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Models

appearance

physics, chemistry, biology, economy

mathematics

numerics

software

Mathematics = common language (hopefully)

e we consider models belonging to mathematics and numerics worlds:
Models = sets of equations

e always try to exhibit links with upper layers

e (Sub-)System = model @ variables
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Sensitivity = response to a change in forcings

Sensitivity, coupling, feedback

Coupling = response of a variable ¢ to a change of model relative to another

variable ¢o

Feedback = response of a variable to the closure of a loop

Importance of partitionning into labelled submodels
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Partitionning and coupling

nA Oina = Ga(na,0s)
Atmosphere
Os
Ys
Ocean
1m0 dno = Go(no, s)

e For every sea surface temperature g — one (unique) solution for 74
e For every surface flux ¢ — one (unique) solution for 7o

Transfer models = Supplementary conditions restauring the behaviour of the
complete system.

temperature continuity: 0s = Tsno)

ps = ‘I’S(nA)/

Usual coupling technique in GCMs :

-

flux continuity at surface:
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TEF ; global structure

Two kinds of models

e cells = models relative to parts of the system (partial models ; well posed

problems)
e transfers = coupling and matching models
Two sets of variables
e state variables (7,)

e transfer variables ()

Unsteady model steady model
Equations : | 3,77, = G o (7, §) Go (T, 3) = 0
QB — f({ﬁa}) QB — f({ﬁa})
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TLS: Tangent Linear System

~

TEF is mainly designed to study properties of the Tangent Linear System (TLS).

TLS is obtained by linearizing equations in the vicinity of a reference state 7. .

on n(to + 6t) = n(to) + o
n(to) i
Mit+1
Mit2
(t) = Nreg (t) + An(t)
A
Nref (1)
TLS is used in three ways:

e for dynamic models and small time displacement: TLS is used in the
time marching simulation procedure.

e for steady model iterative solving procedure: Newton Raphson method
makes use TLS.

K e for pertubation studies.
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‘ Unsteady model ‘

Cells

‘ steady model

‘ atﬁoz — éa(ﬁaa ‘75) ‘

N (t)

na,deC(t)

o

| G, @) =

tf:t0+5t

0

617 = 1(to + 9t) — 77(to)
6p = P(to + dt) — B(to)

577@ — 5ﬁa,dec + F. 5@’

F' = influence matrix




Transfers

—

95 — f({ﬁa}>

M (to + 0t) — 77, (to) is considered as a pertubation:

0 =Y. Oanf . 074

where: 0, f = ;;Tf
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Coupling equation: state variable elimination

Cell and transfer equations:

5ﬁa — 5ﬁa,dec + F. 56
0 =), 0uaf . 074

Elimination of state variables:

(1—=>,0af . Fo)d@ = 0Gins
QBins — Za aocf . 5ﬁa,dec

e When cells are insensitive (F, = 0), then 6¢& = §F;ns

e The coupling matrix C = Z O.f . F,, represents the effect of cell feedbacks.
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Time discretized feedback gains

Example : Ocean/atmosphere thermodynamic
coupling

1D problem with 2 interface variables (sea surface
temperature and heat flux).

Question: is the feedback important 7 what

constraint does it impose on the coupling method ?

Atm. 7A
0774 = 07 A dec(0t) + Fa(6t)56

30 = dfp . 070 9 0 Sp = Ofa . Biia

570 = 070.dec(0t) + Fo(5t)0¢p

—

Ocean 70

State variable elimination:

%G = @\%& . th 06 + @W& . %&tho
00 = @\%O . WHQ %ﬁ + @\%Q . %@v@u&mo

Elimination of d¢p

(1-0fo . Fo 0fa . Fa) 00 = 8fo - 07j0,dec+0fo - Fo Ofa . 0774 jtec

N W,




Time discretized feedback gains - 2

g=0fo.Fo dfa.Fa (5)
L %%Wbm = @.\%Q . %@v@u&mo + @.\%O . Nm“Q @\w& . %&.\f&mo

7\

Fy 0fa
0 @
Fo dfo

Open loop: system made insensitive to 6 by setting Fy=0.
Equation reads 060 = 46}

ms-

Closed loop: the gain g comes in: g describes the effect of
the feedback.
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Dynamic coupling analysis

( = exact solving of TLS)
Classically: linear differential system — Laplace transform.

Here, we use Borel transform instead:

By =Fr =+ [ ean(-Drteya (6

Why Borel transform 7 Because it is very easy to compute: any computer code,
that uses Crank-Nicolson scheme to compute dpcon(dt) (such as ZOOM), can
compute numerically d¢(7),thanks to:

dpon (0t) = 204(0t/2)
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Example : influence of high cloud cover on troposphere temperature

Dynamic coupling analysis - 2

<— High cloud cover H¢e

T <— Troposphere temperature

Elimination of all variables except Hoe and T.
(1 =C)o@ = 0Pins

Row corresponding to 7"

-

(1 — Cll(T))(ST(T) - Clg(T)éHac(T) == 5Tzns(7_)
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Dynamic coupling analysis - 3

T equation

0T(0) = TGy Tol7) + 1= s P

Main point: coefficients Cy; are of the form 0, f1...F3; ; they are independent
of Hoceo model ( = Ouiphaf2). = Influence of Hoe onto T is explicit. Inverting B

yields:
C
ST(t) = ...+ B Y (—2 ) % 8,(6Heo ()
1—-Chia
e coupling coefficient B_l(lfﬁ) is the response of T to a step in Hoco at

t=0.
e limit for large ¢ = steady state coupling coeffcient

e direct simulation confirms that it takes approximately 10 years for the
system to reach its equilibrium

o /




4 N

Saliant features

apart from the fact TEF and ZOOM do perform

simulations

e model splitting and coupling is an efficient modelling

tool
e model splitting enables coupling and feedback analysis
e importance of studying the Tangent Linear System

e feedback gains are properties of the TLS (not effects of

non-linearities)

e coupling coefficients describe the response of a variable
to a change in the model corresponding to another

variable

e feedback gains describe the effect of the closure of a
feedback loop

e full dynamic analysis of TLS yields characteristic times
as well as values of coupling coefficients and feedback

gains
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