TEF, ZOOM, model coupling, feedback analysis

. . .

Jean-Yves GRANDPEIX L.M.D.; Paris; France

Models

appearance

physics, chemistry, biology, economy

mathematics

numerics

software

Mathematics = common language (hopefully)

- we consider models belonging to mathematics and numerics worlds: Models = sets of equations
- always try to exhibit links with upper layers
- $(Sub-)System = model \oplus variables$

Sensitivity, coupling, feedback

Sensitivity = response to a change in forcings

Coupling = response of a variable φ_1 to a change of model relative to another variable φ_2

Feedback = response of a variable to the closure of a loop

Importance of partitionning into labelled submodels

Partitionning and coupling

$$\eta_A \qquad \qquad \partial_t \eta_A = G_A(\eta_A, heta_S)$$

Atmosphere

 θ_S

 φ_S

Ocean

 η_O

$$\partial_t \eta_O = G_O(\eta_O, \varphi_S)$$

- For every sea surface temperature $\theta_S \longrightarrow$ one (unique) solution for η_A
- For every surface flux $\varphi_S \longrightarrow$ one (unique) solution for η_O

Transfer models = Supplementary conditions restauring the behaviour of the complete system.

Usual coupling technique in GCMs :

temperature continuity: $\theta_S = T_{S(\eta_O)}$

flux continuity at surface: $\varphi_S = \Psi_{S(\eta A)}$

TEF; global structure

Two kinds of models

- cells = models relative to parts of the system (partial models; well posed problems)
- transfers = coupling and matching models

Two sets of variables

- state variables $(\vec{\eta}_{\alpha})$
- transfer variables $(\vec{\varphi})$

	Unsteady model		steady model
Equations:	$\partial_t \vec{\eta}_\alpha = \vec{G}_\alpha(\vec{\eta}_\alpha, \vec{\varphi})$	for each cell α	$\vec{G}_{\alpha}(\vec{\eta}_{\alpha}, \vec{\varphi}) = 0$
	$ec{arphi} = ec{f}(\{ec{\eta}_{lpha}\})$	for transfers	$ec{arphi} = ec{f}(\{ec{\eta}_{lpha}\})$

TLS: Tangent Linear System

TEF is mainly designed to study properties of the Tangent Linear System (TLS). TLS is obtained by linearizing equations in the vicinity of a reference state $\vec{\eta}_{ref}$.

$$\delta\eta$$
 $\eta(t_0+\delta t)=\eta(t_0)+\delta\eta$ η_i η_{i+1} η_{i+2} $\eta(t)=\eta_{ref}(t)+\Delta\eta(t)$ $\eta_{ref}(t)$

TLS is used in three ways:

- for dynamic models and small time displacement: TLS is used in the time marching simulation procedure.
- for steady model <u>iterative solving procedure</u>: Newton Raphson method makes use TLS.
- for pertubation studies.

Cells

Unsteady model		steady model
$\partial_t \vec{\eta}_\alpha = \vec{G}_\alpha(\vec{\eta}_\alpha, \vec{\varphi})$	for each cell α	$\vec{G}_{\alpha}(\vec{\eta}_{\alpha}, \vec{\varphi}) = 0$

 η

$$\delta \vec{\eta} = \vec{\eta}(t_0 + \delta t) - \vec{\eta}(t_0)$$

$$\delta \vec{\varphi} = \vec{\varphi}(t_0 + \delta t) - \vec{\varphi}(t_0)$$

 $\eta_{\alpha}(t)$

 $\delta \vec{\eta}_{\alpha} = \delta \vec{\eta}_{\alpha,dec} + F \cdot \delta \vec{\varphi}$

 $\eta_{lpha,dec}(t)$

F = influence matrix

 η_0

 t_0

$$t_f = t_0 + \delta t$$

${\bf Transfers}$

$$\vec{\varphi} = \vec{f}(\{\vec{\eta}_{\alpha}\})$$

 $\vec{\eta}_{\alpha}(t_0 + \delta t) - \vec{\eta}_{\alpha}(t_0)$ is considered as a pertubation:

$$\delta \vec{\varphi} = \sum_{\alpha} \partial_{\alpha} f \cdot \delta \vec{\eta}_{\alpha}$$

 $\delta \vec{\varphi} = \sum_{\alpha} \partial_{\alpha} f \cdot \delta \vec{\eta}_{\alpha}$ where: $\partial_{\alpha} f = \frac{\partial \vec{f}}{\partial \vec{\eta}_{\alpha}}$

Coupling equation: state variable elimination

Cell and transfer equations:

$$\begin{cases}
\delta \vec{\eta}_{\alpha} = \delta \vec{\eta}_{\alpha,dec} + F \cdot \delta \vec{\varphi} \\
\delta \vec{\varphi} = \sum_{\alpha} \partial_{\alpha} f \cdot \delta \vec{\eta}_{\alpha}
\end{cases} \tag{1}$$

Elimination of state variables:

$$\begin{cases}
(1 - \sum_{\alpha} \partial_{\alpha} f \cdot F_{\alpha}) \delta \vec{\varphi} = \delta \vec{\varphi}_{ins} \\
\vec{\varphi}_{ins} = \sum_{\alpha} \partial_{\alpha} f \cdot \delta \vec{\eta}_{\alpha,dec}
\end{cases}$$
(2)

- When cells are insensitive $(F_{\alpha} = 0)$, then $\delta \vec{\varphi} = \delta \vec{\varphi}_{ins}$
- The coupling matrix $C = \sum_{\alpha} \partial_{\alpha} f$. F_{α} represents the effect of cell feedbacks.

Time discretized feedback gains

coupling Example: Ocean/atmosphere thermodynamic

temperature and heat flux). 1D problem with 2 interface variables (sea surface

constraint does it impose on the coupling method? Question: is the feedback important? what

Atm.
$$\vec{\eta}_A$$

$$\delta \vec{\eta}_A = \delta \vec{\eta}_{A,dec}(\delta t) + \vec{F}_A(\delta t) \delta \theta$$

$$\delta ec{\eta}_O = \delta ec{\eta}_{O,dec}(\delta t) + ec{F}_O(\delta t) \delta arphi$$

Ocean $ec{\eta}_O$

 $\delta\theta = \partial \vec{f_O} \cdot \delta \vec{\eta_O}$

 \mathcal{E}

 $\delta \varphi = \partial \vec{f}_A \cdot \left| \delta \vec{\eta}_A \right|$

State variable elimination:

$$\begin{cases}
\delta\varphi = \partial \vec{f}_A \cdot \vec{F}_A \ \delta\theta + \partial \vec{f}_A \cdot \delta\eta_{A,dec} \\
\delta\theta = \partial \vec{f}_O \cdot \vec{F}_O \ \delta\varphi + \partial \vec{f}_O \cdot \delta\eta_{O,dec}
\end{cases}$$
(3)

Elimination of $\delta\varphi$

$$(1 - \partial \vec{f}_O \cdot \vec{F}_O \, \partial \vec{f}_A \cdot \vec{F}_A) \, \delta \theta = \partial \vec{f}_O \cdot \delta \vec{\eta}_{O,dec} + \partial \vec{f}_O \cdot \vec{F}_O \, \partial \vec{f}_A \cdot \delta \vec{\eta}_{A,dec}$$

$$(4)$$

Time discretized feedback gains

$$\begin{cases}
(1-g)\delta\theta = \delta\theta_{ins}^{*} \\
g = \partial\vec{f}_{O} \cdot \vec{F}_{O} \, \partial\vec{f}_{A} \cdot \vec{F}_{A} \\
\delta\theta_{ins}^{*} = \partial\vec{f}_{O} \cdot \delta\vec{\eta}_{O,dec} + \partial\vec{f}_{O} \cdot \vec{F}_{O} \, \partial\vec{f}_{A} \cdot \delta\vec{\eta}_{A,dec}
\end{cases} (5)$$

$$F_A$$
 ∂f_A

 θ

$$\partial f_{\zeta}$$

Open loop: system made insensitive to
$$\theta$$
 by setting $\vec{F}_A = 0$.

Equation reads $\delta\theta = \delta\theta_{ins}^*$.

the feedback. Closed loop: the gain g comes in: g describes the effect of

Dynamic coupling analysis

(= exact solving of TLS)

Classically: linear differential system \longrightarrow Laplace transform.

Here, we use Borel transform instead:

$$\mathcal{B}(f)_{(\tau)} = \tilde{f}_{\tau} = \frac{1}{\tau} \int_0^\infty exp(-\frac{t}{\tau}) f(t) dt \tag{6}$$

Why Borel transform? Because it is very easy to compute: any computer code, that uses Crank-Nicolson scheme to compute $\delta\varphi_{CN}(\delta t)$ (such as ZOOM), can compute numerically $\delta\tilde{\varphi}(\tau)$, thanks to:

$$\delta \varphi_{CN}(\delta t) = 2\delta \tilde{\varphi}(\delta t/2)$$

Dynamic coupling analysis - 2

Example: influence of high cloud cover on troposphere temperature

$$\leftarrow$$
 High cloud cover H_{CC}

T

 \leftarrow Troposphere temperature

Elimination of all variables except H_{CC} and T.

$$(1 - \mathcal{C})\delta\vec{\varphi} = \delta\vec{\varphi}_{ins}$$

Row corresponding to T:

$$(1 - C_{11}(\tau))\delta \tilde{T}(\tau) - C_{12}(\tau)\delta \tilde{H}_{CC}(\tau) = \delta \tilde{T}_{ins}(\tau)$$

Dynamic coupling analysis - 3

T equation

$$\delta \tilde{T}(\tau) = \frac{1}{1 - C_{11}(\tau)} \delta \tilde{T}_{ins}(\tau) + \frac{C_{12}(\tau)}{1 - C_{11}(\tau)} \delta \tilde{H}_{CC}(\tau)$$

Main point: coefficients C_{1i} are of the form $\partial_{\alpha} f_1...F_{\beta j}$; they are independent of H_{CC} model (= $\partial_{alpha} f_2$). \Rightarrow Influence of H_{CC} onto T is explicit. Inverting \mathcal{B} yields:

$$\delta T(t) = \dots + \mathcal{B}^{-1}(\frac{C_{12}}{1 - C_{11}}) * \partial_t(\delta H_{CC}(t))$$

- coupling coefficient $\mathcal{B}^{-1}(\frac{C_{12}}{1-C_{11}})$ is the response of T to a step in H_{CC} at t=0.
- limit for large t = steady state coupling coeffcient
- direct simulation confirms that it takes approximately 10 years for the system to reach its equilibrium

Saliant features

simulations apart from the fact TEF and ZOOM do perform

- tool model splitting and coupling is an efficient modelling
- model splitting enables coupling and feedback analysis
- importance of studying the Tangent Linear System
- feedback gains are properties of the TLS (not effects of non-linearities)
- coupling coefficients describe the response of a variable variable to a change in the model corresponding to another
- feedback gains describe the effect of the closure of a feedback loop
- as well as values of coupling coefficients and feedback full dynamic analysis of TLS yields characteristic times