THERMAL INERTIA AT THE MSL AND INSIGHT MISSION SITES ON MARS D. Singh , Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India (sdeepak@umich.edu), S. Uttam, Physical Research Laboratory, Ahmedabad, India. Abstract: For planetary surface materials, thermal inertia is the critical property that governs the surface’s daily thermal response and controls the diurnal and seasonal surface temperature variations. Here we use the ground measurements made by the MSL Curiosity rover and the InSight lander to determine the thermal inertia of two sites on Mars. This study compares the variation of thermal inertia during and after the Large Dust Storm (LDS) of Martian Year (MY) 34. We derive a simple approximation (using energy balance), which utilizes surface albedo, surface energy flux, and diurnal change in the surface temperature for the surface thermal inertia determination. The average thermal inertia in MY34 is about 39.2%, 3.7%, and 3.4% higher than MY35 average thermal inertia for the MSL, InSight (FOV1), and InSight (FOV2), respectively. The thermal inertia at the InSight (FOV1) is consistently lower by about 20 J m– 2 s–1/2 K–1 than the InSight (FOV2) site for all scenarios, indicating notable variation in the region’s surface composition. The best-fit surface albedo in MY34 (determined using the KRC model) are about 0.08, 0.05, and 0.03 higher than MY35 surface albedo for the MSL, InSight (FOV1), and InSight (FOV2), respectively. An increase in both surface albedo and thermal inertia during the LDS indicates that the underlying surface is both more thermally resistant and more reflective than the overlying loose dust. References: Jakosky, B. M., Mellon, M. T., Kieffer, H. H., Christensen, P. R., Varnes, E. S., & Lee, S. W. (2000). The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research: Planets, 105(E4), 9643–9652. https://doi.org/10.1029/1999JE001088 Kieffer, H. H. (2013). Thermal model for analysis of Mars infrared mapping. Journal of Geophysical Research: Planets, 118(3), 451–470. https://doi.org/10.1029/2012JE004164 Martínez, G. M., Rennó, N., Fischer, E., Borlina, C. S., Hallet, B., Juárez, M. de la T., Vasavada, A. R., Ramos, M., Hamilton, V., Gomez‐ Elvira, J., & Haberle, R. M. (2014). Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. Journal of Geophysical Research: Planets, 119(8), 1822– 1838. https://doi.org/10.1002/2014JE004618 Putzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. (2005). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173(2), 325–341. https://doi.org/10.1016/j.icarus.2004.08.017 Singh, D., Flanner, M. G., & Millour, E. (2018). Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR. Journal of Geophysical Research: Planets, 123(3), 780–791. https://doi.org/10.1002/2017JE005368 Spiga, A., & Forget, F. (2009). A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. Journal of Geophysical Research: Planets, 114(E2). https://doi.org/10.1029/2008JE003242 Tian, J., Su, H., He, H., & Sun, X. (2015). An Empirical Method of Estimating Soil Thermal Inertia. Advances in Meteorology, 2015, e428525. https://doi.org/10.1155/2015/428525 Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. (2017). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372–386. https://doi.org/10.1016/j.icarus.2016.11.035 Figure: Estimated thermal inertia using derived formulation and observed surface temperatures. The black dotted line indicates the boundary between MY34 and MY35. Wang, J., Bras, R. L., Sivandran, G., & Knox, R. G. (2010). A simple method for the estimation of thermal inertia. Geophysical Research Letters, 37(5). https://doi.org/10.1029/2009GL041851