2,y_2,n,np,n,np);

call SCAVEC(amp,y_2,psi_2,np);

;

!------------

! Calculate |psi_3(t)>=Phi_Rho(t)*|z_3> IF rho=0.080

!------------

! zeta_3 := |z_3> already calculated in $ZINIT

amp = exp(0.008353574*(time+dt));

call MATVEC(Phi_Rho,zeta_3,y_3,n,np,n,np);

call SCAVEC(amp,y_3,psi_3,np);

;

4.3 Results From the Simple Climate Model

The weighted projection method was first tested in Mini ker by using the
first Floquet elements and ρ = −λ2 to determine the second Floquet vector.
Figure 1 below shows the eigenvalues of both Φ(t, 0) and Φρ(t, 0) over the
first period. The first eigenvalue (dark blue) remained the same, the third
(black) and fourth (light blue) eigenvalues were slightly amplified compared
with those of Φ(t, 0), and the second (orange)became periodic with a value
of 1 at the end of the period as expected. The results were checked against
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Figure 1: Eigenvalues of Φ(t, 0) (left) and Φρ(t, 0) (right) with ρ = −λ2.

those already accurately determined by the standard method and the two
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methods produced results identical till 5 decimal places. The four compo-
nents of the first and second Floquet vectors along the first period are shown
in figure 2.
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Figure 2: Four components of the first (left) and second (right) Floquet vectors over one
period.

Before the new method could be used to determine the third Floquet vector
it was necessary to accurately determine the value of −λ3. This was done
through several runs of Mini ker in which various values of ρ, beginning with
the approximation taken from the standard method, were used to narrow
in on the correct amplification. It was determined that λ3 = −0.088353574.
Thus the characteristic time of the corresponding third Floquet multiplier
is just over 11 days. The exact value of λ3 could not be used, however, as
the value of ρ in Mini ker since the amplification of the third eigenvector
also amplified still undetermined model features along the run and the in-
formation was skewed by the end of the period. Therefore, rather, ρ was set
equal to 0.08 and the Mini ker code to evaluate the third Floquet vector was
adjusted accordingly with an amplification of e0.008353574t along the period;

!------------

! Calculate |psi_3(t)>=Phi_Rho(t)*|z_3> IF rho=0.080

!------------

! zeta_3 := |z_3> already calculated in $ZINIT

amp = exp(0.008353574*(time+dt));

call MATVEC(Phi_Rho,zeta_3,y_3,n,np,n,np);

call SCAVEC(amp,y_3,psi_3,np);

;

The left image in figure 3 below shows the four eigenvalues along the period.
The color coded legend, the same as in figure 1 above, corresponds to the
portion of the graph after 200 days. Before then the colors switch between
eigenvalues as the amplified third eigenvalue crosses others throughout the
period. The right image shows the four components of the newly found third
Floquet vector along the first period. It should be mentioned that the vectors
| z1>,<z

−1
1 |,| z2> and <z−1

2 | determined from the eigendecomposition of
Φρ(T, 0) were scalar multiples of the values determined for those vectors
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Figure 3: The four eigenvalues (left) with ρ = 0.08 and four components of the third
Floquet vector (right) along the first period. The exact value of λ3 is −0.088353574 with
a corresponding characteristic time of just over 11 days.

from Φ(T, 0) and Φρ(T, 0) when ρ = λ2. Thus care must be taken in such
a case to use the set of cross normalized | zk> and <z−1

k | to find the next
Floquet vector instead of only updating the values of |z3> and <z−1

3 |.
As in the case of the third Floquet vector the amplification necessary to
keep | y4(t)> from dying out caused amplification of undetermined model
features. In this case, however, due to the extremely rapid damping of eλ4t,
the amplification was too great and the information too skewed to utilise
the new method in determining the fourth Floquet vector. Since, however,
the first three Floquet vectors and exponents are known, calculating the
residual of Φρ(t, 0) as in (7) with the necessary amplifications applied, which
is possible, may provide a means of determining the fourth Floquet vector
if explored further.

5 Left Projector

Alongside the work done to determine the evanescent Floquet vectors was an
attempt to advance the left projector, |ΨF

k (t)><Ψ−Fk (t) | along one period.
It is called such here since, like each kth projector in (10), it projects onto
the space spanned by the kth Floquet elements but this time from the left of
the matrix. As described in LAH:II, due to the decomposition of Φ into its
Floquet elements as in (6), once all the Floquet vectors are known the left
projector must be determined along one period for each k in order to obtain
the cyclic response ∆θk(t). Assuming the Floquet vectors have been found,
the left projector is known at t = 0 ; |ΨF

k (0)><Ψ−Fk (0) |=|zk><z−1
k |, and

thus an attempt was made to advance it step by step along the first period
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using the following final equality,

|ΨF
k (t+ dt)> <Ψ−Fk (t+ dt) |

= Φ(t+ dt, o) |zk> e−λk(t+dt)eλk(t+dt) <z−1
k | Φ

−1(t+ dt, 0)

= Φ(t+ dt, t)Φ(t, o) |zk><z−1
k | Φ

−1(t, 0)Φ−1(t+ dt, t)

= eM(t)dtΦ(t, o) |zk><z−1
k | Φ

−1(t, 0)e−M(t)dt

if dt is small enough

= eM(t)dt |ΨF
k (t)><Ψ−Fk (t) | e−M(t)dt

=

[
I +M(t)dt2
I −M(t)dt2

]
|ΨF

k (t)><Ψ−Fk (t) |

[
I −M(t)dt2
I +M(t)dt2

]
using a Padé approximant of the exponential.

When the projector was advanced in Mini ker, however, it exploded numer-
ically before the end of the period. Looking at another definition of the left
projector;

|ΨF
k (t)><Ψ−Fk (t) |= Φ(t, 0) |zk><z−1

k | Φ
−1(t, 0) ,

illuminates the influence of Φ−1(t, 0) on the projector and thus the cause
of the rapid growth. The eigenvalues of Φ−1(t, 0) are the inverses of the
eigenvalues of Φ(t, 0) and thus are growing exponentially along the period
with very large positive growth constants in the case of the inverses of the
third and fourth Floquet exponents. While no successful method was de-
termined for advancing the left projector, those attempts made highlighted
that future work to advance the projector must focus on how each Floquet
space is behaving and effecting the projector.

6 Conclusion

The new method developed here for determining Floquet vectors associ-
ated to rapid mechanisms in order to aid the seasonally influenced climate
feedback analysis brought new results in providing a general method for
determining Floquet elements of semi-rapid mechanisms and by finding the
before indeterminable third Floquet vector, third Floquet exponent and the
third eigenvector of Z in the simple climate model. Attempts to determine
the fourth Floquet elements as well as the left projector were unsuccessful,
however, they provide direction for further work. In the case of the Flo-
quet elements, the amplification of the yet undetermined model features by
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the weighted projector, overcome in the case of the third Floquet vector,
but insurmountable in the case of the fourth Floquet vector, are important
to examine in order to advance the weighted projection method. Further
work may be done in order to determine whether what was being ampli-
fied were numerical inaccuracies or properties of the model itself, and in
either case what could be done to avoid their amplification. More work
may also be done to determine if the final Floquet vector can be extracted
from the residual of the direct sum of Φρ. In the case of the left projector
further work, as stated earlier, for determining their advance should involve
a method attentive to the behavior of the different Floquet spaces. This is
due to the undamped exponential growth of Φ−1(t, 0)’s eigenvalues in the
left projectors. Eventual success in deriving methods for both the numerical
determination of all Floquet vectors as well at the left projector would bring
useful insight not only to the formal analysis of the effect of the seasonal
cycle on climate feedbacks but in other oscillating systems where Floquet
theory is used as well.
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