Water vapor isotopic measurements to evaluate the representation of moist processes in models during Madden-Julian oscillation

Camille Risi and Obbe Tuinenburg

LMD/IPSL/CNRS

Contributors: John Worden, Jean-Lionel Lacour, Matthias Schneider, Jean-Philippe Duvel

Montreal, August 16, 2014

Water isotopes

- Water isotopes track cloud processes
- ▶ δD in ‰

Water isotopes

• Measuring water vapor δD :

- Water isotopes track cloud processes
- δD in %

Water isotopes

• Measuring water vapor δD :

- Water isotopes track cloud processes
- ▶ δD in ‰

δD signature of moistening and dehydrating processes

 \Rightarrow distinguish between different moistening or dehydrating processes $_{3/12}$

Relative importance of cloud schemes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► In LMDZ GCM:
 - In upper trop, precipitating events deplete the vapor more when large-scale precipitation than when convection
 - In lower trop, vapor more enriched when shallow convection.

► IASI ,TES: vapor more depleted when ascent more top heavy

- ► In LMDZ GCM:
 - In upper trop, precipitating events deplete the vapor more when large-scale precipitation than when convection
 - In lower trop, vapor more enriched when shallow convection.
- ► IASI ,TES: vapor more depleted when ascent more top heavy

 \Rightarrow evaluate deep conv, shallow conv and large-scale precip relative roles and underlying heating profiles?

- ► In LMDZ GCM:
 - In upper trop, precipitating events deplete the vapor more when large-scale precipitation than when convection
 - In lower trop, vapor more enriched when shallow convection.

► IASI ,TES: vapor more depleted when ascent more top heavy

 \Rightarrow evaluate deep conv, shallow conv and large-scale precip relative roles and underlying heating profiles?

e.g. during MJO?

Cindy Dynamo campaign case

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

6/12

- Observed q max 0-1 days before OLR min
- Observed \(\delta D\) min 3 days after OLR min
- LMDZ captures this lag for this case

Statistical analysis for 2006-2007

- Observed δD min lags OLR min in Indian Ocean
- More complicated over Maritime Continent
- LMDZ δD to in phase with OLR

Statistical analysis for 2006-2007

- Observed \(\delta D\) min lags OLR min in Indian Ocean
- More complicated over Maritime Continent
- LMDZ δD to in phase with OLR

q- δD cycles in Indian Ocean

- Observations: "circular", clockwise shape
- LMDZ: sometimes circular, too often "linear": why?

8/12

What determines $q - \delta D$ shape in LMDZ?

Preliminary summary on $q - \delta D$ cycles

- ► Observed "circular shape" over Indian Ocean consistent with cloud evolution shallow → deep → stratiform
- What happens over the Maritime Continent?
- LMDZ too in phase: convection triggers too soon? Large-scale condensation not maintained long enough? Large-scale advective enrichment recovers too soon?

• $q - \delta D$ useful for model evaluation?

Sensitivity tests with LMDZ

▶ $q - \delta D$ shape sensitive to convection/cloud parameters

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

11/12

How to get closer to observations?

Summary and perspectives

- ▶ $q \delta D$ cycles during MJO: informs about the relative timing of shallow convection, deep convection, large-scale condensation and large-scale advection
- Potentially useful for model evaluation
- Still lot of work to fully understand both data and model behavior

- Help from CRMs?
- Exploit better the Cindy Dynamo campaign data?