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Abstract The propagation of acoustic and gravity waves in planetary atmospheres is
strongly dependent on both wind conditions and attenuation properties. This study presents
a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes
into account the effect of background winds, attenuation phenomena (including relaxation
effects specific to carbon dioxide atmospheres) and wave amplification by exponential den-
sity decrease with height. The simulation tool is implemented in 2D Cartesian coordinates
and first validated by comparison with analytical solutions for benchmark problems. It is
then applied to surface explosions simulating meteor impacts on Mars in various Martian
atmospheric conditions inferred from global climate models. The acoustic wave travel times
are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations
predict that acoustic waves generated by impacts can refract back to the surface on wind
ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gra-
dient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which
allows a night-side detection of impacts at large distances in Mars plains. Such theoretical
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predictions are directly applicable to future measurements by the INSIGHT NASA Discov-
ery mission.

Keywords Mars · InSight mission · Atmosphere · Acoustic waves · Gravity waves ·
Impacts · Pressure sensor · Numerical modeling

1 Introduction

Measurements of pressure perturbations from infrasounds and gravity waves in the atmo-
sphere of Mars provide a way to locate in space and time the infrasonic sources and to infer
the Martian atmospheric properties from the wave propagation. The two main differences
between Mars and Earth in terms of the infrasonic wave propagation are the following. First,
the day-side temperature structure of Mars atmosphere is such that the sound velocity con-
tinuously decreases from the surface up to the thermosphere, preventing acoustic signals,
generated at the bottom of the atmosphere, from refracting back to the surface. Second, the
attenuation of acoustic waves by carbon dioxide molecular relaxation must be accounted
for on Mars (Bass and Chambers 2001; Williams 2001; Petculescu and Lueptow 2007;
Hanford and Long 2009). In particular, the relaxation frequency of vibrational modes of
CO2 molecules is within the acoustic-infrasonic range below 80 km of altitude. Thus the at-
tenuation of infrasounds is higher than for the Earth. A consequence of those two differences
is that Mars appears less favorable than the Earth for ground measurement of infrasonic sig-
nals coming from sources located at the surface. Yet, those effects remain to be quantified
especially in the context of the INSIGHT mission that will deploy pressure and seismic
sensors on the surface.

Infrasound and gravity wave propagation on Earth has been studied since the seventies
(Hines 1960) but this topic regained interest recently when infrasonic and gravity waves
were detected in the thermosphere (Artru et al. 2004, 2005 Liu et al. 2006; Bruinsma and
Forbes 2008; Rolland et al. 2010). Simulations of acoustic and gravity wave propagation in
Earth’s atmosphere have been carried out by various authors (Ostashev et al. 2005; de Groot-
Hedlin et al. 2011; Mikhailenko and Mikhailov 2014; Brissaud et al. 2016). But to our
knowledge, numerical simulations for acoustic and gravity wave propagation in a windy
martian atmosphere including vibrational relaxation have never been performed.

This study first presents a numerical method which is able to simulate acoustic and grav-
ity wave propagation in a windy and attenuating Martian atmosphere. The numerical sim-
ulations are validated with respect to analytical solutions, and also compared to ray tracing
results (Dessa et al. 2005). The method is then applied to a surface explosion in realistic
Mars atmosphere models, which enables inference of the variability of wave propagation
conditions with respect to Mars climate.

2 Finite-Difference Modeling of Acoustic and Gravity Waves in a Carbon
Dioxide Planetary Atmosphere

2.1 Governing Equations

In this study we use the linearized Navier-Stokes equations for acoustic and gravity wave
propagation in an attenuating atmosphere subject to bulk, shear and vibrational relaxation.
We consider the same physical assumptions as in Brissaud et al. (2016). Only vertically
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stratified atmosphere models and horizontal winds are considered. In this case, the equations
are

∂tp = −w.∇p − ρc2∇.v − ρv.g + e1,

∂tρp = −w.∇ρp − ∇.(ρv),

ρ∂tv = −ρ
{
(v.∇)w + (w.∇)v

} + ∇.� + gρp,

(1)

where ρ is the background density, w the horizontal wind velocity, c the adiabatic sound
velocity, g the gravity acceleration, p the pressure perturbation, v the velocity perturbation,
ρp the density perturbation, e1 a memory variable taking into account relaxation effects due
to carbon dioxide vibrational relaxation (see Sect. 2.2) and � is the stress tensor, which
reads

(�)ij = −pδij + μ

(
∂j (v + w)i + ∂i(v + w)j − 2

3
δij∇.v

)
+ ηV δij∇.v. (2)

where (i, j) indices indicate space directions, μ is the shear viscosity and ηV the volume
viscosity. Note that, due to the memory variable, equation system (1) lacks constraint and
an extra equation needs to be added as explained in Sect. 2.2.3.

The system of equations (1) describes the propagation of acoustic and gravity waves in a
viscous atmospheric fluid subject to wind (Nappo 2002).

2.2 Acoustic Attenuation in Mars Atmosphere

2.2.1 Analytical Formulation of Absorption Coefficients

Additional attenuation processes must be considered for Mars with respect to Earth due to
the presence of CO2. In this section, we will recall results from Bass and Chambers (2001)
for the atmosphere composition as well as absorption coefficient equations. Thus, we will
assume that the composition of the Martian atmosphere is 95.3 % CO2 and, accordingly,
we will include the effects of sound relaxation by vibrational and rotational modes of CO2

molecules. On Mars, three kinds of absorption have an impact on wave propagation, and
we detail here the analytical formulation of the three distinct absorption coefficients. These
analytical expressions were validated by Direct Simulation Monte Carlo method (Hanford
and Long 2009).

First, classical absorption, also present on Earth, due to viscosity and thermal conduction
reads

αcl = ω2

2ρc3

(
4

3
μ + (γ − 1)κ

γCv

)
, (3)

where ω in 2π ·s−1 is the wave angular frequency, c in m·s−1 the adiabatic sound speed,
μ in kg·m−1·s−1 the dynamic viscosity, γ = Cp/Cv the specific heat ratio, Cv and Cp in
J·kmol−1·K−1 the molar zero frequency specific heat respectively at constant volume and
constant presure, and κ in J·kmol−1·K−1·kg·m−1·s−1 the thermal conductivity.

The absorption process caused by rotational modes of CO2 molecules is specific to Mars.
It reads

αrot = ω2

2ρc3
μ

γ (γ − 1)R

1.25C0
p

Zrot , (4)
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where C0
p = 7/2 in J·kmol−1·K−1 is the specific heat at constant pressure, R = 8.31432 ×

103 in J·kmol−1·K−1 is the gas constant and zero frequency and Zrot is the rotational colli-
sion number. The above two attenuation mechanisms have a similar frequency dependence.
So, the attenuation induced by rotational modes of CO2 molecules is simply taken into ac-
count by defining the volume viscosity as:

ηV =
(

4

3
+ γ (γ − 1)R

1.25C0
p

Zrot

)
μ + (γ − 1)κ

γCv

. (5)

The third absorption process is the vibrational relaxation that reads, in the case of a CO2

atmosphere

αvib =
πSvib

c
(

f 2

fr
)

1 + (
f

fr
)2

, (6)

where

Svib = C ′
j

R

C∞
p (C∞

v + C ′
j )

(Relaxation strength),

fr = 1

2πτ ′
vs

(Relaxation frequency)

with τ ′
vs being the relaxation time at constant volume and temperature for a single energy-

transfer reaction, it determines the rate of the relaxation process. The smaller the relaxation
time, the faster the relaxation process. C∞

p in J·kmol−1·K−1 is the constant pressure specific
heat at frequencies well above the relaxation frequency fr in Hz, C0

p its value well below fr

and C ′
j in J·kmol−1·K−1 is the specific heat of the relaxing mode.

Figure 1, shows that below 80 km altitude on Mars the main attenuation factor comes
from the CO2 vibrational relaxation. Thus, taking this effect into account in simulations is
crucial to correctly model infrasound propagation. Also, as one notices in Fig. 1, the vibra-
tional absorption coefficient does not follow the trend of classical and rotational absorption,
presenting a peak relaxation frequency. Consequently, this attenuation process must be ana-
lytically and numerically integrated into the equations in a different way than classical and
rotational absorptions. In the next section, we demonstrate that the Zener rheology model
(Carcione et al. 1988) is equivalent to the attenuation mechanism induced by CO2 vibra-
tional modes. Then, the Zener relaxation times are used to define a memory variable that
will numerically model the CO2 vibrational relaxation process.

2.2.2 A Zener Model for Carbon Dioxide Vibrational Relaxation

We demonstrate in this section that the vibrational absorption coefficient in (6) is equivalent
to the one induced by a Zener attenuation mechanism (Carcione 2007, Sect. 2.4.3). In that
book further details can be found about the Zener rheology and we will thus only present the
relationship between the absorption coefficient induced by a Zener attenuation mechanism
and the analytical one from (6).

The quality factor, for a Zener linear solid, reads (Carcione 2007, Eq. (2.159))

Q(ω) = 1 + ω2τετσ

ω(τε − τσ )
, (7)
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Fig. 1 On top, vibrational absorption coefficient from (6) {αvib} and the sum between volume absorption
coefficients (which is the sum of classical and rotational relaxations αvol = αcl + αrot ) from (3)–(4) against
altitude on Mars at various frequencies f = 10−2,10−1,1 Hz; and classical absorption coefficients against
altitude on Earth {αcl} at same frequencies. On the bottom, sum of the classical and rotational absorption
coefficients; and vibrational absorption coefficient, presented in the range (10−2–104) Hz at various altitudes
z = 0,70 km

where τε and τσ are, respectively, strain and stress relaxation times. The time τσ character-
izes the time during which stress decreases by a characteristic value and the terminology
strain relaxation time τε , also called retardation time, comes from the exponential depen-
dence of the creep function (refer to Carcione 2007). Considering a low-viscosity approxi-
mation (Q � 1), the approximate coefficient can be written as (Carcione 2007, Eq. (2.123))

α ≈ ω

2c
Q−1. (8)

Thus, from (7)–(8), one can establish a relationship between the analytical and Zener ab-
sorption coefficients

α ≈ ω

2c
Q−1 = 1

2c

ω2(τε − τσ )

1 + ω2τετσ

= (τε − τσ )

2c
√

τετσ

ω2√τετσ

1 + ω2τετσ

=
πSvib

c
(

f 2

fr
)

1 + (
f

fr
)2

= αvib, (9)

where one can identify relaxation times τε, τσ with relaxation frequencies fr and relaxation
strengths Svib using (6) as

fr = 1

2πτr

and Svib = (τε − τσ )

τr

, (10)

where τr = √
τετσ . Since atmospheric models will provide relaxation frequencies and re-

laxation strengths, the remaining task in order to model the attenuation process consists in
finding relaxation times in terms of those variables. From (10), one needs to solve a second-
order ordinary differential equation, which finally gives

τσ = 1

2

(
− Svib

2πfr

+
√(

Svib

2πfr

)2

+ 4

(2πfr)2

)
; τε = τσ + Svib

2πfr

. (11)
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2.2.3 Memory Variables for Carbon Dioxide Vibrational Relaxation Processes

In order to integrate numerically the CO2 vibrational relaxation, we use the concept of mem-
ory variables. The general form of stress-strain relation is from Eq. (2.9) in Carcione (2007)

Σ(x, t) = Ψ (x, t) ∗ ∂tε(x, t), (12)

where ∗ is the convolution product, Σ the stress tensor (as in (2)), Ψ the relaxation tensor
(scalars in 1D) and ε the strain.

The convolution kernel in the stress-strain relation (12) is difficult to implement in the
linearized Navier-Stokes equations in time-domain methods. In this paper we will use a
standard method (Carcione 2007) that consists in computing memory kernels based on a
chain of linearly coupled memory variables whose frequencies correspond to moments of the
memory kernel spectrum. To justify the introduction of memory variables we should go back
to the main constitutive equations. In order to compute the time derivative of the convolution
product in (12), we first recall the Boltzmann operation, that reads for any function g and
f of the Heaviside type (meaning that ∀t > 0, f (t) = f̃ H(t) where H is the Heaviside
function)

f 
 g = ∂t (f ∗ g) = f (0)g + (∂t f̃ H) ∗ g. (13)

Then, applying this operation to (12) and considering Ψ to be of the Heaviside type (i.e.
∀t > 0,Ψ (t) = Ψ̃ H(t)), one gets

Σ = Ψ ∗ ∂tε = ∂tΨ ∗ ε = ∂t (Ψ ∗ ε) = Ψ (0)

(
ε + ∂t Ψ̃ H

Ψ (0)
∗ ε

)
= Ψ (0)(ε + φ ∗ ε), (14)

where the response function φ reads

φ = φ̃H ; φ̃ = ∂t Ψ̃

Ψ (0)
. (15)

In the case of a Zener model one has from Eq. (2.231) in Carcione (2007)

φ̃ = 1

τε

(
1 − τε

τσ

)
e− t

τσ , (16)

where τε and τσ are relaxation times. Then we define the strain memory variable e1 as

e1 = φ ∗ ε. (17)

We apply again the Boltzmann operation to the time derivative of (17) and combining with
the response function (16) we obtain a first-order differential equation in time

∂te1 = φ(0)ε − ε

τσ

= − 1

τσ

[(
1 − τσ

τε

)
ε + e1

]
. (18)
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Thus, the introduction of a Zener solid mechanism adds a first order in time equation to
solve. The final equation system is

∂tp = −w.∇p − ρc2∇.v − ρv.g + e1,

∂tρp = −w.∇ρp − ∇.(ρv),

ρ∂tv = −ρ
{
(v.∇)w + (w.∇)v

} + ∇.� + gρp,

∂t e1 = − 1

τσ

[(
1 − τσ

τε

)
∇.v + e1

]
(19)

with

(�)ij = −pδij + μ

(
∂j (v + w)i + ∂i(v + w)j − 2

3
δij∇.v

)
+ ηV δij∇.v.

3 Numerical Implementation

Time discretization is based on a fourth-order Runge-Kutta scheme and spatial discretiza-
tion is based on a fourth-order staggered finite-difference scheme coupled with an upwind
scheme for advective terms. The method is the same as in Brissaud et al. (2016) and we refer
to that paper for more details.

We perform simulations in a 2D vertical Cartesian mesh in which �x = �z. We use
a point source within the domain and consider a rigid boundary condition along the bot-
tom edge of the grid, which imposes zero vertical and horizontal velocity (Brissaud et al.
2016). The only variable imposed at the boundary is the vertical velocity while pressure p

and density perturbation ρp are not constrained. In order to enforce boundary conditions,
the method of images, described for instance by Wilson and Liu (2004), is relevant to our
equations (Appendix 3).

To absorb outgoing waves in an efficient way we use an absorbing boundary layer called
ADE-PML (Auxiliary Differential Equation Perfectly Matched Layer) (Martin et al. 2010)
at the fictitious outer edges of the mesh. We adapted it to media subject to gravity (Ap-
pendix 2).

Since we often perform simulations over a large number of grid points we resort to par-
allel computing implemented using the Message-Passing Interface (MPI) libraries (Gropp
et al. 1994), decomposing the mesh into regular slices cut along the z-coordinate axis.

4 Validation of the Numerical Technique

In order to validate the implementation of vibrational relaxation, we perform two tests for
acoustic wave propagation only, one with a background flow and the other without. We do
not present validation for gravity waves since the impact of vibrational relaxation on their
propagation is very weak (relaxation frequencies of CO2 on Mars are much larger than the
expected dominant frequencies of gravity waves) and gravity waves without such relaxation
process were already validated in Brissaud et al. (2016).

The source is set as a pressure fluctuation and is implemented in (1)-1 as

∂tp = −w.∇p − ρc2(∇.v + S) − ρv.g + e1, (20)
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Table 1 Simulation parameters corresponding to the homogeneous isothermal model for the validation
case in Sect. 4. The parameters have the following dimensions: ρ (kg·m−3), c (m·s−1), ηV (kg·m−1·s−1),
μ (kg·m−1·s−1), τε , τσ (s), gz (m·s−2) and wx (m·s−1)

Lx × Lz (km) �x (m) �t(s) ρ c (ηV ,μ) (τε , τσ ) gz wx

200 × 100 100 10−2 1.77 × 10−2 236 (0,0) (1.5,1) 0 0

Fig. 2 Pressure from the numerical solution with vibrational relaxation set to τε = 1.5 s and τσ = 1 s (‘Nu-
merical with vibra. relaxation’) and the analytical solution with vibrational relaxation (‘Analytical with vibra.
relaxation’) as well as the difference between the two (‘Error N-A with vibra. relaxation’). The numerical
solution without vibrational relaxation (‘Numerical without vibra. relaxation’), the analytical solution with-
out vibrational relaxation (‘Analytical without vibrat. relaxation’) as well as the difference between the two
(’Error N-A without vibra. relaxation’) are also presented. The signals are shown through time for the sim-
ulation in Sect. 4.1, i.e. the windless validation case, at three recording stations located at the same altitude
z = 10 km, their position along x being x = 4.2, 5.8 and 8.4 km from left to right. The atmosphere is consid-
ered isothermal (Table 1)

where the source S is time-dependent variable and reads

S(x, t) = −2(t − t0)e
−{πf0(t−t0)}2

δ(xs), (21)

where δ is the Kronecker symbol, xs the source position, t0 = 5 s the source onset time and
f0 = 5 Hz the source dominant frequency. Using the formulation of the pressure response in
Appendix 1 for a viscous medium subject to wind, one can compute an analytical solution
for this simulation case.

4.1 Vibrational Relaxation Windless Validation Case

Table 1 summarizes the physical and numerical parameters used for the simulation. The
choice of relaxation times (τε, τσ ) corresponds to a relaxation frequency fr = 1

2π
√

τετσ
=

0.13 Hz close to the dominant frequency of the source, in order to clearly see the effect of
the vibrational relaxation.

In Fig. 2, results show a very good fit in terms of amplitude, with a maximum error that
is less than 4 %. Vibrational relaxation clearly impacts the amplitude but also the velocity
of the wave.

In Fig. 3 one notices that as the frequency increases the group velocity of the wave packet
increases as well and becomes larger than the adiabatic sound velocity. This means that
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Fig. 3 Difference between the group and adiabatic velocity and inverse quality factor versus frequency
in the range [10−4,104] Hz in an atmosphere subject to vibrational relaxation at various altitudes
z = 0,30,60,90 km. The atmosphere model is based on the Mars Climate Database. One notices that as
frequency increases the group velocity of the wave packet increases as well and becomes larger than the
adiabatic sound velocity

Table 2 Simulation parameters corresponding to the homogeneous isothermal model for the validation case
in Sect. 4.2. The parameters have the following dimensions: ρ (kg·m−3), c (m·s−1), ηV (kg·m−1·s−1),
μ (kg·m−1·s−1), τε , τσ (s), gz (m·s−2) and wx (m·s−1)

Lx × Lz (km) �x (m) �t (s) ρ c (ηV ,μ) (τε , τσ ) gz wx

200 × 100 100 10−2 1.77 × 10−2 236 (0,0) (1.5,1) 0 40

waves undergoing vibrational effects will propagate faster than waves in a non-attenuating
model. This figure also shows the inverse quality factor as a function of frequency due to
vibrational relaxation. It validates the high-Q assumption (Q � 1 ⇔ Q−1 � 1) for our
frequency range since at any altitude Q−1 < 0.05.

4.2 Vibrational Relaxation Windy Validation Case

Table 2 summarizes the physical and numerical parameters used for the simulation.
In Fig. 4, results show a very good fit in terms of maximum amplitude error which is less

than 4 %. As in the simulation in Sect. 4.1, vibrational relaxation impacts the propagation
by damping the wave amplitude and by increasing phase and group velocities. But, in this
case the wind also plays a significant role by shifting the wave apparent frequency and then
by modifying its phase and amplitude. One interesting feature is that upwind waves, which
should have larger amplitudes than downwind ones (see signal ‘Upwind without vibrational
relaxation’ in Fig. 5 which is a typical feature of the Doppler shift), have lower amplitude
here due to vibrational relaxation. Indeed, as the wind shifts the upwind wave dominant
frequency into the vibrational relaxation frequency range where its impact is significant, the
upwind wave will undergo more damping from vibrations of CO2 than the downwind one.

Figure 5 shows simulation results at the same locations with and without vibrational re-
laxation. One notices that waves in the medium without vibrational relaxation have a larger
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Fig. 4 Pressure from the numerical solution at downwind recording stations (‘Numerical downwind’), at
upwind stations (‘Numerical upwind’) and the corresponding analytical signals (‘Analytical downwind’ and
‘Analytical upwind’) as well as the difference between them (‘Error N-A downwind’ and ‘Error N-A up-
wind’). The signals are shown through time for the simulation in Sect. 4.2, i.e. the windy validation case,
at two recording stations located at the same altitude z = 10 km, their position along x being x = 4.2 and
8.4 km from left to right. The atmosphere is considered isothermal with vibrational relaxation τε = 1.5 s and
τσ = 1 s (Table 2)

Fig. 5 Pressure from the numerical solution at downwind recording stations with vibrational relaxation set
to τε = 1.5 s and τσ = 1 s (‘Downwind with vibra. relaxation’) and the solution at upwind and downwind
stations without vibrational relaxation (‘Upwind without vibra. relaxation’ and ‘Downwind without vibra.
relaxation’). The signals are shown through time for the simulation in Sect. 4.2, i.e the windy validation case,
at two recording stations located at the same altitude z = 10 km, their position along x being x = 4.2 and
8.4 km from left to right. The atmosphere is considered isothermal (Table 2)

amplitude than in the medium with vibrational relaxation, as expected, where the ampli-
tude becomes strongly damped and the wave apparent frequency shifted as the wave travels
through the medium.

5 Applications to Mars Atmospheric Signals

In this section, we explore applications of our simulation tool to the pressure signals gener-
ated by a meteor impact on Mars ground.
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5.1 Pressure Signal from a Meteor Impact

Acoustic and gravity waves emitted by a meteor are either due to the shock wave along
the track during re-entry, to atmospheric explosions corresponding to fragmentation of
the meteor during re-entry, or to meteor and target vaporisation at the impact (Edwards
2010). Even if our simulation tool allows to insert pressure sources anywhere in the do-
main, we will only consider pressure waves created by meteor impacts on the ground.
The reason for this choice is that most of the meteors that will generate direct seismic
waves detectable by INSIGHT seismometer will impact the ground (Popova et al. 2003;
Chappelow and Sharpton 2006). The characteristics of the atmospheric pressure signals
emitted during a hyper-velocity impact on the ground are poorly documented because such
signals are rarely observed on Earth, for which pressure signals emitted during meteor events
is coming from airbursts (explosions in the atmosphere) (Edwards 2010). To our knowl-
edge, only two observations of pressure waves associated with the impact of a meteor on the
ground are documented, for the 1908 Tunguska event in Siberia (Whipple 1930) and for the
2007 Carancas event in Bolivia (Pichon et al. 2008; Tancredi et al. 2009). The interpretation
of these measurements are still debated, with a poorly known proportion of the signal com-
ing either from a low altitude airburst or from the surface impact. However, the radiation
pattern of an hyper-velocity impact source in the solid is close to the one of an explosion
(Walker 2003). Consequently, the atmospheric acoustic source is simulated here through an
explosion. The scaling of over-pressure and dominant period of the signal with the character-
istics of the impactor is also difficult to evaluate because these parameters strongly depend
respectively on the impactor trajectory and impactor diameter (Haynes and Millet 2013).

Thus, we postpone the quantification of source parameters to future studies. The source
used in our simulations is the one described by (21), which corresponds to a volume de-
crease, at constant mass, due to the additional air mass provided by the vaporisation of the
impactor and of part of the target, followed by a volume increase. No additional scaling is
provided for its amplitude, and a dominant frequency of 0.1 Hz is chosen to fit values ex-
pected in the far field (Haynes and Millet 2013). Our simulations are linear, so the amplitude
of simulated records can be multiplied by the expected over-pressure at the source to obtain
true amplitudes.

5.2 Mars Atmosphere Models

Typical vertical profiles of thermodynamical properties, composition and winds in the Mar-
tian atmosphere are extracted from the Mars Climate database (MCD) (Lewis et al. 1999)
which compiles the outputs from simulations performed with the Laboratoire de Métérolo-
gie Dynamique (LMD) Global Climate Model (GCM) (Forget et al. 1999). The latest version
(v5.2) of the MCD is employed here to benefit from the latest improvements. The treatment
of near-surface (Colaïtis et al. 2013) and thermosphere (González-Galindo et al. 2009) pro-
cesses are of peculiar interest in this study. The location at which the atmospheric profiles
are extracted from the MCD is chosen to be equatorial, at the approximate INSIGHT lander
location (135.7° E, 4.4° N). From pressure, density, temperature and composition values, we
compute the sound speed, Brunt-Väisälä frequency, and attenuation parameters (Bass and
Chambers 2001).

A first model going from the surface to 200 km altitude is presented in Fig. 6 at midday
and midnight for solar longitudes of 90° and 240°. Those values of solar longitude corre-
spond to, respectively, northern summer solstice and late southern spring seasons (martian
solar longitude is 0° for northern spring equinox), and were chosen as both typical from
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Fig. 6 From left to right, sound speed (in m·s−1), Eastward and Northward winds (in m·s−1) corresponding
to positive values of respectively zonal and meridional wind components, Brunt-Väisälä frequency (in mHz)
and peak relaxation frequency of CO2 vibrational modes (in Hz) as a function of altitude (in km). Results are
presented for 12 h (red or magenta) and 0 h (black or cyan) Local Times (LT), and for 240° (dashed lines) and
90° (solid lines) of solar longitude. These parameters are computed from values extracted from Mars Climate
Data base version 5.2 (MCD5.2) and (Bass and Chambers 2001)

a climatic standpoint (i.e. diurnal and seasonal variability) and extreme from an acoustic
standpoint (different altitudes for sound speed and wind extrema). Figure 6 illustrates how
diurnal and seasonal variability impact the parameters relevant to acoustic-gravity waves.
The sound speed decreases from the surface to about 120 km altitude. The wind compo-
nents are positive in the Eastward and Northward directions. The horizontal wind vector is
strong and variable above 20 km, but still significant for acoustic propagation in the first
10 km. The profile of Brunt-Väisälä frequency continuously increases up to 120 km alti-
tude, which favors gravity wave trapping close to this altitude. The overall shapes of sound
speed and Brunt-Väisälä frequency profiles imply that, in the absence of wind, acoustic and
gravity waves emitted on ground are not ducted back to the surface until they reach about
120 km altitude. The peak frequency of CO2 vibrational relaxation affects the infrasonic
frequency range in the altitude range starting from 35–50 km up to 80–90 km, depending on
the season.

5.3 Wave Refraction by High-Altitude Wind Ducts

Ray trajectories and travel times (Dessa et al. 2005), and simulated waveforms of acoustic
signals generated by a meteor impact on the ground are presented in Figs. 7, 8 and 9. These
simulations are performed for the day-side model (12 h Local Time) at 90° of solar longi-
tude along a West-East plane (solid red curves in Fig. 6). Grid cells of 250 m × 250 m,
over a 1000 km × 200 km domain with a time step of 2 × 10−3 s are used for a source
of 10 s dominant period. The effective sound speed (sound velocity corrected for the hori-
zontal wind effect) increases upward for a downwind propagation. Therefore, the records in
this direction (blue curves, West direction) present, in addition to direct wave arrivals, late
arrivals that correspond to wave refractions at local maxima of wind at 30, 70 and 130 km
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Fig. 7 Ray trajectories in the
West (left) to East (right) plane at
90° solar longitude and 12 h local
time. The background color scale
indicates effective sound velocity
with black and white colors
indicating highest and lowest
effective velocities respectively

Fig. 8 Snapshots of simulated pressure perturbations (in Pa, scaled independently to maximum value over
the whole domain) at times 200 s, 600 s, 1000 s and 1400 s from top to bottom. Blue and red colors indi-
cate negative and positive pressure perturbations respectively. The background color scale indicates effective
sound velocity (sound speed plus wind) in the two different propagation directions (West and downwind on
the left, East and upwind on the right) with black and white colors indicating highest and lowest effective
velocities respectively. Simulation domain is 1000 km wide and 200 km high, and the surface impact source
is located in the middle. The orange lines indicate the entrance of the PML regions

altitudes whereas none of the simulated rays are ducted back to the surface in the case of an
upwind propagation (red curves, East propagation). In Fig. 9, the ray arrival times of waves
refracted back to the surface are also indicated for both Cartesian and spherical geometries.
The Cartesian arrival times correctly fit the wave packet arrivals, even if ray theory does
not reproduce all the waveform complexities. The delays between Cartesian and spherical
geometry increase with arrival time, reaching up to 30 seconds.
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Fig. 9 Simulated surface records sorted by distance (in km) as a function of reduced time (in s) for all the
simulated surface records (left) and for a zoom on the closest distances to the source (right). Reduced time
induces a shift of the records in the left direction by Distance/0.25 seconds to ensure a better readability
of the figure. The amplitude of the records is scaled according to the formula provided in the y-axis label
for the same reason. Downwind/West (resp. upwind/East) records are indicated in blue (resp. in red). Rays
theoretical arrival times for direct waves are indicated by thick blue and red tags. For waves refracted on the
30 km, 70 km and 130 km wind ducts, ray arrival times are indicated both for computations in Cartesian
(black tags) and in spherical (green tags) geometry

Fig. 10 On the top, two snapshots of vertical displacement (in m) at t = 1600 s (left) and t = 1800 s (right)
focused on a domain of size 184 × 23.25 km around the source. The red and blue colors indicate positive and
negative vertical displacements respectively. The background color scale indicates effective sound velocity
with black and white colors indicating highest and lowest effective velocities respectively. On the bottom,
zoom on simulated vertical displacement records close to the impact source as a function of distance (in km)
and time (in s). The first 115 seconds of the records are presented in blue with a scale given in the label of the
vertical axis. The latter part of the same records are presented in green with a scaling 100 times smaller

Meteor impacts generate also gravity waves which are observed in our simulations. Fig-
ure 10 presents snapshots of gravity wave propagation near the source. One notices that the
energy propagates towards the top left and top right of the domain whereas the phase prop-
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Fig. 11 From left to right, sound speed (in m·s−1), Eastward and Northward winds (in m·s−1) as a function
of altitude (in km) for different values of solar longitude (the different colors) for nightside conditions (0 h
local time). Filled circles indicate the altitude of maximum sound speed

agates orthogonally to it, a typical feature of gravity waves. The wave pattern is strongly
influenced by winds, with downwind waves ducted back to the surface, and upwind waves
propagation upward (Ding et al. 2003). Another effect of background wind is the displace-
ment of the whole gravity wave train in the downwind direction. As a consequence, the
downwind records at the surface present both acoustic and gravity wave trains. The gravity
wave signals arrive much later than acoustic waves, and present lower frequencies. Due to
the dominant period of the source, chosen in the acoustic range, the gravity wave amplitude
is low on pressure records. That is why surface records are plotted here for vertical displace-
ment for which direct and horizontally propagating acoustic waves have a low amplitude.
However, for the true meteor impact source, we expect the excited frequency range to be
larger than in our simulation, thus generating gravity waves with larger amplitudes than the
ones presented here. If the impact space/time location is known, the arrival times of both
wave types can be used to infer wind profiles along the path. The sensitivity of differential
arrival times between acoustic and gravity waves to source location and wind profiles will
be inferred in future studies.

5.4 Acoustic Wave Trapping Close to the Surface at Night

In this section, we present simulation results for acoustic wave propagation in the first 10
km of the atmosphere on the night-side. Figure 11 presents the evolution of sound speed
and winds as a function of the season (solar longitude) at midnight. Due to the radiative
cooling of the surface at night, the atmosphere presents a strong thermal gradient in its first
kilometers. Consequently, sound speed increases from the cold surface to a maximum value
comprised between 0.8 and 6 km altitude depending on the season. This feature creates a
waveguide close to the surface (at minimum sound speed). Acoustic wave propagation is
also sensitive to wind profiles. As shown in Fig. 11 the wind significantly varies with the
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Fig. 12 Effective sound speed (in m·s−1) for nightside conditions (0 h local time) as a function of altitude
(in km) and solar longitude (the different colors) for different wave propagation directions: East (top left),
West (top right), North (bottom left) and South (bottom right)

season, both in direction and amplitude. However, the wind amplitude decreases to values
lower than 8 m·s−1 around 6 km altitude in all cases. Fig. 12 presents the effective sound
speed profiles (sound speed plus wind) as a function of altitude and season for different
wave propagation directions. The various wind patterns induce very different situations de-
pending on the season and propagation directions. However, some common patterns can be
described. Solar longitudes close to 90° (blueish colors, low winds) generate sound waveg-
uides in the first kilometer of Mars atmosphere. Solar longitudes close to 240° (reddish
colors, high winds) generate waveguides of 5–6 km thickness, except for downwind prop-
agation in the southern direction, for which the waveguide in the first kilometer is mainly
controlled by the strong vertical wind gradient.

In order to illustrate acoustic wave trapping close to the surface at night, Figs. 13 and 14
present simulations for night-side conditions (0 h Local Time) at a solar longitude of 240° in
the North-South plane close to the surface. These simulations are performed with grid cells
of 50 m × 50 m, over a 200 km × 40 km domain with a time step of 10−3 s for a source
of 10 s dominant period. For wave propagation in the southern direction (blue color), the
kilometer scale waveguide traps rays, as observed at the bottom of Fig. 13, but the numerical
simulation does not reproduce this wave trapping because the dominant wavelength (about
2.5 km) is larger than the waveguide thickness. If the effect of the kilometer scale waveguide
is neglected, the waves emitted at the surface in the southern direction propagate upward and
do not come back to the surface. On the contrary, the waves emitted in the northern direction
are trapped in a waveguide in the first 10 km of the atmosphere. In Fig. 14(a) the first wave
reflected back to the surface at the top of the waveguide clearly appears for distances larger
than 30 km. As shown in Fig. 14(b), due to the wave trapping and to upwind propagation
of direct waves, the amplitude of pressure signals in the northern direction remains almost
constant in the 20 to 90 km distance-range. The surface waveguides will efficiently trap
waves depending on their frequency content. The single dominant frequency simulated here
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Fig. 13 Ray trajectories in the
North (left) to South (right) plane
at 240° solar longitude and 0 h
local time. The background color
scale indicates effective sound
velocity with black and white
color indicating highest and
lowest effective velocities
respectively

Fig. 14 On the left, simulated surface records sorted by distance (in km) as a function of reduced time (in
s). Reduced time induces a shift of the records in the left direction by Distance/0.3 seconds to ensure a better
readability of the figure. The amplitude of the records is scaled according to the formula provided in y-axis
label for the same reason. Rays theoretical arrival times for direct waves are indicated by thick blue and red
tags. The arrival times of rays reflected back to the surface at the top of the waveguide are indicated both
for computations in Cartesian (black tags) and in spherical (green tags) geometry. On the right, maximum
amplitude (in Pa) measured on simulated records as a function of distance to the source (in km). North (resp.
South) stations are indicated in red (resp. in blue)

is sensitive to waveguide thicknesses larger than about 3 km. But more realistic broad band
impact sources will generate high frequency waves that will be trapped in kilometer scale
waveguides.

5.5 Future Application to the INSIGHT Mission

The INSIGHT NASA discovery mission will deploy seismic, pressure, wind and magnetic
sensors in the Elysium planitia region (Banerdt et al. 2013). The low topography of this re-
gion is favorable to detect acoustic waves trapped in the night-side waveguide. The pressure
sensor is designed to correct the seismometer for pressure effects. Therefore, it has a high
sampling rate (20 Hz), a low noise in the seismic/infrasonic frequency range, a wind filtering
inlet and continuous recordings synchronized with seismic recordings (Banfield and InSight
Science Team 2014). In addition, a wind sensor will provide wind amplitude and direction 1
m above the surface. Consequently, the INSIGHT instruments are suited to detect acoustic
waves from meteor impacts. Our study demonstrates that this may be possible at night. In
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addition, the wind sensor will allow vertical wind profiles provided by climate models to be
calibrated, thus improving the reliability of atmosphere models at impact times. Finally, the
thermal noise on the pressure sensor, which is the dominant noise source at low frequencies,
will be minimized by its design, thus long period gravity waves created by impacts may also
be detected by the sensor.

6 Conclusions and Future Work

We have presented a finite-difference full wave simulation tool for acoustic and gravity
wave propagation in Mars atmosphere, and have validated it by comparing with analytical
solutions and with acoustic ray tracing. This code properly takes into account the effects
of exponential density decay, sound velocity variations, wave attenuation and horizontal
winds. The application of this numerical technique to realistic Mars atmosphere models has
allowed us to study the potential interest of a surface infrasonic sensor for the detection
of meteor impacts on the surface. Our simulations demonstrate that such a detection for
day-side conditions is only possible for waves propagating downwind, for which a part of
the acoustic wavefront is refracted back to the surface by wind ducts. However, at night, a
waveguide is present close to the surface that would allow for long distance propagation of
acoustic signals in flat areas. Such theoretical results should soon be applicable to pressure
measurements from the INSIGHT NASA Discovery mission.

In the near future, this study will be completed by a sensitivity study of acoustic and
gravity waves to source location and wind profiles. In addition, for a more direct application
to INSIGHT measurements, the pressure wave amplitude as a function of meteor impact
parameters will be estimated and compared to the expected background noise.
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Appendix 1: Analytical Solution for Acoustic Wave Propagation in
a Windy Homogeneous Atmosphere with Vibrational
Relaxation

In the framework of acoustic wave propagation in a windy homogeneous medium with vi-
brational relaxation, the state and momentum equations read

(∂t + w.∇)p = −∇.v ∗ Φ − ρc2S,

ρ(∂t + w.∇)v = −∇p,
(22)

where, ∀t ∈R
+

Φ(t) = H(t) ∗ ψ(t), (23)

with H the Heaviside function and ψ the relaxation function of the viscoelastic medium
considered.
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Taking the divergence of (22)-2 yields

(∂t + w.∇)∇.v = − 1

ρ
�p, (24)

where � is the Laplacian operator. Thus, taking the total derivative Dt (where Dt = ∂t +v∇)
of (22)-1 yields

(∂t + w.∇)2p = −∇.(∂t + w.∇)v ∗ Φ − (∂t + w.∇)S

= 1

ρ
�p ∗ Φ − ρc2(∂t + w.∇)S. (25)

By considering, in (25), plane wave solutions of the form p = p̃e−iωt and Ψ , defined in (16),
the relaxation function for a Zener mechanism (Carcione et al. 1988), we can perform the
complex integration of the convolution term

�p̃

∫ ∞

−∞
e−iωt Φ̃Hdt = �p̃

∫ ∞

−∞
e−iωt 1

τε

(
1 − τε

τσ

)
e− t

τσ Hdt

= �p̃
1

τε

(
1 − τε

τσ

)∫ ∞

0
e−(iω+ 1

τσ
)t dt

= �p̃
1

τε

(
1 − τε

τσ

)
1 + iωτε

1 + iωτσ

(26)

then, from the plane wave form in the Fourier space (∂t = −iω), and one can recast (25) as

(−iω + w.∇)2p̃ = K̂c

ρ
�p̃ − ρc2(−iω + w.∇)S̃. (27)

The tilde denotes the time Fourier transform and K̂c is the complex bulk modulus, in the
case of a single relaxation mechanism, which reads (Carcione et al. 1988)

K̂c = ρc2 1 + iωτε

1 + iωτσ

= ρĉ2, (28)

where the complex velocity ĉ reads

ĉ = c

√
1 + iωτε

1 + iωτσ

(29)
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The complex equation (27) can then be expanded as

(−ω2 + w2
x∂

2
x − 2iωwx∂x

)
p̃ = K̂c

ρ

(
∂2

x + ∂2
z

)
p̃ − ρc2(−iω + w.∇)S̃,

{
ρ

K̂c

(−ω2 + w2
x∂

2
x − 2iωwx∂x

) − ∂2
x − ∂2

z

}
p̃ = − ρ2

K̂c

c2(−iω + w.∇)S̃,

{
ρ

K̂c

(
ω2 − w2

x∂
2
x + 2iωwx∂x

) + ∂2
x + ∂2

z

}
p̃ = ρ2

K̂c

c2(−iω + w.∇)S̃,

{
1

ĉ2

(
ω2 − w2

x∂
2
x + 2iωwx∂x

) + ∂2
x + ∂2

z

}
p̃ = ρc2

ĉ2
(−iω + w.∇)S̃,

(
∂2

x + ∂2
z + k̂2 + 2ik̂M̂∂x − M̂2∂2

x

)
p̃ = −ρc2

ĉ2
(−iω + w.∇)S̃,

(30)

with M̂ the Mach number, that is,

M̂ = wx

ĉ
= wx

c 1+iωτε
1+iωτσ

, (31)

where ĉ is the complex velocity and k is the wavenumber k̂ = ω
ĉ

. The hat over M̂ and k̂ is
introduced to differentiate from the usual Mach and wave numbers in an inviscid medium.

Finally, we will consider

S̃ = 2iÃK̂c

ωρc2
e−iωt δxδz, (32)

where δx, δz are the Kronecker delta symbols, and Ã is the Fourier transform of the ampli-
tude of the time-dependent source function, that is,

A(t) = −2(πf0)
2(t − t0)e

−{πf0(t−t0)}2
. (33)

We use the same method as in Ostashev et al. (2005) to obtain the pressure response in
this framework, that is

p̃ = iA

2(1 − M̃)3/2

(
H 1

0 (ξ) − iM̃ cosβ
√

1 − M̃2 sinβ2

H 1
1 (ξ)

)
e

−ik̃M̃R cosβ

1−M̃2 , (34)

where (H 1
i )i=1,2 are the Hankel functions of first kind, and ξ reads

ξ = k̃R

√
1 − M̃2 sinβ2

1 − M̃2
. (35)

Using Hankel function asymptotic (Abramowitz and Stegun 1964) by considering the ap-
proximation |k̃R| >> 1, yields

p̃ = A(

√
1 − M̃2 sinβ2 − M̃ cosβ)

√
2πk̃R(1 − M̃2)(1 − M̃2 sinβ2)3/4

e
i

1−M̃2 (
√

1−M̃2 sinβ2−M̃ cosβ)k̃R+ iπ
4 . (36)
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Appendix 2: Numerical Implementation of ADE-PML for a Medium
Subject to Gravity

This boundary condition corresponds to mesh stretching in the boundary layer which re-
quires to recast the derivatives in the new stretched set of complex-valued coordinates (Ko-
matitsch and Martin 2007). We do this using ADE-PML memory variables. In this new
reference frame (19) read

∂tp = −w.∇̃p − ρc2∇̃.v − ∇̃p0v + e1,

∂tρp = −w.∇̃ρp − ∇̃.(ρv),

ρ∂tv = −ρ
{
(v.∇̃)w + (w.∇̃)v

} + ∇̃.� + g̃ρp,

∂t e1 = − 1

τσ

[(
1 − τσ

τε

)
+ e1

]
,

(37)

with

(�)ij = −pδij + μ

(
∂̃j (v + w)i + ∂̃i (v + w)j − 2

3
δij ∇̃.v

)
+ ηV δij ∇̃.v.

Note that we wrote the pressure equation (37)-1 in terms of the ambient pressure p0 rather
than in terms of its value coming from hydrostatic equilibrium (i.e. in the interior domain
∇p0 = ρg). Indeed, as we stretch coordinates the hydrostatic equilibrium equation is also
modified as

∇̃p0 = ρg. (38)

In this new reference frame derivatives will read, for any unknown φ

∂̃xφ = 1

κx

∂xφ + Qφ
x ; ∂̃zφ = 1

κz

∂zφ + Qφ
z , (39)

where the memory variable is denoted Qφ
x,z. Memory variables obey a first-order in time

differential equation for x-derivatives and z-derivatives. We will only give details for the
x−derivative since it is similar for the z-derivatives. We consider the four time sub-steps
(tn,i )i=1,4 as tn,i = �t(n + νi) for the four RK4 stages where νi = 0, ν2 = 0.5, ν3 = 0.5 and
ν4 = 1. Then the memory variable Qφ

x obey the following differential equation

Qφ
x

(
tn,i

) = bx,iQ
φ
z

(
tn,1

) + ax,i∂xφ
(
tn,i

)
, (40)

where

ax,i = −dx

�tνi

κxκx(1 + �tθνi(
dx

κx
+ bx))

; bx = κx − θ�tνi(dx + κxαx)

κx + θ�tνi(dx + κxαx)
, (41)

with

τx = 1
dx

κx
+ αx

; κx = 1 + (κmax − 1)m;

dx = d0

(
x

L

)N

; αx = αmax

[
1 −

(
x

L

)p]
,

(42)
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where the θ parameter indicates if the computation is performed explicitly (θ = 0), semi-
implicitly (θ = 0.5) or implicitly (θ = 1). Here this parameter is taken as θ = 0.5. Since we
are mainly interested in damping acoustic waves (most of the waves reaching the boundary
will be acoustic waves) we take the same parameters as in Martin et al. (2010), meaning that

N = 2; m = 2; p = 1; αmax = πf0;

κmax = 7; d0 = − (N + 1)cmax,x log(Rc)

2L
,

(43)

where f0 is the dominant frequency of the source, cmax,x the maximum effective velocity
along x (sum of background flow velocity and adiabatic sound speed) and Rc the theoreti-
cal reflection coefficient taken as Rc = 0.0001. The same formulation holds for derivatives
along z.

Appendix 3: “Image” Boundary Conditions

This boundary condition consists in duplicating the physical domain and sources at ghost
points located below the bottom boundary in order to obtain a wave interference ensuring
zero vertical velocity at the boundary (Morse and Ingard 1968, Sect. 7.4). One enforces that
the pressure is equal on each side of the boundary

p(−x, t) = p(x, t), ∀x ∈ Ω\Γ (44)

and the sign of gravity and wind is changed in the ghost domain as

gy(−x) = −gy(x),

wx(−x) = −wx(−x), ∀x ∈ Ω\Γ.
(45)

while all other unknowns are duplicated from the real domain to the ghost one

μ(−x) = μ(x), ηV (−x) = ηV (x),

τε(−x) = τε(x), τσ (−x) = τσ (x), ∀x ∈ Ω\Γ (46)

As a consequence, the pressure being equal on both sides of the boundary, the pressure
gradient in the momentum equation is zero at the boundary. Also, setting opposite gravity
directions above and below the boundary leads to zero gravity at the surface, hence the
gravity term in the momentum equation vanishes. Therefore, at the boundary, the momentum
equation is verified since the zero velocity condition is imposed. Finally, we impose the
boundary to be motionless and we choose

vx(x,−z) = −vx(x, z),

vz(x,−z) = −vz(x, z), ∀z ∈ Ω.
(47)
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