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climatological shallowness of low clouds and thus to the 
spread of low-cloud changes under global warming.
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1 Introduction

For four decades, climate models have exhibited a wide 
range of equilibrium climate sensitivities, the equilibrium 
surface temperature increase resulting from doubling of 
atmospheric CO2 concentrations (Charney et al. 1979; 
Bony et al. 2013). The uncertainty in climate sensitivity 
estimated from different generations of climate models is 
dominated by uncertainties about how tropical low clouds 
respond to global warming (Cess et al. 1990, 1996; Bony 
and Dufresne 2005; Webb et al. 2006; Dufresne and Bony 
2008; Vial et al. 2013).

The difficulty of reducing the spread of low-cloud 
responses to global warming simulated by climate models 
stems in part from the large variety of processes that con-
trol cloudiness, from the microphysics of droplet formation 
to large-scale dynamics. Several mechanisms for different 
low-cloud responses have been proposed. For example, 
an increase of cloudiness under global warming may arise 
because clear-sky radiative cooling strengthens, destabi-
lizing the planetary boundary-layer (PBL) and increas-
ing the frequency of shallow cumulus convection (Wyant 
et al. 2009). Conversely, a decrease of cloudiness may arise 
because the PBL may dry relatively as it deepens (Rieck 
et al. 2012; Webb and Lock 2013), and convective mix-
ing between the PBL and the drier free troposphere may 
strengthen (Brient and Bony 2013; Sherwood et al. 2014). 
Changes of free-tropospheric characteristics associated 
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with changes in large-scale dynamics (e.g., decreasing 
relative humidity, weakening subsidence) may also affect 
low-cloud cover. Several of these mechanisms may simul-
taneously contribute to low-cloud changes in a warming 
climate, as demonstrated by Bretherton et al. (2013) using 
large-eddy simulations.

Dynamical processes controlling low-cloud cover 
include boundary-layer turbulence and penetrative con-
vection, which lie along a spectrum of turbulent motions 
that ranges from local eddies with short vertical correla-
tion lengths to non-local plumes with longer vertical cor-
relation lengths. Although part of a continuous spectrum, 
boundary-layer turbulence and convection are typically 
represented by distinct parameterization schemes in cur-
rent climate models and can therefore be analyzed sepa-
rately. Using single-column models (SCMs), Zhang et al. 
(2013) show that positive low-cloud feedbacks (reduced 
low-cloud cover with increasing temperature) arise when 
the PBL drying induced by enhanced convective mois-
ture transport out of the PBL and/or PBL-top entrainment 
predominates in the cloud response. Conversely, nega-
tive low-cloud feedbacks (increased low-cloud cover) 
arise when PBL moistening induced by enhanced tur-
bulent moisture transport from the surface upward pre-
dominates. Both processes can act simultaneously, and 
their relative strength controls the sign and intensity of 
low-cloud feedbacks in models. Indeed, the strength of 
low-cloud feedbacks in individual climate models can be 
changed substantially by manipulating either convection 
schemes (e.g., Gettelman et al. 2012; Tomassini et al. 
2014) or turbulence schemes (Watanabe et al. 2012). 
A broader examination of the effects of parameterized 
boundary-layer turbulence and convection across climate 
models would clearly be helpful to understand low-cloud 
changes.

Here we examine differences in how low clouds are 
maintained and how they respond to global warming in a 
set of climate models participating in Phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5, Taylor et al. 
2012). Following an overview of the climate models and 
methods used in this study (Sect. 2), we analyze tropical 
low-cloud responses to global warming simulated by the 
models (Sect. 3). We focus on the vertical distribution of 
tropical low clouds in both the present and future climates, 
because that turns out to be a good predictor of the low-
cloud response. A process-oriented analysis of physical 
tendencies and sub-grid fluxes using atmosphere-only mod-
els (Sect. 4) and a single-column model (Sect. 5) allows 
us to explain the origin of the spread of tropical low-cloud 
responses to warming in a subset of the CMIP5 models. 
Finally, we summarize the results and discuss their implica-
tions for constraining the strength of low-cloud feedbacks 
(Sect. 6).

2  Models and methods

We focus our analyses on the CMIP5 abrupt4xCO2 simu-
lations. They are initialized from the steady state of pre-
industrial control (piControl) simulations, with atmospheric 
CO2 concentrations instantaneously quadrupled from their 
preindustrial level (280 ppm) and thereafter held fixed. We 
analyze the warmer climate (10-year average) obtained 130 
years after initialization. Additionally, we analyze selected 
Atmospheric Model Intercomparison Project (AMIP) sim-
ulations run with the same models, in which sea surface 
temperatures (SSTs) are prescribed, and compare them 
with simulations (AMIP+4K) in which SST are uniformly 
increased by 4 K.

We analyze changes of cloud radiative effects (CRE) 
over tropical oceans 30°S–30°N for 21 CMIP5 models 
(Table 1), with CRE defined as the difference between total 
and clear-sky radiative fluxes at the top of the atmosphere. 
Descriptions of boundary-layer, shallow convection, and 
cloud schemes used in the models are listed in Table 2. 
Although CRE changes cannot directly be interpreted as an 
estimate of cloud feedbacks, the spread in CRE changes is 
a good indicator of the spread of cloud feedbacks (Soden 
et al. 2004; Bony et al. 2006). In climate change simula-
tions in which CO2 concentrations are increased, clouds are 
influenced both by direct radiative effects of CO2 and by 
the resulting surface temperature increase (Gregory and 
Webb 2008). Our interest is primarily in the component 
associated with SST changes. Because the time-scale of 
radiative adjustments in response to elevated CO2 is of 
order of tens of days (Kamae and Watanabe 2013), focus-
ing on the climate change after the first year of the 
abrupt4xCO2 simulations isolates the slower component of 
CRE changes associated with SST changes. Therefore, we 
compute CRE changes (∆CRE) and corresponding SST 
changes (∆SST) as differences between years 131–140 and 
years 2–6 of the abrupt4xCO2 simulations.1 From the 
monthly-mean CRE and SST changes, we compute the 
sensitivity of CRE changes relative to SST changes in bins 
of monthly-mean vertical velocity ω at 500 hPa (with 
5 hPa/day bins), following Bony et al. (2004) and Bony and 
Dufresne (2005), as

Integrating over all dynamical regimes (identified by verti-
cal velocity ω) and weighting by their frequency of occur-
rence Pω (the probability density function of ω) gives the 
total CRE sensitivity

1 Averaging over a longer time period (e.g., years 2–11 after initiali-
zation) does not impact our results.

(1)Σω =
∆CREω

∆SSTω

.
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Computing the total CRE sensitivity in this way gives 
results that are statistically indistinguishable from comput-
ing a total CRE sensitivity as the ratio of total CRE to SST 
changes, ∆CRE/∆SST (Table 1); however, the two ways 
of computing the total CRE sensitivity are not identical 
but are related by the geometric-arithmetic mean inequal-
ity. CRE sensitivities for specific dynamical regimes can be 
similarly computed by restricting the integral in (2) to ver-
tical velocities characterizing a dynamical regime.

By our analysis period 130 years after the beginning of 
the abrupt4xCO2 simulations, the models exhibit a large 
spread of tropical SST changes of ∆SST = 1.9± 0.7K 
(uncertainties are given as 1 standard error), with a range 
across models between 1.0 and 3.3 K (Table 1). This SST 
change is strongly correlated with the models’ equilibrium 
climate sensitivity (R = 0.90) reported by Forster et al. 

(2)Σ =

∫

ω

PωΣω dω.

(2013). The spread in CRE sensitivity is likewise large, 
Σ = 0.1± 0.8Wm−2 K−1, with values ranging from −1.1 
to +1.8 W m−2 K−1, similar to the range seen in CMIP3 
models (Bony and Dufresne 2005). The CRE sensitivity is 
strongly correlated with the tropical SST change (R = 0.87) 
and, by implication, with the equilibrium climate sensi-
tivity (R = 0.74). The CRE sensitivity Σ is also strongly 
correlated with the CRE sensitivity of atmosphere-only 
simulations in which SST is uniformly increased by 4 K 
(R = 0.85 using the 10 models for which the needed output 
is available, Table 1).

In what follows, we identify models by numbers, 
assigned in order of increasing CRE sensitivity Σ from 
abrupt4xCO2 simulations. We separate models into low-
sensitivity (LS) and high-sensitivity (HS) groups according 
to their CRE sensitivities and separated by the sign of Σ, 
with 10 and 11 models in the two groups, respectively.

Most of the spread in Σ among models is contributed 
by the different CRE sensitivities Σω in weak-subsidence 

Table 1  Equilibrium climate sensitivity (ECS, K), shallowness index (γ, %), tropical mean CRE changes ∆CRE (Wm
−2), SST changes (K), 

and corresponding CRE sensitivities Σ (Wm
−2

K
−1) for 21 CMIP5 models

ECS values are listed in Forster et al. (2013) and Sherwood et al. (2014). Shallowness indices γ are mean values plus/minus one standard 
deviation estimated from temporal variations in weak-subsidence regimes in the piControl simulations. The CRE and SST changes in the 
abrupt4xCO2 simulations are differences between years 131–140 and 2–6. The Σa column shows the CRE sensitivity obtained from fixed SST 
simulations, comparing simulations with global SST increased by 4 K (AMIP+4K) to control (AMIP) simulations. Models are numbered in 
order of increasing Σ for the abrupt4xCO2 simulations. AMIP models with asterisks provide the physical tendencies used in Sect. 4

Model acronym ECS piControl abrupt4xCO2 AMIP+4K

γ ∆CRE ∆SST Σ Σa

1 GISS-E2-R 2.1 19 ± 2 −0.97 0.98 −1.06

2 BNU-ESM 4.1 48 ± 2 −1.63 1.98 −0.93

3 GISS-E2-H 2.3 18 ± 2 −0.91 1.26 −0.84

4 MIROC5* 2.7 38 ± 2 −0.95 1.35 −0.70 −0.11

5 GFDL-ESM2G 2.4 38 ± 4 −0.39 1.08 −0.67

6 GFDL-ESM2M 2.4 39 ± 3 −0.54 1.45 −0.49

7 CCSM4 2.9 49 ± 3 −0.84 1.89 −0.39 −0.80

8 inmcm4 2.1 89 ± 1 −0.29 1.09 −0.30

9 NorESM1-M 2.8 47 ± 3 −0.36 1.56 −0.19

10 bcc-csm1-1 2.8 47 ± 2 −0.06 1.19 −0.09 −0.33

11 MRI-CGCM3* 2.6 35 ± 4 0.13 1.73 −0.05 0.35

12 bcc-csm1-1-m 2.9 49 ± 3 0.36 1.99 0.15

13 CanESM2 3.7 74 ± 3 1.09 2.34 0.40 0.25

14 IPSL-CM5B-LR 2.6 83 ± 2 0.63 1.76 0.43 0.35

15 MPI-ESM-LR* 3.6 70 ± 4 1.33 2.43 0.59 0.77

16 MPI-ESM-MR 3.4 72 ± 4 1.32 2.29 0.62 0.72

17 HadGEM2-ES* 4.6 4 ± 3 1.66 2.59 0.69 0.42

18 GFDL-CM3 4.0 44 ± 4 2.34 2.28 1.10

19 MIROC-ESM 4.7 74 ± 2 3.95 3.03 1.47

20 IPSL-CM5A-MR 4.1 70 ± 4 4.43 3.28 1.53

21 IPSL-CM5A-LR* 4.1 70 ± 5 4.51 3.05 1.75 1.23

Multi-model mean 3.2 ± 0.8 53 ± 20 0.7 ± 1.8 1.9 ± 0.7 0.1 ± 0.8 0.3 ± 0.6
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Table 2  Principal parameterization schemes for low clouds used in CMIP5 models

Model acronym PBL schemes Shallow convection schemes Cloud schemes

1,3 GISS-E2 Moeng and Sullivan (1994) Genio and Yao (1993),  
Genio et al. (1996)

Sundqvist et al. (1989)

2 BNU-ESM Neale et al. (2010) Zhang and McFarlane (1995), Hack 
(1994)

Slingo (1987)

4 MIROC5 Mellor and Yamada (1974),  
Mellor and Yamada (1982),  
Watanabe et al. (2010)

Chikira and Sugiyama (2010),  
Pan and Randall (1998)

Watanabe et al. (2009)

5,6 GFDL-ESM2 Anderson et al. (2004) Moorthi and Suarez (1992) Tiedtke (1993), Anderson et al. (2004)

7 CCSM4 Neale et al. (2010) Zhang and McFarlane (1995), Hack 
(1994)

Slingo (1987)

8 inmcm4 Blackadar (1962) Betts (1986) Volodin and Dianskii (2004)

9 NorESM1-M Neale et al. (2010) Zhang and McFarlane (1995), Hack 
(1994)

Slingo (1987)

10,12 bcc-csm1 Neale et al. (2010) Zhang and Mu (2005), Wu et al. 
(2010)

Slingo (1987)

11 MRI-CGCM3 Mellor and Yamada (1974),  
Mellor and Yamada (1982)

Yukimoto et al. (2011) Tiedtke (1993)

13 CanESM2 McFarlane et al. (1992) Salzen et al. (2005) von Salzen et al. (2013)

14 IPSL-CM5B Yamada (1983) Hourdin et al. (2013) Jam et al. (2013), Bony and Emanuel 
(2001)

15,16 MPI-ESM Brinkop and Roeckner (1995),  
Louis (1979)

Tiedtke (1989), Stevens et al. (2013) Sundqvist et al. (1989)

17 HadGEM2-ES Lock et al. (2000) Gregory and Rowntree (1990) Smith (1990)

18 GFDL-CM3 Anderson et al. (2004) Bretherton et al. (2004) Tiedtke (1993), Donner et al. (2011)

19 MIROC-ESM Mellor and Yamada (1974),  
Mellor and Yamada (1982)

Arakawa and Schubert (1974), Emori 
et al. (2001)

Treut and Li (1991)

20/21 IPSL-CM5A Louis (1979), Laval et al. (1981) Emanuel (1991), Emanuel (1993) Bony and Emanuel (2001)
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Fig. 1  SW component of CRE sensitivities Σω for high (red) and low 
(blue) sensitivity models, for different dynamical regimes identified 
by their monthly-mean 500-hPa vertical velocity ω. Here and in sub-
sequent figures, the changes in the abrupt4xCO2 simulations are dif-
ferences between years 131–140 and years 2–6. Solid lines indicate 
multi-model means, and error bars plus minus one intermodel stand-
ard deviation for each group. Probability density functions Pω of ω 
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Fig. 2  Vertical distribution of cloud fraction in pre-industrial control 
climate (a) and changes induced by surface warming in abrupt4xCO2 
simulations (b) in weak-subsidence regimes over tropical oceans 
(ω500 = 20± 10 hPa day−1). The lines show averages over models 
with higher (red) and lower (blue) CRE sensitivity Σ. The horizontal 
bars indicate plus minus one intermodel standard deviation for each 
group. Each monthly-mean cloud fraction over model-dependent ver-
tical levels was linearly interpolated to the 17 standard CMIP5 layers 
to facilitate comparison of the different models
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regimes, especially through the shortwave component 
of CRE (Fig. 1). Therefore, we focus our analyses on 
weak-subsidence regimes, identified by vertical velocities 
ω = 20± 10 hPa day−1. Vertical velocities in this band 
occur frequently over tropical oceans (Pω is maximum at 
ω ≈ 20 hPa day−1). The coarse partitioning into HS and LS 
models and the focus on weak-subsidence regimes allows 
us to identify fundamental model differences that contrib-
ute to the spread of CRE sensitivities.

3  Vertical distribution of tropical low clouds

3.1  Differences between HS and LS climate models

In weak-subsidence regimes, models with higher and lower 
CRE sensitivity differ in the vertical distribution of cloud 
fractions they simulate in the pre-industrial control climate 
(Fig. 2a), and they differ in the response of this vertical dis-
tribution to global warming (Fig. 2b). HS models generally 
simulate a lower minimum of cloud fraction in the middle 
and lower troposphere than LS models, especially between 
700 and 900 hPa; cloud fractions in the upper troposphere 
in HS models tend to be slightly larger than in LS models. 
The vertical distribution of clouds suggests that on average, 
HS models tend to have a shallower PBL than LS models, 
consistent with an average stronger lower-tropospheric 
static stability (15.3 versus 14.6 K potential temperature 
difference between 700 and 1000 hPa, respectively).

In response to global warming, the tropopause rises in 
all models, and clouds above 400 hPa correspondingly shift 
upward (Fig. 2b). This is expected given the radiative con-
straints on the height of the tropopause and of deep clouds 
(e.g., Held 1982; Thuburn and Craig 1997; Hartmann and 
Larson 2002; Singh and O’Gorman 2012). HS and LS 
models mainly differ in their cloud fraction changes below 
850 hPa (∼1.4 km altitude): cloud fraction in HS models 
decreases on average, whereas it increases in LS models.

3.2  Shallowness of low clouds

The average vertical distributions of cloud fractions mask 
the great variety of vertical distributions simulated by cli-
mate models in weak-subsidence regimes. Given the appar-
ent importance of differences in the vertical distribution of 
lower-tropospheric cloud fractions, we introduce an index

which quantifies the ratio of cloud fraction below the 900-
hPa level (∼1 km), CF950, to the total low-cloud fraction 
below the 800-hPa level (∼2 km), CF850 + CF950. The 
cloud fractions CF950 and CF850 are the mass-weighted 

(3)γ =
CF950

(CF850 + CF950)
,

cloud fractions between 1000 and 900 hPa and between 
900 and 800 hPa, respectively. These values are calculated 
from the cloud fractions on model vertical levels (rather 
than the standard CMIP5 levels). The shallowness index γ 
quantifies the fraction of low clouds below 900 hPa, irre-
spective of the absolute low-cloud fraction for each model: 
γ = 100% indicates that low clouds are present only below 
900 hPa and the above-lying layer between 800 and 900 
hPa is cloud free; conversely, γ = 0% indicates low clouds 
are present only in the layer between 800 and 900 hPa and 
the layer underneath is cloud free. The absolute cloud frac-
tion is normalized out because it influences the amplitude 
of the low-cloud CRE response to global warming without 
modifying its sign, through a radiative feedback between 
cloud radiative effects, temperature and relative humidity 
(Brient and Bony 2012). It may also be tuned in models to 
be close to observations. By contrast, the vertical distribu-
tion of clouds is a better signature of physical character-
istics of boundary-layer and shallow convection parametri-
zations (e.g., Watanabe et al. 2012; Yao and Cheng 2012). 
Note that Nuijens et al. (2015) adopted a slight variant of 
this shallowness index γ to analyze observations.

In weak-subsidence regimes, CMIP5 models produce 
values of shallowness indices γ between 19 and 89 %, with 
intermodel variations (average standard deviation of 20 %) 
larger than the standard deviation from temporal variations 
(∼3%, Table 1). This suggests different models assign very 
different relative importances to the diverse physical pro-
cesses that influence clouds below 2 km altitude, and that 
γ is a characteristic of climate models. For comparison, the 
corresponding shallowness γ obtained from ERA Interim 
reanalyses (Dee et al. 2011) for the years 1979–2012 is 
45± 3% (errors indicating one seasonal standard devia-
tion), and that obtained from Calipso/GOCCP (GCM-Ori-
ented CALIPSO Cloud Product) satellite data (Chepfer 
et al. 2010) for the years 2006–2012 is 44± 3%. These 
values lie in the middle of the range of values seen in the 
CMIP5 models; however, the ERA Interim value may be 
contaminated by model biases, and the satellite value by 
cloud overlap and masking effects.

In the CMIP5 models, shallower low clouds (larger γ) 
are generally associated with stronger surface sensible 
heat fluxes (SHF) in weak-subsidence regimes (Fig. 3a). 
The variation of SH fluxes across models is primarily 
accounted for by variations in the air-sea temperature dif-
ference (R = 0.82) and secondarily by variations in surface 
wind speed (R = 0.32). Variations across models of the air-
sea temperature difference in weak-subsidence regimes, in 
turn, arise primarily through variations in surface air tem-
perature (R = −0.73) and secondarily through variations 
in SST (R = −0.43). That is, models with lower surface 
air temperature in weak-subsidence regimes tend to have 
stronger SHF and shallower low clouds. The lower surface 
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air temperature may be linked to the shallower vertical dis-
tribution of clouds and the atmospheric radiative cooling 
exerted by them. Figure 3a also confirms that HS models 
(red numbers) generally simulate shallower low clouds 
than LS models (blue numbers).

Not only have models with shallower low clouds 
stronger SH fluxes in weak-subsidence regimes, their 
response to global warming follows a similar pattern. Sen-
sible heat fluxes generally decrease as the climate warms 
because the lower atmosphere stabilizes; the decrease in 
SH fluxes and increase in net radiative energy input to the 
surface are balanced by an increase in latent heat fluxes. 
Models with a stronger reduction in SH fluxes under global 

warming tend to produce deeper low clouds (reduced γ; 
see Fig. 3b). However, the shallowness of low clouds can 
increase or decrease under global warming in different 
models, and changes in γ do not clearly separate HS and 
LS models.

The relationship between the shallowness of low clouds 
in weak-subsidence regimes in the pre-industrial con-
trol climate and a model’s sensitivity of shortwave cloud 
radiative effects (SWCRE) to SST in experiments when 
CO2 concentrations are quadrupled is shown in Fig. 4a. As 
before, the changes exclude the fast response in the first 
year of the abrupt4xCO2 simulations. Figure 4a shows that 
shallower low-clouds are associated with a more positive 
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shortwave feedback by low clouds. Consistent with the 
strong correlation between SW cloud feedback and climate 
sensitivity, Fig. 4b confirms that shallower low clouds in 
subsidence regimes are generally associated with higher 
tropical SST changes and hence with higher climate sen-
sitivity. Variations of the climatological shallowness γ 
account for about half the spread (intermodel standard 
deviation) of tropical SST changes and climate sensitivities 
among models. So the shallowness of low clouds is a good 
predictor of a model’s climate sensitivity.

If we assume the low-cloud shallowness inferred from 
observations and reanalysis (around γ ≈ 45± 4%) is an 
adequate representation of reality, and models with a simi-
lar low-cloud shallowness are closer to being correct than 
models that farther diverge from the observational value, 
the results in Fig. 4 suggest that models with extremely 
high or low γ and climate sensitivity are unlikely to be 
correct. The least sensitive model that has a shallowness 
γ within the observed range has a climate sensitivity of 
2.4 K (#5, GFDL-ESM2G). The most sensitive model with 
a shallowness γ within the observed range has a climate 
sensitivity of 4.6 K (#17, HadGEM2-ES). However, this 
spread of climate sensitivities is only about 30 % smaller 
than the total spread among all models.

The sensitivity of global warming to present-day shal-
lowness of low clouds in GCMs raises the question of 
which physical processes are responsible for the different 
vertical distributions of low clouds and their changes under 
global warming.

4  Role of parameterizations in controlling cloud 
responses

4.1  Turbulence and convection

To identify which parameterization schemes are respon-
sible for the different vertical distributions of low clouds 
and their changes under global warming, we analyze 
tendencies associated with different parameterization 
schemes in AMIP simulations, using AMIP+4K simula-
tions to represent global warming. Only the atmosphere-
only CMIP5 simulations provide physical tendencies, 
and only five models provide every tendency needed 
(Table 1). These five models span different climate sensi-
tivities and exhibit cloud radiative changes ranging from 
moderately negative to strongly positive. Their behavior 
is representative of that seen in the CMIP5 simulations, in 
terms of present low-cloud shallowness (γ ) and changes 
of it under global warming (Fig. 3). In weak-subsidence 
regimes, three of the models simulate a deepening of low 
clouds under warming, and two models simulate a shal-
lowing (Fig. 3b).

Various parameterization schemes affect low-cloud 
cover in the models (Table 2). Turbulence and convection 
in the five models are represented by separate schemes, as 
commonly done, although they are part of a continuous 
spectrum of convective motions. For example, shallow con-
vective cumulus clouds typically rise above convective 
plumes that have their roots in a turbulent boundary layer. 
Yet shallow convection and boundary layer turbulence are 
typically represented by separate schemes that do not 
explicitly interact. The tendencies affecting specific humid-
ity and thus low-cloud cover in the models we analyze arise 
from parameterization schemes for turbulence (specific 
humidity tendency due to diffusion, CMIP5 variable 
tnhusd), convection (specific humidity tendency due to con-
vection, CMIP5 variable tnhusc), and condensation and 
boundary layer processes (specific humidity tendency due 
to stratiform clouds/precipitation and boundary-layer mix-
ing, CMIP5 variable tnhusscpb).2 Figure 5 shows the corre-
sponding mean specific humidity tendencies in weak-sub-
sidence regimes at heights below the 700 hPa level. The 
sum of these specific humidity tendencies represents the 
total tendency of parameterized processes (CMIP5 varia-
ble, tnhusmp), which balances tendencies owing to resolved 
processes such as large-scale subsidence and horizontal 
advection.

Some aspects of the parameterized tendencies are 
robust across models. Every model simulates a moisten-
ing tendency by the sum of parameterized processes in the 
boundary layer, which is compensated by large-scale sub-
sidence drying (not shown). The total parameterized ten-
dency arises primarily through turbulent moistening in the 
boundary layer, which is partially compensated by convec-
tive drying. The tendencies owing to parameterized turbu-
lence and convection have opposite sign but are similar in 
their vertical shapes and magnitudes. Some models simu-
late significant cloud fraction at the top of PBL (800 hPa), 
driven by convective (e.g., HadGEM-A) or turbulent (e.g., 
MPI-ESM) moistening. However, the tendencies owing to 
parameterized convection differ greatly among the models, 
both in magnitude and in vertical structure.

Figure 5 also shows the parameterized tendencies in the 
corresponding AMIP+4K simulations, again with some 
results that are robust across models. Surface latent heat 
fluxes and specific humidities increase as the climate warms, 
resulting in stronger turbulent moistening in the PBL. This 
is compensated by strengthened subsidence drying, arising 
because specific humidity gradients across the top of the 
PBL strengthen—a consequence of the temperature increase 

2 For the MPI-ESM-LR and HadGEM-A models, turbulence and 
condensation are not separated and are combined in the “turbulence” 
tendencies.
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that, by the Clausius–Clapeyron relation, implies strength-
ened specific humidity gradients when relative humidity 
changes are comparatively small (Held and Soden 2006; 
Schneider et al. 2010; Brient and Bony 2013). Because the 
PBL specific humidity and its vertical gradients increase, 
convective drying also strengthens (e.g. Sherwood et al. 
2014), but to a lesser extent than turbulent moistening. By 
contrast, parameterized temperature tendencies are less 
affected by the surface temperature increase, because vertical 
temperature gradients in the lower atmosphere change less 
than specific humidity gradients. Thus, the spread of cloud 
responses in CMIP5 models appears to be more directly 
related to changes in parameterized specific humidity ten-
dencies and their effect on low clouds than to parameterized 
temperature tendencies. Similar analyses can be carried out 
focusing on relative humidity tendencies (Fig. 6); however, 
changes in relative humidity tendencies can also result from 
local radiative feedbacks (Brient and Bony 2012).

4.2  Low‑cloud inhibition by convective drying

In every model, parameterized convection dries and turbu-
lence moistens the lower troposphere. They add up to a net 

moistening effect, with different relative strengths among 
models. Figure 5 shows that the strength of convective dry-
ing at the altitude of maximum cloudiness varies greatly 
among models. We quantify the low-cloud inhibition by 
convective drying through the index

where Qc is the specific humidity tendency due to con-
vection, Qt is the total specific humidity tendency due to 
parameterized processes, H is the Heaviside step function, 
and CF is the cloud fraction. The greater εc, the stronger 
the drying of cloudy levels by parameterized convec-
tion. Figure 7a and Table 3 show that greater values of εc 
are associated with shallower low clouds (greater γ) in 
weak-subsidence regimes. As the climate warms, models 
with higher values of εc in the present-day climate tend 
to exhibit a deepening of the low clouds, as indicated by 
a negative change of γ (R = −0.95, Fig. 7b). Identical 
conclusions arise by computing (4) with relative humid-
ity tendencies, due to high correlation with εc (R = 0.99, 
not shown). This suggests that investigating how low-cloud 

(4)εc = −

∫ 800 hPa
ps

H(−Qc)Qc CF dp
∫ 800 hPa
ps

Qt CF dp
,
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Fig. 5  Specific humidity tendencies in weak-subsidence regimes 
over tropical oceans for five models simulating deepening (top) and 
shallowing (bottom) of low clouds under surface warming. Filled 
and dashed lines are AMIP and AMIP+4K simulations, respectively. 
Tendencies owing to parameterized condensation (pink), turbulence 

(green) and convection (blue) are shown, as well as the total of 
parameterized tendencies (black). Mean cloud fraction (divided by 5) 
is shown by filled and empty dots for AMIP and AMIP+4K simula-
tions
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shallowness is controlled may also help identify causes of 
low-cloud changes under global warming. However, the 
deepening as measured by changes in γ may be caused 
by different changes of cloud fractions at the lowest lev-
els (below 900 hPa) relative to those above (between 800 

and 900 hPa). For example, the deepening is caused by a 
strong decrease of cloud cover below 900 hPa in models 
#15 and #21, whereas an increase of cloud cover at higher 
levels also contributes to the deepening in model #11 (see 
Table 3 for model names). Nevertheless, parameterized 
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Fig. 7  Relationships between convective drying index (εc) and a 
shallowness (γ ) of low clouds in weak-subsidence regimes over tropi-
cal oceans for AMIP simulations or b changes in shallowness (∆γ ) 
between AMIP and AMIP+4K simulations relative to AMIP. The 
models are identified by numbers (Table 3). Results from the single-
column version of the IPSL model are also included for two configu-

rations: one (control simulation) with convective parameterization 
active (triangle) and another with the convective parameterization 
switched off (circle) (however, they are excluded in the calculation 
of the linear regression lines and correlation coefficients that are also 
shown)
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convective drying appears to be an important predictor of 
both the shallowness of present low clouds and its response 
to climate change.

4.3  Mixing efficiencies

The results so far indicate that greater shallowness of low 
clouds in weak-subsidence regimes is associated with 
greater climate sensitivity of models, stronger sensible heat 
fluxes, weaker near-surface static stability (i.e., greater air-
sea temperature difference), and stronger convective dry-
ing. Models with stronger convective drying tend to exhibit 
a stronger decrease of low clouds at the lowest levels. 
This suggests that the shallowness of low clouds, and its 
response to climate change, is related to the efficiency of 
parameterized moisture mixing in models, similar to what 
was suggested by Sherwood et al. (2014).

Irrespective of whether the parameterized processes are 
diffusive, we quantify the moisture mixing efficiency of 
parameterized processes in the models through an effective 
diffusivity Ki(z), defined through the relation

where ρ is density, q the specific humidity, and (dq̄/dt)i is 
its tendency owing to a parameterized process labeled with 
index i (e.g., boundary-layer turbulence or convection, as 
shown in Fig. 5). The overbar denotes grid-scale (resolved) 
variables, and the flux w′q′ is the density-weighted mean 
of the parameterized subgrid-scale fluxes, which are, 
for the purposes of quantifying mixing efficiency, repre-
sented diffusively (notwithstanding that this would not be 
an adequate representation, e.g., for convective fluxes or 

(5)

(

dq̄

dt

)

i

= −
1

ρ̄

∂

∂z

(

ρ̄ w′q′
)

i
= −

1

ρ̄

∂

∂z

(

−ρ̄Ki

∂ q̄

∂z

)

,

precipitation). The implied diffusivity Ki(z) can be obtained 
from the available parameterized tendencies by vertical 
integration of (5) from the level z to the top of the atmos-
phere, where ρ̄(z) → 0, giving

To determine Ki(z) from the relation (6), we linearly 
interpolate the specific humidities q̄ from the 17 standard 
CMIP5 levels to the model-specific native levels, on which 
the tendencies (dq̄/dt)i are available. We use monthly-
mean fields in all analyses, which may blur fine structures 
such as the sharp inversion at the top of PBL; however, it 
provides a coarse estimate of the moisture mixing in the 
lower troposphere. The so determined total diffusivities 
K = −

(

w′q′
)

i
(z)/

(

∂ q̄(z)
∂z

)

 for the sum of all parameter-
ized processes below 2 km are negatively correlated with 
the shallowness γ (R = −0.94), implying that shallower 
clouds are associated with weaker total mixing.

As the climate warms, changes in the subgrid-scale 
fluxes 

(

w′q′
)

i
 according to the conceptual diffusive closure 

(6) can arise because the implied diffusivities Ki change, 
because specific humidity gradients ∂ q̄/∂z change, or 
because there are covariances between these two changes:

Calculating the implied subgrid-scale fluxes and their 
changes according to relations (6) and (7), averaging over 
the lowest 2 km (below 800 hPa) of the atmosphere, and 

(6)

ρ̄(z)
(

w′q′
)

i
(z) =

∫

∞

z

ρ̄

(

dq̄

dt

)

i

dz

= −Ki(z) ρ̄(z)

(

∂ q̄(z)

∂z

)

.

(7)∆
(

w′q′
)

i
= −

(

∂ q̄

∂z

)

∆Ki − Ki ∆

(

∂ q̄

∂z

)

−∆Ki ∆

(

∂ q̄

∂z

)

Table 3  Shallowness index (γ ), convective drying index (ǫc), spe-
cific humidity diffusivity (Kmp), sensible fluxes, latent heat fluxes, 
and buoyancy fluxes B computed as SHF + 0.07 LHF. Tropical-ocean 
average (first lines) and normalised changes (second lines) over weak 

subsidence are listed for every model. Normalized changes are calcu-
lated by the difference between AMIP4K-AMIP for the five atmos-
pheric models, and by the difference under a 2-K warming for the 
two single-column models
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decomposing the changes according to the right-hand side 
of (7), we find the following in tropical weak-subsidence 
regimes:

1. The total vertical specific humidity flux w′q′ owing to 
the sum of all parameterized processes strengthens as 
the climate warms. This is a direct consequence of the 
strengthened large-scale advective drying in subsid-
ence regimes, confirmed by the increase of net surface 
evaporation (E − P > 0) at the surface (Mitchell et al. 
1987; Held and Soden 2006).

2. The specific humidity gradient ∂ q̄/∂z strengthens 
(becomes more strongly negative), as is to be expected 
from the Clausius–Clapeyron relation when relative 
humidities near the surface change little as the climate 
warms (e.g., Boer 1993; Held and Soden 2006; Schnei-
der et al. 2010).

3. The implied total diffusivity K for the sum of all 
parameterized processes for some models increases 
and for others decreases as the climate warms. An 
increasing diffusivity (stronger mixing) is associ-
ated with deepening low clouds (γ decreases), and a 
decreasing diffusivity is associated with shallowing of 
low clouds (Fig. 8a).

4. Shallowing low clouds (γ increases) are also associated 
with increasing surface buoyancy fluxes,3 and deepen-
ing low clouds (γ decreases) with decreasing surface 
buoyancy fluxes (Fig. 8b). Boundary-layer radiative 
changes induced by low clouds and mixing may both 
contribute to the sensible heat flux and buoyancy flux 
changes under warming in climate models.

3 Surface buoyancy fluxes B are related to surface fluxes through the 
relation B ∝ (SHF + 0.61 ((cpT̄)/Lv)LHF) where LHF is the sur-
face latent heat flux. In the tropics, the coefficient multiplying LHF is 
close to 0.07 (Cuijpers and Bechtold 1995). We thus use the approxi-
mation B ∝ (SHF + 0.07LHF).

5. Covariances between changes in diffusivity and 
changes in specific humidity gradients are small (not 
shown).

By decomposing the diffusivity changes into compo-
nents associated with different parameterized processes 
(Fig. 9), we see that every model simulates weakened tur-
bulent moisture mixing and strengthened convective mois-
ture mixing, with the exception of the MRI model, in which 
mixing by parameterized turbulence strengthens slightly. 
The turbulent moisture mixing likely weakens because the 
sensible heat flux weakens as the climate warms, weak-
ening buoyancy fluxes, and because of the increasing 
static stability and increasing importance of the buoyancy 
effects (virtual temperature effects) of water vapor load-
ing (e.g., Pierrehumbert 2002; O’Gorman and Schneider 
2008). A strong latent heat flux increase may partially 

Fig. 8  Relationship between 
changes in shallowness γ of 
low clouds in weak-subsidence 
regimes over tropical oceans 
and a changes in total humidity 
diffusivity ∆K by all parameter-
ized processes and b changes 
in buoyancy flux computed as 
∆SHF + 0.07∆LHF. Symbols 
as defined in Fig. 7
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compensate this effect in the AMIP simulations (Fig. 8b; 
Table 3), in which the surface energy balance is not ener-
getically closed. Nevertheless, CMIP models also show 
a wide spread of buoyancy flux changes (from −0.28 to 
0.37 W m−2 K−1), associated with changes of shallowness 
(not shown) and mostly related to the spread of sensible 
heat flux changes (Fig. 3b). The opposing changes in turbu-
lent and convective mixing are consistent with the compen-
sation between convective drying and turbulent moistening 
seen in the vertical profiles of specific humidity tendencies 
(Fig. 5). The relative importance in different models of 
these two robust mixing changes gives rise to the different 
responses of the vertical distribution of low clouds as the 
climate warms. To demonstrate this explicitly, we turn to 
experiments with a single-column version of one model.

5  Testing the role of the convective 
parameterization in a single‑column model

We use a single-column model version of the IPSL-CM5A 
GCM to perform experiments testing the sensitivity of low 
clouds to the convection parameterization. While the IPSL 
GCM, like other models, exhibits biases in its represen-
tation of observed tropical low clouds (e.g. Nuijens et al. 
2015), the SCM reproduces the cloud fraction of the parent 
GCM in weak-subsidence regimes (e.g., the S6 case stud-
ied by Zhang et al. 2013), provided a stochastic forcing is 
added to the vertical velocity (Brient and Bony 2013). Each 
sensitivity experiment is run for 200 days, and results are 
analyzed after 60 days of spin-up.

Like the parent GCM (Fig. 5), the IPSL-CM5A SCM 
simulates shallow low clouds (high γ), with a cloud fraction 

maximum near 950 hPa (Fig. 10a). This is associated with 
strong turbulent moistening and convective drying in the 
cloud layer (Fig. 10b). Temperature tendencies show turbu-
lent warming near the surface, overlain by convective warm-
ing and turbulent cooling (Fig. 10c). Above about 900 hPa, 
convection cools and moistens the lower troposphere. The 
turbulence parameterization in the IPSL-CM5A model 
uses an exponentially decreasing diffusivity with height 
(Fig. 10d), typical of stable cloud layers (Louis 1979). Note 
that the profile of turbulent diffusivity calculated by (6) 
is identical to the one given by the model seen in Fig. 10d 
(not shown).Thus, substantial turbulent mixing and, with it, 
turbulent moistening are confined below about 1 km in this 
model. The shallowness of the low clouds is a consequence.

If we disable the parameterized convection, the turbu-
lence parameterization compensates for some of the miss-
ing convection effects. The turbulent specific humidity 
tendency below the cloud layer is reduced, compensating 
for some of the missing convective drying; it is increased 
around and above 900 hPa, compensating for some of the 
missing convective moistening (Fig. 10b). However, the 
total humidity transport increases and has a more elevated 
maximum, though with more rapid decay with altitude 
above it. This results in a cloud fraction maximum that 
is more pronounced and more spread out, with a peak at 
a higher level; however, above the maximum, cloud frac-
tion also decreases more rapidly with height (Fig. 10a). 
Thus, in this model, convective warming stabilizes the low-
est atmospheric layers (Fig. 10c), explaining the shallower 
turbulent mixing when convection is switch on (Fig. 10d). 
This reduces the turbulent transport of humidity below 
900 hPa, leads to shallower low clouds, and decreases the 
low-cloud fraction.
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Fig. 10  Cloud fraction and parameterized tendencies in IPSL-CM5A 
SCM with (red) and without (blue) convection parameterization. a 
Cloud fraction, b specific humidity tendencies, c temperature tenden-
cies and d turbulent diffusivity from the model turbulence parameteri-
zation are represented. Total (turbulent plus convective) tendencies 

from experiments with convection (red lines) are separated into ten-
dencies owing to parameterized turbulence (black solid lines) and into 
tendencies owing to parameterized convection (black dashed lines) in 
b and c
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If we compare the present with a warmer climate (pre-
scribed SST increased by 2 K), the low clouds deepen 
(∆γ < 0) in the simulation with convection, and their cloud 
fraction decreases substantially (Fig. 11a). In the simula-
tion without convection, by contrast, the low clouds become 
shallower (∆γ > 0), and their cloud fraction decreases only 
weakly. The shallowing arises because the turbulent mixing 
in the PBL weakens when convection is switched off. This 
may seem to stand in contrast to the negative low-cloud feed-
back that was posited to be induced by increased surface 
fluxes and turbulent moistening as the climate warms (Kawai 
2012; Zhang et al. 2013); however, as we have seen before, 
the static stability increases and the sensible heat fluxes gen-
erally weaken as the climate warms (Fig. 3b), so a weaken-
ing of turbulent mixing is plausible. The deepening arises as 
convection increasingly ventilates the PBL by transporting 
more moisture from the surface to the free troposphere, which 
favors mid-level clouds at the expense of PBL clouds. The net 
result of these opposing effects gives the overall change in 
low-cloud fraction: the strong decrease with convection, and 
the much weaker decrease without convection in the IPSL-
CM5A SCM.

The convective drying index εc and changes in the 
implied total humidity diffusivities Ki for these SCM 
experiments confirm these results. Without the convection 
parameterization, the shallowing of low clouds under warm-
ing is associated with a reduction of total moisture mixing 
(Fig. 8a, circle). With the convection parameterization, con-
vective drying is strong, and its strengthening under warm-
ing overcompensates strengthened turbulent moistening, 
leading to an increased total moisture mixing and the deep-
ening of low clouds (triangle in Figs. 7b, 8a and 11).

6  Discussion and conclusions

Our analyses have shown that in state-of-the-art climate 
models, greater shallowness of low clouds in weak-subsid-
ence regimes is associated with greater climate sensitivity. 
How shallow low clouds are in a given model is controlled 
by the competition between parameterized convective dry-
ing and turbulent moistening, which together account for 
the total parameterized moisture mixing in a model. In 
the present-day climate, models with stronger convective 
drying tend to have shallower low clouds. As the climate 
warms, low clouds in a model may become shallower or 
deeper, depending on the change of total moisture mixing 
by parameterized convection and turbulence.

Robust mechanisms explain the opposing effects of 
parameterized convection and turbulence. As the surface 
warms, evaporation intensifies, and the atmospheric tem-
perature and specific humidity increase. This has two con-
sequences for changes in moisture mixing. First, because 
the relative humidity near the surface is energetically 
constrained to change little, the magnitude of the vertical 
specific humidity gradient increases, and the convective 
moisture mixing is expected to strengthen (e.g., if the con-
vective mass flux changes less in fractional terms than the 
specific humidity). This suggests a positive low-cloud feed-
back, in which convective PBL drying leads to reductions 
in cloud cover (e.g., Zhang et al. 2013). Second, the lower 
atmosphere stabilizes and sensible heat fluxes weaken, 
which suggests a weakening of turbulent diffusivity. This 
may result in a shallowing of total moisture mixing in the 
boundary layer. The relative importance of these two mech-
anisms controls the change of shallowness and the response 
in low-cloud fraction in climate models, as summarized in 
Fig. 12.

By contrast to surface warming, the direct effect of CO2 
concentration increases leads to shallower low clouds in 
climate models (Kamae and Watanabe 2012, 2013). The 
shallowing arises because convective mixing does not 
strengthen appreciably in response to CO2 concentration 
increases, so that low clouds react only to the weakened 
turbulent mixing, similar to our experiments in which con-
vection was switched off.

These results highlight that (1) the climatological shal-
lowness of low clouds is an indicator of the relative impor-
tance of parameterized convective and turbulent mixing in 
climate models, and its variations across models account 
for about half of the spread (intermodel standard deviation) 
in their climate sensitivites; and (2) low-cloud shallowing 
or deepening (suggesting different strength of the low-
cloud feedback) can arise depending on the relative impor-
tance of parameterized convective and turbulent mixing. 
Observations suggest an intermediate shallowness index 
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Fig. 11  Changes of a cloud fraction and b specific humidity ten-
dencies under a 2-K warming in IPSL-CM5A SCM with (red) and 
without (blue) a convection scheme. Total (turbulent plus convective) 
tendencies from experiments with convection (red lines) are separated 
into tendencies owing to parameterized turbulence (black solid lines) 
and into tendencies owing to parameterized convection (black dashed 
lines) in b
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of around γ ≈ 45± 4%. Models that have a shallowness γ 
broadly consistent with this value have climate sensitivities 
between 2.4 and 4.6 K.

The climatological shallowness of low clouds is intrinsi-
cally linked to the intensity of lower-tropospheric mixing, 
which has previously been identified as a control on mod-
els’ climate sensitivity (Sherwood et al. 2014). Sherwood 
et al. showed that higher climate sensitivity and a stronger 
positive low-cloud feedback in climate models arise when 
convective mixing is stronger. They suggested that models 
with stronger convective mixing dry the PBL more effi-
ciently as the surface warms, leading to a stronger reduc-
tion in low-cloud cover and hence higher climate sensitiv-
ity. Our results show that this mechanism occurs in every 
model but controls the low-cloud response only in about 
half of the CMIP5 models (those with ∆γ < 0). The other 
half is dominated by low-cloud shallowing caused by 
weakened turbulent moistening. The level of compensation 

between the two processes is highly variable among 
models, accounting for part of the spread of low-cloud 
responses and climate sensitivities seen in global warming 
simulations.

This study suggests that model developments that 
improve how low clouds are distributed vertically may 
increase the reliability of how the low-cloud response to 
climate change is simulated. These developments may be 
informed by comparisons of the climatology and temporal 
variability of the vertical structure of low clouds between 
models and observations, along the lines of what was 
done by Nuijens et al. (2015). Such analyses may help 
reduce the spread of climate sensitivity in the future. Reli-
able verification of the vertical structure of low clouds 
in models will also require a continuous effort to moni-
tor three-dimensional cloud structures observationally 
(Winker et al. 2010; EarthCARE Mission Advisory Group 
2006).
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Fig. 12  Schematic of the physical mechanisms in climate models 
that control the tropical low-cloud distribution for the present (black 
lines) and a warmer climate (red and blue referring to positive and 
negative changes). Models simulating deepening (a) and shallow-
ing (b) of low clouds under warming are separated. An equilibrium 
between turbulent and convective moistening controls where low 
clouds form. Convective warming (in addition to large-scale fluxes) 
stabilizes the lower troposphere and contributes to shallower low 

clouds. As the climate warms, two mechanisms act: (1) enhanced 
evaporation and strengthened specific humidity gradients strengthen 
convective mixing; (2) the lower atmosphere stabilizes, leading to 
weakened turbulent mixing. Models simulating low-cloud shallowing 
(b) are more influenced by the weakened turbulent mixing; models 
simulating low-cloud deepening (a) are more influenced by strength-
ened convective mixing
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