Modeling The Hdo Cycle With A Global Climate Model During The My34 “Dusty” Season. M. Vals, (Margaux.Vals@Latmos.Ipsl.Fr), L. Rossi, F. Montmessin, F. LefèVre, Laboratoire AtmosphèRes, Milieux, Observations Spatiales, Paris, Guyancourt, France, F. Gonzalez-Galindo, Instituto De Astrofı́Sica De Andalucı́A-Csic, Granada, Spain, A. Fedorova, M. Luginin, Space Research Institute (Iki), Moscow, Russia, F. Forget, E. Millour, Laboratoire De MéTéOrologie Dynamique, Paris, France, O. Korablev, A. Trokhimovskiy, A. Shakun, Space Research Institute (Iki), Moscow, Russia, A. Bierjon, Laboratoire De MéTéOrologie Dynamique, Paris, France, L. Montabone, Laboratoire De MéTéOrologie Dynamique, Paris, France, Space Science Institute, Boulder, Co, Usa. Introduction The D/H Ratio Observed In A Planetary Atmosphere Is A Proxy For The Ratio Of The Current Water Reservoir Over The Initial Water Reservoir Of The Planet. The Current D/H Ratio Measured In The Martian Atmosphere Is At Least Five Times That Of The Vienna Standard Mean Ocean Water (Vsmow) [1],[2],[3],[4]. This High Value Of The Martian D/H Ratio, Derived From The Hdo/H2 O Abundance Ratio, Is A Precious Indicator Of The Large Escape Of Water From The Martian Atmosphere Along Time. Apart From The Mass Difference Between Both Isotopes, The Differential Escape Of H And D Comes From The Preferential Photolysis Of H2 O Over Hdo [5] And The Vapor Pressure Isotope Effect (Vpie) That Produces An Isotopic Fractionation At