Isotopic composition of rain collected in the Niamey region: what information on cloud convection and water cycle?

Camille Risi, Sandrine Bony, Françoise Vimeux, Luc Descroix, Boubacar Ibrahim, Eric Lebreton, Ibrahim Mamadou, Michel Chong

LMD/IPSL, Paris (France)

July 21, 2009

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Why studying water isotopes?

- ▶ water=light molecules (H¹⁶₂O) + heavy (H¹⁸₂O, HDO)
- isotopic fractionation
- ► $\delta^{18} O$ = abundance in $H_2^{18} O$ in water expressed in $\%_0$
- δD = abundance in *HDO*
- d-excess = $\delta D 8 \cdot \delta^{18} O$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Goals during the AMMA campaign

- What controls the isotopic composition of Sahelian precipitation?
- What information on
 - convection processes?
 - water cycle?
- \blacktriangleright \Rightarrow collection at the end of each event, during the entire 2006 monsoon season, on 3 sites around Niamey

lsotopic evolution during the season

- isotopes record variations in convective activity:
 - the monsoon onset

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 before the onset: organization and intensity of individual systems

э

After the onset, $\delta^{18}O$ integrates convection

・ロト ・聞ト ・ヨト ・ヨト

Э

- temporal integration of convection
- record of large-scale signal of intra-seasonal variability

Isotopic processes in a squall line

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Use of LMDZ GCM simulations

- LMDZ4 GCM, AR4 physics
- ▶ 2.5°x3.75° horizontal resolution, 19 vertical levels
- nudged by NCEP 3D horizontal winds
- includes water isotopes:
 - advected like water
 - fractionation at phase changes, except evaporation from land

LMDZ-iso over Niamey

LMDZ-iso over Niamey

LMDZ-iso over Niamey

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ … の Q ()~.

$\delta^{18}O$ intra-seasonal variability in LMDZ

- before onset: instantaneous reponse to convection, through drop evaporation
- ► after onset: integration of convection, partly through the vapor one

Water tagging in LMDZ

- Each water molecule is tagged by a specific color, according to a coloring convention.
- Additional "passive" water species whose sum equals the total "normal" water

example: tag land versus ocean evaporation:

Proportion of vapor from land evaporation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Water tagging on Niamey

% of vapor that has evaporated over:

	summer	winter
continent	60%	30%
Atlantic	30%	45%
Mediterranean	2%	10%
Indian Ocean	10%	15%

% of vapor that has been through:

	summer	winter
Monsoon flow	32%	20%
AEJ	32%	10%
Sahara BL	8%	60%
unsat.		
downdraft	70%	50%

lsotopes and origin of vapor

► distinct isotopic properties of continental vapor ⇒ potential to evaluate continental recycling?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

lsotopes and convection

- ► distinct isotopic properties of continental vapor ⇒ potential to evaluate continental recycling?
- depletion of vapor by convective downdrafts
- at intra-seasonal scales: oceanic vapor depleted by convective downdrafts along the monsoon flow

Conclusion

• $\delta^{18}O$ records convective activity

- records the monsoon onset
- before the onset, local response to convection by rain drop evaporation
- after the onset, when convection is stronger, δ¹⁸O integrates convection by progressive depletion of oceanic vapor by convective downdrafts along the monsoon flow

ション ふゆ く 山 マ チャット しょうくしゃ

 Water tagging a powerful diagnostic tool to better understand the water cycle and isotopic variability in models

Perspectives

- Evaluation of LMDZ results? Evaluating the vapor composition?
- Advantages of vapor measurments:
 - All year long, during monsoon breaks
 - clearer signal of large-scale processes
 - Constrain representation of isotopic exchanges between vapor and precipitation
 - \Rightarrow "Picarro" intsrument to measure vapor isotopes
- ► Role of land surface processes:
 - LMDZ-ORCHIDEE coupled simulations
- What information can we infer from water isotopes about convection? origin of vapor? Continental recycling? land surface processes?
 - device observational methods based on isotopes to deduce terms of the water budget
 - device observational tests based on isotopes to evaluate models