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a b s t r a c t 

An explanation of long-lived Saturn’s North Polar hexagonal circumpolar jet in terms of instability of the 

coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water 

model, where scarcely known vertical structure of the Saturn’s atmosphere is averaged out. The absence 

of a hexagonal structure at Saturn’s South Pole is explained similarly. By using the latest state-of-the-art 

observed winds in Saturn’s polar regions a detailed linear stability analysis of the circumpolar jet is per- 

formed (i) excluding (“jet-only” configuration), and (2) including (“jet + vortex” configuration) the north 

polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its 

azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, 

is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable 

mode of small amplitude, or with the random combination of unstable modes. It is shown that develop- 

ing barotropic instability of the “jet+vortex” system produces a long-living structure akin to the observed 

hexagon, which is not the case of the “jet-only” system, which was studied in this context in a number of 

papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist 

convection, which was recently suggested to be at the origin of Saturn’s North Polar vortex system in the 

literature, is investigated in the framework of the model and does not alter the conclusions. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Visible imagery acquired during the Voyager 1 & 2 fly-by of

aturn in 1980–1981 revealed the hexagonal cloud pattern of Sat-

rn’s north pole at about 77 ° N planetographic latitude ( Godfrey,

988 ). As followed from these early observations, the motion of

he associated cloud structures suggested that the structure is re-

ated to a circumpolar jet-stream, but the hexagon pattern itself

ppeared to be stationary (i.e. very close to the rotation of Saturn’s

nterior). The early diagnostics were confirmed first in the 1990s

y Hubble Space Telescope observations ( Sanchez-Lavega et al.,

993 ), and then in the 20 0 0s by the Cassini orbiter firstly in ther-

al infrared images ( Baines et al., 2009 ), followed by visible im-

gery once Saturn’s northern pole came out of the winter dark-

ess. The high spatial resolution of the Cassini visible and infrared

mages permitted to evidence the presence of the north polar vor-

ex (NPV), in addition to the hexagonal jet. The exceptional dura-

ion of the Cassini mission allowed Sánchez-Lavega et al. (2014) to

onclude that the hexagon resists seasonal changes, before
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ntunano et al. (2015) compiled the repeated cloud-layer obser-

ations of the hexagon to obtain a complete profiling of the winds

n this structure. Thus far, such hexagonal feature has not been ob-

erved at Saturn’s South Pole. 

The persisting hexagonal pattern in polar projected maps

emonstrates that a prominent wavenumber 6 perturbation shapes

aturn’s circumpolar jet stream at latitude ≈ 77 ° N. An early inter-

retation by Allison et al. (1990) was that the anticyclonic North

olar Spot (NPS) vortex (not to confuse with the polar vortex), vis-

ble at that time in the vicinity of the hexagon forced a station-

ry planetary (Rossby) wave which gave the polar jet its hexagonal

hape, but the apparent disappearance of the NPS between 1995

nd 2004 invalidated this scenario (see Sayanagi et al., 2016 for the

istory of the observations of the NPS and the hexagon). The na-

ure and origin of the hexagon has been addressed since then both

n laboratory experiments and numerical models. Polygonal struc-

ures are often reported in rotating flow experiments, although

he wavenumber 6 configuration remained elusive ( Vatistas et al.,

994; Marcus and Lee, 1998; Jansson et al., 2006; Bergmann et al.,

011 ). Aguiar et al. (2010) discussed more specifically the relevance

f rotating tank experiments to modeling Saturn’s polar jet and

oncluded that the hexagonal structure could be resulting from the

arotropic instability of the jet, and that the wavenumber 6 promi-

ence is conditioned by the intensity of the jet and bottom friction.
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They were first to notice a dependence of the azimuthal wavenum-

ber of the most unstable mode on the deformation radius in their

instability analysis in the framework of the quasi-geostrophic (QG)

model. Using a general circulation model with a domain limited to

Saturn’s northern polar region, and a polar jet as initial condition,

Morales-Juberias et al. (2011) reproduced the structures found by

Aguiar et al. (2010) in laboratory experiments: the hexagonal shape

resulting from a vortex street formed by developing barotropic in-

stability of the jet, with cyclonic and anticyclonic vortices at pole-

ward and equator-ward sides of the jet, respectively. Yet, the vor-

tices forming the street were too large and too strong, with respect

to observations, and this mechanism was giving rise to larger prop-

agation speed than the observed one ( Sánchez-Lavega et al., 2014 ).

Morales-Juberias et al. (2015) proposed an alternative “meander-

ing jet” model which matches the morphology (including sharp

potential vorticity, hereafter PV, fronts) and phase speed of Sat-

urn’s hexagon, provided that an ad hoc vertical shear of the jet

is introduced. The same authors concluded that deep jets evolve

into vortex streets and shallow jets evolve into meanders, both

being possibly at the origin of the absence of seasonal variabil-

ity of the hexagonal jet. Although the meandering jet model of

Morales-Juberias et al. (2015) offers thus far the best agreement

with the characteristics of the observed Saturn’s hexagon, the pu-

tative meridional temperature gradients accompanying the vertical

shear of the (supposedly shallow) polar jet are yet to be confirmed.

Despite these developments, there is not enough convincing dy-

namical explanation of the existence and origin of Saturn’s North

Polar hexagon, as well as the absence of its counterpart at Sat-

urn’s South Pole. In the present paper we propose an alternative

approach to the problem. Our analysis is performed in the frame-

work of a simple rotating shallow water (RSW) model, which is of

use for modeling atmospheres of giant planets, cf. Dowling (1995) .

A specificity of our approach is that the model is considered in the

polar tangent plane approximation, the so-called gamma-plane, in

order to take into account the variations of the Coriolis parame-

ter with latitude in the polar regions. The use of the model, which

may be obtained by vertical averaging of the full primitive equa-

tions, is justified by the fact that information on the vertical struc-

ture of Saturn’s atmosphere is scarce. All vertical structure being

averaged out, the model is barotropic, in the sense that it does

not contain any vertical shear, although it does allow for vertical

stretching of fluid columns. In the same sense the instabilities in

the model will be called barotropic below. The model combines

simplicity with dynamical consistency and, with the astronomi-

cal parameters of Saturn being given, contains a single adjustable

parameter: the effective Rossby deformation radius, R d . The QG

model used for theoretical analysis in Aguiar et al. (2010) can be

obtained from RSW in the limit of vanishing Rossby numbers. The

RSW model, which allows for efficient high-resolution numerical

implementations, has been used for the analysis of various features

of the Saturn’s atmosphere: mid-latitude jets ( Showman, 2007 ),

equatorial super-rotating jet ( Scott and Polvani, 2008 ), NPV ( O’Neill

et al., 2016 ) (in two-layer version with a moist-convective forc-

ing in the latter work). Yet, to our knowledge, there are no stud-

ies in the literature applying the RSW model to the developing

barotropic instability of the circumpolar Saturn’s jet. The particu-

larity of our approach is that we explore the dynamics in two dif-

ferent configurations of the mean zonal velocity profile: (i) consid-

ering only the 77 ° N circumpolar jet, with observed velocity pro-

file, and no central vortex at 90 ° N (i.e. the traditional “jet-only”

configuration considered in all above-cited papers), and (ii) consid-

ering the full “jet + vortex” system with the observed zonal veloc-

ity profile, which was not considered in the existing literature in

this context. The state-of-the-art mean zonal velocity profiles on

Saturn ( Antunano et al., 2015 ) are used in linear stability studies

and for initializations of nonlinear simulations. 
t  
The paper is organized as follows: in Section 2 we introduce the

odel, discuss its general features and vortex solutions, present

he analytical fits of the observed velocity profiles, and formulate

he linear stability problem. Section 3 is devoted to the study of

he jet-only configuration, with presentation of the results of the

inear stability analysis and nonlinear simulations of the saturation

f the instability. In Section 4 we analyse the jet+vortex configu-

ation along the same lines. Finally, in Section 5 we present our

onclusions and discussion. A discussion of the influence of the ef-

ects of moist convection upon the evolution of the instability is

iven in the Appendix A . 

. Rotating shallow water model for large-scale atmospheric 

otions, vortex solutions and their (in)stability 

.1. The model 

Rotating shallow water equations, in the absence of forcing and

issipation read: 

D v 

Dt 
+ 

(
f + 

v 

r 

)
( ̂ z × v ) = −g∇h, (2.1)

Dh 

Dt 
+ h ∇ . v = 0 . (2.2)

ere, by anticipating the application to polar jets and vortices,

e use the cylindrical coordinates on the plane ( r, θ ), and ˆ z is

he unit vector normal to the plane. v = u ̂ r + v ̂  θ is the horizon-

al velocity with u , v denoting radial and azimuthal components,

espectively, D/Dt = ∂ / ∂ t + v · ∇ denotes the material derivative,

 = ̂  r ∂ r + 

ˆ θ (1 /r) ∂ θ is the gradient in the plane, where ∂ r and

 θ denote partial derivatives with respect to corresponding argu-

ents. h is the thickness of the layer, g is gravity and f is the Cori-

lis parameter. 

Bottom topography b ( r, θ ) can be easily introduced in the

odel by replacing h by h − b in (2.2) , and can be used to pa-

ameterize the deep layers of the atmosphere. This would however

ntroduce ad hoc parameters, which we want to avoid. 

The RSW equations possess a Lagrangian invariant, the potential

orticity (PV): 

 = 

ˆ z · ( ∇ × v ) + f 

h 

, (2.3)

here ˆ z · ( ∇ × v ) is relative vorticity. The PV anomaly 

 VA = q − f 0 /H 0 , (2.4)

here f 0 and H 0 are reference values of Coriolis parameter and

hickness of the layer (see below), will be used for diagnostics in

hat follows. We consider the RSW equations in the polar tangent

lane, the so-called γ -plane, where the effects of sphericity in the

oriolis parameter are taken into account in the lowest-order ap-

roximation: 

f = f 0 sin (φ) = f 0 

(
1 − 1 

2 R s 
2 

r 2 + . . . 

)

= f 0 
(
1 − γ ∗r ∗2 + . . . 

)
; 0 ≤ r ∗ ≤ R s 

R d 

. (2.5)

ere f 0 = 2 �s , φ is planetographic latitude, �s and R s represent

aturn’s angular velocity and radius, respectively (we will neglect

he effects of non-sphericity in what follows). Approximate values

or the mean Saturn radius and f 0 are respectively 55 , 0 0 0 km and

 . 2 × 10 −4 s −1 ( Read et al., 2009b; Sánchez-Lavega et al., 2014 ). As

s well-known, the rotating shallow water system possesses an in-

ernal scale, the Rossby deformation radius R d = 

√ 

gH 0 / f 0 . 

Eqs. (2.1) , (2.2) can be obtained by vertical averaging between

wo material surfaces of the full three-dimensional primitive equa-

ions for the atmosphere in pseudo-height isobaric coordinates, e.g.
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Fig. 1. Observed zonal velocity profiles in the northern (left panel) and southern (right panel) hemispheres and their fits used in the paper. Three dashed lines represent 

the observed non-dimensional mean and error margins of the averaged zonal velocity ( Antunano et al., 2015 ), and the solid line is the composite of two model profiles (in 

red) fitting the NPV and the circumpolar jet. The fit of the velocity profile of the NPV gives ε = 0 . 15 , α = 0 . 42 , β = 1 . 3 , r 0 = 0 , m = 1 and that of the circumpolar jet gives 

ε = 0 . 08 , α = 0 , β = 2 , r 0 = 3 . 37 , m = 3 . Similarly, south polar vortex correspond to ε = 0 . 16 , α = 0 . 5 , β = 1 . 2 , r 0 = 0 , m = 1 and southern circumpolar jet to ε = 0 . 08 , α = 

0 , β = 2 , r 0 = 4 . 6 , m = 3 . R d ≈ 3200 km is taken for both poles. (For interpretation of the references in the text to color in this figure, the reader is referred to the web 

version of the article.) 
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ouchut et al. (2009) , when one of these surfaces is considered

xed (a constant pressure level), and one is free. The potential

emperature is considered uniform through the layer in this ap-

roximation, although an extension of the model including hori-

ontal potential temperature gradients is possible. In this case g is

he gravity acceleration of Saturn, and H 0 is the thickness of the

ayer. The model can be also considered as a two-layer model with

trong disparity in depths and/or densities of the layers. In this

ase H 0 plays a role of equivalent depth, and g is so-called reduced

ravity, i.e. gravity weighted with the stratification parameter. The

eformation radius in this interpretation is related to stratification

roperties of the atmosphere. Whatever the interpretation is, at a

iven rotation rate f 0 /2 , the deformation radius R d is the only free

arameter of the model, as the velocity scale can be taken to be
 

gH 0 . 

In terms of velocity components, the momentum and mass con-

ervation equations of the model read: 

Du 

Dt 
− v 2 

r 
− f v = −g∂ r h, (2.6) 

D v 
Dt 

+ 

u v 
r 

+ f u = −g∂ θ h, (2.7)

 t h + 

1 

r 
∂ r (hru ) + 

1 

r 
∂ θ (h v ) = 0 . (2.8)

.2. Vortex solutions 

Stationary axisymmetric vortex solutions of the Eqs. (2.6) –(2.8)

re those with zero radial velocity u = 0 , some axisymmetric dis-

ribution of azimuthal velocity v = V (r) , and the thickness field

 ( r ) related to V ( r ) through the cyclogeostrophic (gradient wind)

alance: 

V 

2 

r 
+ fV = g∂ r H. (2.9)

or a given V ( r ), corresponding thickness profile H ( r ) can be ob-

ained by integration of Eq. (2.9) . Note that in the QG model used

or theoretical analysis in Aguiar et al. (2010) the centrifugal ac-

eleration (the first term in (2.9) ) is neglected. While this approx-

mation is fully justified for the circumpolar jet, it is less so for

he central vortex. Herein we consider solutions of (2.9) with V ( r )

orresponding to the observed time- and zonally averaged profiles

f Saturn’s zonal wind ( Antunano et al., 2015 ). These profiles, with

rror margins, are represented by dashed lines in Fig. 1 . 
It is useful to have a simple analytic expression mimicking the

bserved velocity profiles. Although the linear stability analysis can

e accomplished directly with digitized observational velocity pro-

le, it is convenient to control the shape of the velocity profile in

erms of a small number of parameters. Dependence on these pa-

ameters could be then analysed. The PV, which is a key charac-

eristic of the flow, is very noisy, if determined directly from the

bserved profiles, cf. Fig. 2 , whereas a PV field computed from the

nalytic fit enables a straightforward analysis of possible instabil-

ty, see below. For initialization of the non-linear RSW simulations,

he use of the analytic fit allows for straightforward integration of

2.9) , and thus diminish the discretisation errors. Therefore, we fit

he peaks of the velocity distribution with the help of the follow-

ng simple formula: 

 (r) = ε(r − r 0 ) 
α

e −m (r−r 0 ) 
β
, α, β, ε, m ≥ 0 , (2.10)

here ε measures the intensity of the velocity field, r 0 tunes the

istance of the velocity peak of the jet from the pole, and other

arameters allow to fit the shape of the distribution ( r 0 = 0 for the

entral vortex and α = 0 for the jet). All velocity profiles are nor-

alized by their maximum values, so the maximum value of ve-

ocity is equal to ε. By applying this formula to both central vortex

nd circumpolar jet (red curves in Fig. 1 ), we get synthetic profiles

epresented by solid black lines in the figure. We do not seek to

eproduce the “shoulder” in the velocity profile of the central vor-

ex, as it turns out that it is inessential for the dominant long-wave

nstability of the system which we are interested in (a test study

as performed to check this fact). 

The stability of any velocity profile V ( r ) (and corresponding H ( r )

btained from the cyclogeostrophic balance) with respect to small

erturbations can be analyzed by standard means. We represent

ach field as the solution in question and a small perturbation (de-

oted by a prime): 

 (r, θ, t) = u 

′ (r, θ, t) , (2.11)

 (r, θ, t) = V (r) + v ′ (r, θ, t) , (2.12)

 (r, θ, t) = H(r) + h 

′ (r, θ, t) , (2.13)

nd substitute these expressions in the full system (2.6) –(2.8) . Re-

aining only the linear contributions in perturbation terms, we are

ooking for normal-mode solutions with harmonic dependence on

ime and polar angle 

(u 

′ , v ′ , h 

′ )(r, θ, t) = Re [(i ̃  u , ̃  v , ̃  h )(r) e i (lθ−ωt) ] , (2.14)
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Fig. 2. PV distributions corresponding to observed velocity profiles of Fig. 1 in the northern (left panel) and southern (right panel) hemispheres and their analytic fits. 
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where l and ω are the azimuthal wavenumber and the complex

eigenfrequency, ω = ω R + iω I . We thus formulate the problem as

an eigenvalue problem for eigenfrequencies ω. A positive imagi-

nary part for an eigenfrequency ω I corresponds to an instability

with a linear growth rate σ = ω I . 

Following common practice, it is convenient to formulate this

eigenproblem in non-dimensional terms. By using the deformation

radius R d as the scale for r , f −1 
0 

as the scale for t , and 

√ 

gH 0 as the

scale for velocity, the eigenproblem in question takes the following

form: ⎡ 

⎢ ⎢ ⎢ ⎣ 

lV 

∗

r ∗

(
f ∗ + 

2 V 

∗

r ∗

)
−D r ∗(

f ∗ + 

V 

∗

r ∗
+ D r ∗V 

∗
)

lV 

∗

r ∗
l 

r ∗

H 

∗D r ∗ + 

1 

r ∗
D r ∗ (r ∗H 

∗) 
lH 

∗

r ∗
lV 

∗

r ∗

⎤ 

⎥ ⎥ ⎥ ⎦ 

×
[ 

˜ u 

˜ v 
˜ η

] 

= ω 

[ 

˜ u 

˜ v 
˜ η

] 

, (2.15)

where variables marked with the asterisks are non-dimensional,

and D r ∗ denotes the differentiation with respect to r ∗. The non-

dimensional γ ∗ = O (10 −3 ) . It should be noted that the parameter

ε acquires in this way a meaning of the Rossby number. 

Pseudospectral collocation method ( Trefethen, 20 0 0 ) is used

for linear stability analysis of the eigen-problem (2.15) . The sys-

tem is discretized over N -point grid and D r ∗ becomes the Cheby-

shev differentiation operator. To avoid the Runge phenomenon,

Chebyshev collocation points are used, following Lahaye and Zeitlin

(2015) where the method of Boyd (1987) was adapted to the sta-

bility problem of circular vortices. 

3. Instability of the “jet-only” configuration and its nonlinear 

saturation 

In this section, we analyse the instability of the North Polar cir-

cumpolar jet in the absence of the central vortex (“jet-only” con-

figuration), following the existing studies in the literature ( Aguiar

et al., 2010; Morales-Juberias et al., 2011, 2015 ), albeit in a differ-

ent model. The velocity profile of the jet is fitted by a Gaussian,

i.e. the profile (2.10) with α = 0 . The non-dimensional amplitude

of the jet is ε = 0 . 08 . The values of parameters m and r 0 corre-

sponding to the most reasonable fit of the observations with error

bars (see Fig. 1 ) are m = 3 and r 0 = 3 . 37 . 

3.1. Results of the linear stability analysis 

We present in this subsection the results of linear stability anal-

ysis for the “jet-only” configuration, carried out along the lines of
ection 2 . The barotropic instability of zonal jets, as well as its

onlinear saturation, are well understood in geophysical fluid dy-

amics. In the framework of the RSW model sufficient conditions

f stability of zonal jets are given by Ripa’s criteria ( Ripa, 1990 ).

ike for the famous Rayleigh–Kuo stability criterion (which should

e adapted, however, to the current γ - plane context) the mean-

ng of this criterion is that in order to have the instability the

V gradients should change sign within the flow. Physically, this

eans that there should be a possibility for Rossby waves, which

we their existence to PV gradients, to propagate in opposite di-

ections in the flow, phase-lock, and grow in amplitude. As fol-

ows from Fig. 2 there is indeed a change of sign of the gradient of

V, which is by the way more pronounced in the Northern hemi-

phere, and hence we expect the barotropic instability. The main

uestion then is: under what precise circumstances the mode with

zimuthal wavenumber l = 6 is the dominant instability mode of

he circumpolar jet? Our linear stability analysis demonstrates that

or the location of the jet at the distance from the pole r 0 cor-

esponding to the observations, the dominant instability mode has

n azimuthal wavenumber l = 6 for a choice of R d ≈ 3200 km. This

alue of R d is in line with the values of 250 0–30 0 0 km adopted

n Aguiar et al. (2010) and O’Neill et al. (2016) (cf. their Appendix

), and are of the same order of magnitude as the estimates from

bservations in Read et al. (2009a ), although about twice larger.

et R d remains to be better constrained by observations. 

Changing the radial (latitudinal) position of the jet, r 0 , changes

he wavenumber of the most unstable mode. This is shown in

ig. 3 , where the growth rates of unstable modes as a function of ε
nd r 0 are displayed in a range of values of ε and r 0 covered by our

inear stability analysis). Fig. 3 shows that the azimuthal wavenum-

er of the most unstable mode varies from l = 2 to l = 8 with r 0
ncreasing from 2 to 5 in non-dimensional terms. For some values

f r 0 , several modes exhibit very close growth rates, especially at

mall ε: in such configuration a combination of these modes would

ventually shape a circumpolar jet without pronounced polygonal

attern. It is worth noting that an increase of velocity amplitude of

he jet, ε, does not change the azimuthal wavenumber of the most

nstable mode, but increases the growth rate, cf. Fig. 3 . 

It should be emphasized, however, that even a small difference

n growth rates yields exponentially-growing differences between

orresponding wave patterns, whence the primary importance of

he leading mode. 

In Fig. 4 we present the regions in the parameter plane r 0 − m

here unstable modes with a given l have the highest growth rate

t fixed R d . Higher values of m correspond to stronger curvatures of

he velocity distribution. The value of R d also influences the results.

or larger values of R d , the observed position of the maximum jet
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Fig. 3. Dependence of the growth rate of the unstable modes on azimuthal wavenumber for different latitudinal positions of the jet. V ( r ) is Gaussian, with m = 3 , α = 0 , β = 

2 , R d ≈ 3200 km. 

Fig. 4. Left panel: distribution of azimuthal wavenumbers of the most unstable modes in the plane of parameters r 0 − m . Black (white) square corresponds to the observed 

profile in the northern (southern) hemisphere. V ( r ) is Gaussian, with ε = 0 . 08 , α = 0 , β = 2 . Azimuthal wave-numbers larger than eight are not included. Right panel: depen- 

dence of the growth rates of the unstable modes of the “jet-only” configuration in northern hemisphere of the value of equivalent depth. Variation of the growth rate with 

azimuthal wavenumber for the jet corresponding to the black square in the left panel corresponds to R d ≈ 3200 km. 

v  

f  

a  

a  

f  

c

 

o  

p  

S  

e  

p  

v  

(  

i  

a  

d

3

 

i  

s  

s  

s  

b  

L  

o  

o  
elocity shifts closer to the pole in non-dimensional terms and, as

ollows from the results described in the previous paragraph, the

zimuthal wavenumber of the leading instability becomes smaller,

nd vice-versa. By reversing the argument, from our analysis and

rom the fact that the observed dominant wavenumber is l = 6 , we

an infer an estimate for R d ≈ 3200 km. 

An important unsolved problem is the difference in morphol-

gy between the hexagonal northern polar jet and the southern

olar jet which does not exhibit a pronounced polygonal form in

aturn’s atmosphere, as follows from the observations ( Antunano

t al., 2015 ). Our linear stability analysis of “jet-only” configuration

rovides a clue for explanation. As follows from Fig. 1 , at a given

alue of R d , the value of r 0 is higher in the southern hemisphere

i.e. the southern jet is farther from the pole), which yields a lead-

ng instability with l ≥ 8 ( Fig. 3 ), and hence no hexagonal pattern

R  
t Saturn’s South Pole, although a partial polygonal structure was

iscussed in the literature ( Vasavada et al., 2006 ). 

.2. Non-linear saturation of the instability 

In order to study the nonlinear saturation of the instability

dentified in the previous subsection, we perform direct numerical

imulations with a well-balanced entropy-satisfying finite-volume

cheme ( Bouchut, 2007 ) for the RSW equations. The numerical

cheme was successfully tested in studies of the saturation of the

arotropic instability of jets and vortices ( Lambaerts et al., 2011;

ahaye and Zeitlin, 2015 ). The scheme has no explicit dissipation,

nly a numerical one. The dissipation is concentrated in the zones

f strong gradients of velocity and thickness. For flows with low

ossby numbers, as is the case here, the scheme is practically dis-
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Fig. 5. Snapshots of the pressure (left panel) and potential vorticity anomaly (right panel) at t = 150 f 0 
−1 

during the saturation of the instability in the “jet-only” configura- 

tion. 

Fig. 6. Left panel: superposition of the observed mean azimuthal velocity profile with error margins (thin dashed), model azimuthal velocity profile (solid), and mean 

azimuthal velocity profile (dashed) at t = 150 f 0 
−1 

during the saturation of the instability in the “jet-only” configuration. Right panel: evolution of the radial distribution of 

zonally averaged PVA in the “jet-only” configuration. 
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sipationless and allows for high-resolution long-time simulations.

The simulations below are initialized with the most unstable mode

of small amplitude (several per cent with respect to the back-

ground flow) superimposed onto the jet, or with an ensemble of

unstable modes with random phases. 

The evolution of the instability follows the well-known scenario

of the saturation of the barotropic instability. Namely, a series of

vortices of opposite sign appear at the crests and lows of the initial

unstable wave, cf. Fig. 5 . This is similar to the vortex-street pat-

terns observed in simulations of Morales-Juberias et al. (2011) and

laboratory experiments of Aguiar et al. (2010) . As time goes on,

the vortices intensify, resulting in a strong deformation of the po-

lar jet. Although the outcome does preserve a six-fold symmetry

of the initial unstable mode, the observed hexagon with quasi-

straight sides (corresponding to sharp PV gradients) is not repro-

duced. Moreover, as follows from Fig. 6 , the azimuthally averaged

velocity of the resulting structure displays formation of counter-

jets at both sides of the original jet, which is typical for the sat-

uration of the barotropic instability (e.g. Lambaerts et al., 2011 ),

and does not match the observations. At later stages the hexag-

onal structure practically disappears (cf Fig. 7 ). The evolution of

radial distribution of zonally averaged PVA, as follows from the

simulations, is presented in Fig. 6 . As follows from the figure, the

flow reorganizes by diminishing PV gradients and flattening the ra-

dial PV distribution in the region between the circumpolar jet and

the NPV , and thus tending to “cure” the instability, but this pro-

cess is not yet over at t = 450 f −1 
0 

. Indeed, opposite PV gradients

of comparable strength are still present in the flow at this stage,

c  
hus maintaining the barotropic instability. We do not trace further

he process of saturation which is well-known and leads to com-

lete “healing” of the instability, appearance of counter-jets (al-

hough here we have a new element with respect to classical stud-

es element, the γ - effect), and does not produce a quasi-stationary

exagonal structure. Note that the (diminishing) maximum of PVA

hifts poleward during the saturation of the instability. 

Although the l = 6 instability is dominant, the growth rates of

 = 5 and l = 7 modes are rather close to the growth rate of l = 6

 Fig. 3 , left bottom panel). If the initialization of direct numeri-

al simulations is made with a combination of these modes with

qual amplitudes and random phases, the velocity distribution is

till meandering and possesses zonal counter-jets at the intermedi-

te stages, and does not exhibit the hexagonal shape at late stages

not shown). 

. Instability of the “jet + vortex” configuration and its 

onlinear saturation 

It should be stressed that the “jet-only” approximation of

ection 3 , which is being overwhelmingly used in the literature

hus far, would be valid if the jet and the vortex were spatially

ell separated. As follows from Fig. 1 , the velocity peaks are sep-

rated by approximately 3 R d . A well-known property of the RSW

s that the deformation radius R d plays a role of a “screening” ra-

ius beyond which the velocity field generated by a vortex falls

ff exponentially. In spite of their rather well-separated velocity

eaks, the velocity distributions of the central vortex and of the

ircumpolar jet are not sufficiently far from each other to prevent
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Fig. 7. Same as in the left panel of Fig. 5 , but for t = 350 f −1 
0 

, (left panel), and 450 f −1 
0 

(right panel) . 

Fig. 8. Structure of the most unstable mode with l = 6 of “jet-only” configuration (left panel) and of “jet+vortex” one (right panel)in the northern hemisphere corresponding 

to the background velocity profile of Fig. 1 . Vertical lines represent positions of critical levels. 

Fig. 9. Same as in Fig. 4 , but for the “jet+vortex” configuration. The white square corresponds to the parameters in the right panel of Fig. 1 . 
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he central vortex influencing the perturbations of the jet. We will

how below that this influence changes the evolution of the insta-

ility, although the most unstable mode of the composite jet + vor-

ex system remains practically the same as in the “jet-only” case. 

.1. Results of the linear stability analysis 

The most important result following from the linear stability

nalysis in the “jet+vortex” configuration ( Fig. 8 ) is that the most

nstable mode has l = 6 as in the “jet-only” case, and that its

tructure is practically the same. The big picture of the dependence

f the azimuthal wavenumber of the most unstable mode on the

arameter r 0 is also close to what was observed in the “jet-only”

onfiguration, as follows from Fig. 9 . The configuration correspond-
ng to the South Pole has the most unstable mode with l = 8 (at

he value R d ≈ 3200 km used as a reference for comparison with

he “jet-only” case). The position of the southern polar jet being

uch farther from the pole in comparison with the northern po-

ar jet, we can expect, as was the case in the “jet-only” configura-

ion, that instability happens at higher l than the l = 6 leading to

he hexagonal structure. The most unstable l can be pushed even

igher by diminishing R d , as follows from Fig. 10 . As one can in-

er from the observations ( Antunano et al., 2015 ) the southern cir-

umpolar jet has a much higher azimuthal wavenumber than l = 8

 l = 10 − 11 ), we thus may conclude that the equivalent depth near

he South Pole is, by some reason, smaller than in the vicinity of

he North Pole. 
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Fig. 10. Linear growth rates σ of different azimuthal modes of “jet+vortex” configuration at the North Pole (left panel) and South Pole (right panel) at different values for 

R d . The non-dimensional velocity profiles are the same as Fig. 1 . 

Fig. 11. Upper row: snapshots of pressure distribution in “jet+vortex” configuration at time = 150 , 10 0 0 f 0 
−1 

respectively, left and right panels. Lower row: corresponding 

potential vorticity anomaly. V ( r ) is the same as Fig. 1 . For better visibility the colorbars are not the same in two lower figures. 
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4.2. Non-linear saturation of the instability 

Direct numerical simulations of the evolution of the instability

of the “jet+vortex” system were performed using the same proce-

dure as in the “jet-only” case. We present in Fig. 11 the snapshots

of pressure and potential vorticity anomaly at times t = 150 f 0 
−1 

and t = 10 0 0 f 0 
−1 

clearly showing the formation and maintenance

of a hexagonal structure matching the observed feature. Compared

with the evolution of the “jet-only” configuration in Figs. 5, 7 the

“jet+vortex” case exhibits much less deformation of the jet with

time, resulting in the long-living quasi-stationary hexagonal pat-

tern exhibiting sharp straight PV boundaries, which was not the

case in the “jet-only” configuration. The evolution of the zonally

averaged PVA is presented in Fig. 12 . As follows from the figure,

the jet+vortex configuration “cures” the instability at t = 10 0 0 f −1 
0 

.

Positive PV gradients become small and are shifted farther from

the zone of negative PV gradients of the jet. This prevents effective
oupling of Rossby waves moving in opposite direction and, thus,

liminates the cause of instability. We performed a linear stabil-

ty analysis of the mean zonal velocity profile corresponding to the

VA profile at t = 10 0 0 f −1 
0 

of Fig. 12 and found that although the

nstable modes still exist, their growth rates are at least one order

f magnitude less than those of unstable modes of initial profile.

ence, in accordance with qualitative considerations above, the in-

tability does cure itself. This process, is, however, not sufficient to

xplain by itself why the hexagonal structure of finite amplitude

ersists. 

The inclusion of the NPV thus completely changes the evolu-

ion of the circumpolar jet. This could be further demonstrated

y comparing the evolution of the mean azimuthal velocity in the

jet+vortex” case presented in Fig. 13 with that of the “jet-only”

ase in Fig. 6 . The results are presented for two different intensi-

ies of the central vortex: one corresponding to the observations,

nd another one of the same shape but of higher amplitude. In the



M. Rostami et al. / Icarus 297 (2017) 59–70 67 

Fig. 12. Evolution of the radial distribution of zonally averaged PVA in the 

“jet+vortex” configuration. 
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econd case the system reaches a quasi-equilibrium configuration

lose to the observed one in high latitudes. Yet, a discrepancy is

bserved in low latitudes, where the velocity field in simulations

oes not match observations. It should be stressed that our goal

s, in the first place, to understand the dynamical role of the polar

ortex, so we did not seek to represent the details of the velocity

eld beyond the jet with our simple fit. There are also technical

easons for this decision. First, the γ plane approximation is losing

ts accuracy while moving farther from the pole, so trying to repro-

uce fine details of the velocity profile does not make much sense.

econd, in order to prevent emitted inertia-gravity waves from re-

urning back to the vortex, sponge boundary conditions were im-

osed at the boundary of the computational domain at r ≈ 10. The

ean velocity field, therefore should fall off to zero sufficiently far

rom the sponges, to be not perturbed by these latter. However,

he (weak) retrograde jet which is present in the data could play

 role. For example, an exchange of angular momentum between

etrograde and prograde jets in Saturn’s atmosphere was reported

n Liu and Schneider (2015) . Simulations on the whole sphere are

eeded in order to correctly reproduce this part of the velocity

rofile, which is beyond the scope of this paper. 

The same tendency is observed in the distribution of zonally av-

raged angular momentum represented in Fig. 14 by its deviation

rom the initial distribution. The angular momentum of the system
ig. 13. Superposition of the observed zonal velocity profile with error margins (thin dash

solid), and zonal velocity profile after the hexagon formation (dashed). In the right pane

he right panel ( ε = 0 . 15 ), in order to arrive to a close to observations end state. 
s practically conserved (note that we have numerical dissipation

nd sponges at the boundaries). Fig. 14 gives an idea of angular

omentum fluxes which are represented with the help of the dif-

erence of M(t) − M(t 0 ) the angular momentum density per unit

ass M 

(r) = rv + f 
r 2 

2 

(4.1)

t a given time t and a fixed time t 0 . We have chosen t 0 = 100 f −1 
0 

o avoid oscillations due to emission of inertia-gravity waves, and

heir partial reflection by (imperfect) sponges, at the initial stages

f the evolution. The Figure shows a net angular momentum flux

rom the polar vortex to the jet, which diminishes in time in the

et+vortex configuration, but continues to act in the jet-only one. 

A tentative interpretation of the stabilization of the hexagonal

tructure of the circumpolar jet is that the central vortex is close

nough to sweep the inner secondary vortices appearing due to

evelopment of the barotropic instability of the jet, and thus damp

he meandering observed in the “jet-only” case. 

The above-described results correspond to initialization with a

ingle dominant mode l = 6 . We carried out simulations initial-

zed with a spectrum of random-phase modes with different l =
 , 3 , . . . , 8 , which also leads to a hexagonal jet with similar proper-

ies as in the reference case of single-mode initialization, although

t takes a longer time to settle. Fig. 15 illustrates the emergence of

 = 6 as the dominant mode in this case. 

. Summary and discussion 

In the present paper we used the RSW model and the state-of-

he-art Cassini observations of the polar hexagonal jet and central

ortex ( Antunano et al., 2015 ) for a search of dynamical mecha-

isms that could explain the existence and longevity of the Sat-

rn’s northern polar hexagon and the absence of its counterpart

t the South pole. Insufficient knowledge of the vertical structure

f the Saturn’s atmosphere justifies the use of such vertically inte-

rated model, where all information about the vertical structure is

ondensed in a single parameter, the Rossby deformation radius R d .

e used a fit of the observed velocity distributions to perform de-

ailed linear stability analyses and to initialize nonlinear RSW sim-

lations. In contrast with existing literature we analyzed not only

 “jet-only”, but also a “jet+vortex” configuration, and showed the

mportance of including the central vortex in the system. 

Our main results are as follows 

1) There indeed exists a region of parameters where the most

unstable mode of the jet-only configuration has azimuthal

wavenumber l = 6 , although small changes of parameters may
ed), the model zonal velocity profile used in initialization of numerical simulations 

l the amplitude of the initial vortex was taken deliberately higher ( ε = 0 . 2 ) than in 
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Fig. 14. Difference of zonally averaged angular momentum density per unit mass M of “jet” and “jet+vortex” configurations at times t = 200 f −1 
0 

(left panel), and t = 450 f −1 
0 

(right panel), and time t = 100 f −1 
0 

, in the northern hemisphere. Vertical dashed line represents the initial maximum of the jet velocity. 

Fig. 15. Evolution of the logarithms of the normalized amplitudes of the Fourier 

modes of the azimuthal velocity in a simulation of “jet+vortex” configuration in the 

northern hemisphere initialized with modes l = 2 , 3 , . . . , 8 with the same (small) 

amplitudes and random phases. V ( r ) is the same as Fig. 1 . 
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Table 1 

Phase velocity of the hexagon. 

ε R d [km] c [ rad.f 0 ], sole jet c [ rad.f 0 ], jet + vortex 

0.08 3200 7 . 33 × 10 −3 7 . 83 × 10 −3 

0.09 3200 8 . 40 × 10 −3 8 . 88 × 10 −3 

0.10 3200 9 . 38 × 10 −3 9 . 88 × 10 −3 

0.11 2400 7 . 33 × 10 −3 7 . 51 × 10 −3 

0.12 2400 7 . 71 × 10 −3 8 . 20 × 10 −3 

0.14 2400 9 . 06 × 10 −3 9 . 56 × 10 −3 
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2  
shift this value up or down. For the distance actually observed

between the northern polar jet and the North Pole, the az-

imuthal wavenumber l = 6 is obtained for a Rossby radius of

deformation R d ≈ 3200 km. 

2) In the Southern hemisphere configuration, the most unstable

mode has an azimuthal wavenumber higher than 8, with a pre-

cise value depending on R d . This is related to the distance of

the southern polar jet from the South pole being larger than in

the Northern hemisphere. 

3) The preceding results hold for both “jet-only” and “jet+vortex”

cases. The difference between the two configurations is re-

vealed by high-resolution fully nonlinear simulations initialized

either with the most unstable mode of small amplitude, or with

a random combination of unstable modes, superimposed onto

the background velocity profile. In the “jet-only” configuration,

nonlinear saturation of the instability leads to the formation of

counter-jets and strong distortion of the hexagon at the late

stages of the evolution, consistently with the standard scenario

of saturation of the barotropic instability. On the contrary, in

the “jet+vortex” configuration, the central vortex stabilizes the

hexagon, leading at the late stages of the evolution to a config-

uration close to the observed one. 

The persistence of the hexagonal structure in our RSW simula-

tions suggests that the combination of central vortex and hexago-

nal jet structure could be an exact solution to the system. Proving

this hypothesis is a challenge. Such proof would close the problem

because, however robust and long-lived is this structure in our di-
ect numerical simulations, although these latter are very long by

he standards of computational fluid dynamics (more than a thou-

and of inertial periods), they remain far short of the time of ob-

ervations of the Saturn’s hexagon. 

Compared to the existing literature, although the model and the

ackground flow configurations are different, our “jet-only” config-

ration yields a “vortex-street” unstable northern polar hexagon

imilar to the results of Morales-Juberias et al. (2011) , and the

jet+vortex” configuration yields a “meandering jet” stable north-

rn polar hexagon, similar to Morales-Juberias et al. (2015) , fea-

uring the sharp straight-line PV gradients on the six sides of

he hexagon. This means that the presence of the central vortex

ould stabilize the northern polar hexagonal jet already in a simple

arotropic model, while a (baroclinic) vertical shear was necessary

n Morales-Juberias et al. (2015) for stabilization of the hexagonal

meandering jet”. 

In spite of successful representation of the hexagon and ex-

lanation of its absence at the opposite pole, we still have two

aveats in our scenario. The first one is too high phase velocity

f the hexagon. We present in Table 1 the values of the angu-

ar (or phase) velocity c of the hexagon for different values of

arameters, as follows from the linear stability analysis of both

he “jet-only” and the “jet+vortex” configurations (it should be

tressed that the angular velocities retrieved from the direct non-

inear RSW simulations are close to results of the linear stability

nalysis). In both cases, the hexagon in our model is not quasi-

tationary as in the observations ( Sánchez-Lavega et al., 2014 ) ( ω =
0 . 0128 ± 0 . 0013 ◦ longitude per Saturn day), but is rotating with

 	 +8 × 10 −3 radian. f 0 , i.e. ω = +6 ◦ longitude per Saturn day,

eaning that the hexagonal pattern achieves a complete rotation

n Saturn’s rotating frame in 60 days, which is much higher than in

bservations. Sánchez-Lavega et al. (2014) use, however, Voyager’s

ystem III reference frame based on Saturn’s Kilometric Radia-

ion (SKR). Not only Cassini’s SKR measurements yield an 8 −min

onger rotation period with respect to Voyager’s ( Gurnett et al.,

007 ), but alternative methods based on gravity measurements
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1

 Helled et al., 2015 ), or potential vorticity mapping ( Read et al.,

009b ), yield a 5-min to 7-min smaller rotation period, with re-

pect to Voyager’s. Assuming our shallow-water simulations are

onsistent with the atmospheric dynamics framework adopted in

ead et al. (2009b ), which entails that our simulated +6 °/day drift

ate would translate to a slower +3 °/day drift rate in the Voyager

KR reference, and even a drift rate close to 0 °/day in the Cassini

KR reference. 

The second one is the exaggerated zonal velocity in low lati-

udes resulting from the saturation of the instability. The second

aveat is most probably due to the limitations of the gamma-plane

odel, simulations with the RSW model on the full sphere would

e sufficient to answer the question whether this is a defect of the

odel, or of the gamma-plane approximation. The first one can be

robably resolved by introducing a vertical structure in the model,

uch as an active lower layer, although this would require a num-

er of ad-hoc hypotheses which we are reluctant to introduce. We

hould recall that baroclinic waves are slower than the barotropic

nes, so a baroclinic structure would necessary slow down the sys-

em, the quantitative estimates depending on the details of the

ertical structure. 

It should be also emphasized that we were working with a dis-

ipationless version of the model. One of the reasons was to re-

uce the number of ad hoc hypotheses. Of course, an explicit (tur-

ulent) viscosity and diffusion terms could be added in the r.h.s.

f momentum and mass conservation equations of the model. In

rder to maintain any non-trivial steady state a forcing should be

lso added in this case to prevent dissipative decay. Both forc-

ng and dissipation (the values of turbulent viscosity and diffusiv-

ty) would be necessarily ad hoc and should be adjusted to pro-

uce the observed mean flow. Above, we were pursuing the idea

hat the Saturn’s polar hexagon results from an instability of this

ean flow, i. e. the polar jet plus polar vortex system. The only

ifference, if this system is considered as a solution of forced-

issipative equations instead of non-forced non-dissipative ones,

s that eigen-frequencies of its small perturbations would be sub-

ect to additional viscous damping, which is necessarily weak in

iew of longevity of the structure in question. A radiative damping

an be also introduced in the system. In shallow-water modeling

f the atmosphere such damping is usually represented by relax-

tion of the thickness of the layer towards some radiative equilib-

ium value with some characteristic relaxation time. As this time is

resumably very long for Saturn, it was neglected. Another reason

f working with inviscid model is that numerical scheme used for

imulations of the saturation of the instability is practically dissi-

ationless, which allows for very long-time runs. 
i  

“  

ig. A.1. Snapshots of humidity initialized with uniform through the whole domain v

50 , 10 0 0 f 0 
−1 

) and “jet-only” (right panel at t = 150 f 0 
−1 

) configurations. 
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ppendix A. Influence of moist convection upon the 

eveloping instability 

Radiative damping mentioned above is an example of diabatic

ux in the system. Another one, which was recently invoked for

xplanation of the emergence of Saturn’s polar vortex with the

elp of the RSW model ( O’Neill et al., 2016 ), and is recurrently

voked to explain the maintenance of alternating jets on giant

lanets, cf. e.g. Showman (2007) is moist convection. In relation

o the discussion above, the moist waves are slower than the “dry”

nes, so the moist effects could, in principle, explain the observed

lowness of the hexagon’s rotation. The condensation and moist

onvection can be included in the RSW model in a self-consistent

ay ( Bouchut et al., 2009 ). For this, a new quantity, the bulk mois-

ure content in the atmospheric column Q is introduced. It is con-

erved in the absence of phase transitions, but acquires a sink

f condensation is switched on. The condensation happens when-

ver the threshold of saturation Q 

s is crossed. An extra convec-

ive flux through the upper surface of the atmospheric layer is

dded and linked to the latent heat of condensation. The result-

ng equations of so-called moist-convective rotating shallow water

mcRSW) read: 
 

 

 

∂ t v + ( v ·∇ ) v + f ̂  z × v = −g∇ h, 

∂ t h + ∇ ·( v h ) = −βP, 

∂ t Q + ∇ ·(Q v ) = −P, 

(A.1) 

ith a coefficient β related to background stratification, and a sim-

le relaxation parameterization for condensation P with relaxation

ime τ : 

 = 

Q − Q 

s 

τ
H(Q − Q 

s ) . (A.2)

hese new elements can be easily incorporated in the finite-

olume numerical scheme we are using. 

Before making simulations with the full-strength mcRSW, we

an get useful insights from analysing the evolution of Q in the

bsence of the condensation sink. Q then obeys the conservation

quation, the third equation in (A.1) with P ≡ 0. The results of pre-

ious RSW simulations with added passive tracer Q evolving from

nitially uniform distribution are presented in Fig. A.1 , for both

jet-only” and “jet+vortex” configurations. Fig. A.1 shows that the
alue q 0 = 0 . 89 corresponding to the “jet+vortex” (left and middle panel at t = 



70 M. Rostami et al. / Icarus 297 (2017) 59–70 

Fig. A.2. Snapshots of condensation (thick black contours) and isobars 0.6, 0.7 and 0.75 (grey contours) in a most-precipitating environment, as follows from the simulations 

with moist-convective RSW of Bouchut et al. (2009) . Humidity is distributed uniformly in the flow domain, with initial value Q = 0 . 48 with a saturation threshold at 

Q s = 0 . 51 . Other initial or saturation values do not change the evolution qualitatively. 
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excess of humidity resulting from the evolution of the system is

concentrated in the vicinity of the jet, and does not affect the cen-

tral vortex. It is generally known, and confirmed by the simulations

with moist-convective RSW in Lambaerts et al. (2011) and Rostami

and Zeitlin (2017) , that condensation and related latent heat re-

lease lead to intensification of the cyclones and damping of the an-

ticyclones So we can infer that in the absence of additional sources

of moisture, condensation would not help to maintain the central

vortex, and thus to increase the longevity of the system, but would

only impact the hexagonal jet on its equatorward flank. Simula-

tions with the full moist-convective RSW (A.1) confirm this predic-

tion, as follows from Fig. A.2 where evolution of condensation in

time is displayed. Again, this result may change in the two-layer

version of the model, but its introduction requires more informa-

tion on the vertical structure of the Saturn’s atmosphere. 
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