CL39 1MO5P-0264

The present-day distribution of water stable isotopes simulated in the LMDZ GCM

Figure 1: Annual weighted average δD and d-excess simulated by LMDZ (above) and from observations: GNIP network ([3]) and Antarctic data ([4])

Figure 3: Map of partial correlation between $\delta^{18}O$ and temperature at a fixed precipitation and the partial correlation between $\delta^{18}O$ and precipitation at a fixed temperature (figure 4), for both LMDZ (left) and GNIP data (right). Correlations are calculated for weighted monthly averages.

4) Sensitivity to kinetic effects

The simulated isotopic composition is very sensitive to the representation of kinetic effects:

- (parameter λ , figure 4)
- sensitive to kinetic fractionation during rain reevaporation (figure 5).

Conclusion and perspectives

LMDZ predicts reasonable spatial and seasonal distributions of the isotopic composition of precipitation, and can thus be used as a tool to better understand and quantify what information is recorded in the isotopic archives. For this purpose, we plan to:

- sition of precipitation
- (interpretation of andean ice cores).
- surface-atmosphere coupled simulations.

References

- Submitted to J. Geophys. Res., 2008.
- 2] F. Hourdin, I. Musat, S. Bony, P. Braconnot, F. Codron, J.-L. Dufresne, L. Fairhead, M.-A. Filiberti, P. Friedlingstein, J.-Y. Grandpeix, G. Krinner, P. Levan, Z.-X. Li, and F. Lott. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn., 27:787-813, Dec. 2006 [3] IAEA. Statistical treatment of data on environmental isotopes in precipitation. Technical report, Int. At. Energ. Agency, 1992
- [4] V. Masson-Delmotte, S. Hou, and coauthors. A review of antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling. J. Climate, 2008.

We acknoledge Valérie Masson-Delmotte, Françoise Vimeux and Georg Hoffmann for providing data and for usefull discussions.

• d-excess in Antarctic is particulary sensitive to the representation of kinetic effects during snow formation

• How the tropical isotopic composition depends on the precipitation rate (amount effect) is particulary

Figure 4: Relationship between temperature, δD and d-excess over Antarctica, at the annual scale. Data are snow observations from [4]. Parameter λ controls kinetic effects during snow formation.

Figure 5: Average relationship between precipitation rate and $\delta^{18}O$ (left) and d-excess (right) over tropical oceans, at the monthly scale. Data are GNIP stations over tropical islands. *Parameter* ϕ *controls kinetic ef*fects during rain reevaporation (the relative humidity at the droplet contact is given by $h = \phi + (1 - \phi) \cdot$ h_d , with h_d the relative humidity in the downdraft in which the droplets fall; ϕ is set to 0.9 in the standard case).

• run an AMIP simulation and analyse of how the inter-annual variability is recorded in the isotopic compo-

• use the zoom option in LMDZ (stretched grid) to perform regional analyses: West Africa (interpretation of the isotopic composition of rain samples collected during the AMMA campaign), South America

• implement water stable isotopes in ORCHIDEE, the land surface scheme of the IPSL model, and run

[5] C. Risi, S. Bony, and F. Vimeux. Influence of convective processes on the isotopic composition (O18 and D) of precipitation and atmospheric water in the tropics: Part 2: Physical interpretation of the amount effect. submitted to J. Geophys.

[]] S. Bony, C. Risi, and F. Vimeux. Influence of convective processes on the isotopic composition (O18 and D) of precipitation and water vapor in the tropics. part 1: Model description, vertical profiles and isotopic composition of precipitation.