Process-evaluation of tropical and subtropical tropospheric humidity simulated by general circulation models using water vapor isotopic measurements

Camille Risi

CIRES, Boulder

<u>Thanks to:</u> D Noone, S Bony, TES data: J Worden, J Lee, D Brown, SCIAMACHY data: C Frankenberg, MIPAS data: G Stiller, M Kiefer, B Funke ACE-FTS data: K Walker, P Bernath, ground-based FTIR: M Schneider, D Wunch, P Wennberg, V Sherlock, N Deutscher, D Griffith in-situ data: R Uemura SWING2: C Sturm

AGU 2010, 17 December 2010

 tropical and subtropical free tropospheric relative humidity strongly impacts

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)
- deep convection (*Derbyshire 2004*)

- tropical and subtropical free tropospheric relative humidity strongly impacts
 - water vapor feedback (Soden et al 2008)
 - clouds feedbacks (Sherwood et al 2010)
 - deep convection (*Derbyshire 2004*)
- but high dispersion in relative humidity in climate models
 - ► for present day, with a moist bias in the mid and upper troposphere (John and Soden 2005)

▶ for climate change projections (*Sherwood et al 2010*)

- tropical and subtropical free tropospheric relative humidity strongly impacts
 - water vapor feedback (Soden et al 2008)
 - clouds feedbacks (Sherwood et al 2010)
 - deep convection (*Derbyshire 2004*)
- but high dispersion in relative humidity in climate models
 - for present day, with a moist bias in the mid and upper troposphere (John and Soden 2005)
 - ▶ for climate change projections (*Sherwood et al 2010*)
- \implies need process-based evaluation of humidity in climate models

- tropical and subtropical free tropospheric relative humidity strongly impacts
 - water vapor feedback (Soden et al 2008)
 - clouds feedbacks (Sherwood et al 2010)
 - deep convection (*Derbyshire 2004*)
- but high dispersion in relative humidity in climate models
 - for present day, with a moist bias in the mid and upper troposphere (John and Soden 2005)
 - ▶ for climate change projections (*Sherwood et al 2010*)
- \implies need process-based evaluation of humidity in climate models \implies Goal: design observational diagnostics to evaluate processes controlling relative humidity, detect and understand biases?

(□) (@) (E) (E) =

3/12

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □ 3712⁽²⁾

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □ 3/12⁽²⁾

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

3/12

Water vapor isotopes are sensitive to these processes

► Water vapor isotopes are sensitive to these processes

 \Rightarrow Goal: design observational diagnostics based on water isotopes to evaluate humidity processes in models

3/12

LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version

- ► LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version
- 3 possible reasons for moist bias in mid and upper troposphere:

- ► LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version
- 3 possible reasons for moist bias in mid and upper troposphere:

- ▶ LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version
- 3 possible reasons for moist bias in mid and upper troposphere:

- ► LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version
- ▶ 3 possible reasons for moist bias in mid and upper troposphere:

4/12

- ► LMDZ-iso (*Risi et al 2010*), control simulation = AR4 version
- ▶ 3 possible reasons for moist bias in mid and upper troposphere:

 \Rightarrow water isotopes to detect these different reasons for moist bias?

4/12

 model-data comparison: collocation; simulations nudged by ECMWF; averaging kernels

5/12

Multidataset evaluation: annual zonal mean

Multidataset evaluation: seasonal (JJA-DJF)

Observable diagnostic	Reason for moist bias

Observable diagnostic	Reason for moist bias
$\bullet~\delta D$ seasonality is underestimated or reversed throughout the free troposphere	

Observable diagnostic	Reason for moist bias
$\bullet~\delta D$ seasonality is underestimated or reversed throughout the free troposphere	water vapor advection too diffusive in vertical

Observable diagnostic	Reason for moist bias
 δD seasonality is underestimated or reversed throughout the free troposphere Convective regions are too depleted RH, δD intra-seasonal variability in subtropics too low 	water vapor advection too diffusive in vertical

Observable diagnostic	Reason for moist bias
 δD seasonality is underestimated or reversed throughout the free troposphere Convective regions are too depleted RH, δD intra-seasonal variability in subtropics too low 	water vapor advection too diffusive in vertical
δD intra-seasonal variability in subtropics too low, RH variability too high	subgrid-scale water vapor variability too low

Observable diagnostic	Reason for moist bias
 δD seasonality is underestimated or reversed throughout the free troposphere Convective regions are too depleted RH, δD intra-seasonal variability in subtropics too low 	water vapor advection too diffusive in vertical
δD intra-seasonal variability in subtropics too low, RH variability too high	subgrid-scale water vapor variability too low
δD is too high in upper troposphere	condensate detrainement too strong

What causes the moist bias in models?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □

What causes the moist bias in models?

<□ > < @ > < E > < E > E 9/12⁽²⁾

What causes the moist bias in models?

9/12

 excessive vertical diffusion during water vapor transport is a widespread cause of moist bias in atmospheric models

What impact on humidity projections?

What impact on humidity projections?

► How a moist bias affect humidity change projections depends on the reason for the bias

What impact on humidity projections?

How a moist bias affect humidity change projections depends on the reason for the bias

10/12

 Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Understanding these reasons is all the more important as humidity change projections depends on the reason for the moist bias

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Understanding these reasons is all the more important as humidity change projections depends on the reason for the moist bias
- Excessive vertical diffusion during water vapor transport is a widespread cause of moist bias in climate models

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Understanding these reasons is all the more important as humidity change projections depends on the reason for the moist bias
- Excessive vertical diffusion during water vapor transport is a widespread cause of moist bias in climate models

Improving/extending isotope diagnostics

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Understanding these reasons is all the more important as humidity change projections depends on the reason for the moist bias
- Excessive vertical diffusion during water vapor transport is a widespread cause of moist bias in climate models
- Improving/extending isotope diagnostics
 - Evaluate further cloud and convective processes from the A-train synergy (TES-Calipso)+Calipso simulator

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Understanding these reasons is all the more important as humidity change projections depends on the reason for the moist bias
- Excessive vertical diffusion during water vapor transport is a widespread cause of moist bias in climate models
- Improving/extending isotope diagnostics
 - Evaluate further cloud and convective processes from the A-train synergy (TES-Calipso)+Calipso simulator
 - Water isotopes in CMIP?

Supplementary material

Annual mean δD in TES at 600hPa

Seasonal variations in TES

Dehydration pathways to the subtropics

> Daily ground-based FTIR data at Izana at 4.2km over 5 years

15/12

æ

□ > < @ > < \(\exists\) < \(\e

Annual mean in MIPAS

Effect of convection on isotopic profiles

18/12

Evaluation of the link δD -cloud cover in TES

= 19/12

Theoretical framework

Interpretation of the sensitivity tests

Validation of the theoretical framework

Uncertainty due to parameterizations vs large-scale circulation

