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Could δD0 measurements help estimate zorig and thus discriminate
between different mixing processes?

zorig estimates from δD0 simulated by LMDZ are consistent with our knownledge of mixing pro-

cesses: air comes from just above the inversion in strato-cumulus regions ([Faloona et al., 2005,

Davini et al., 2017, Mellado, 2017, Brient et al., 2019]), from higher in altitude from trade-wind cumulus

clouds [Jonas, 1990, Heus and Jonker, 2008, Park et al., 2016]) and even higher in deep convective couds

([Zipser, 1977, Glenn and Krueger, 2014, Thayer-Calder and Randall, 2015]).
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Introduction

Understanding what controls the water vapor isotopic composition of the sub-cloud layer (SCL) over tropical oceans (δD0)

is a first step towards understanding the water vapor isotopic composition everywhere in the troposphere. We propose an

analytical equation that predict δD0 based on a simple box model.

Box model

The box model extends [Merlivat and Jouzel, 1979]closure and builds on [Benetti et al., 2015]. Assumptions are:

• steady state

• rorig = qorig/q0 where qorig is a function of zorig, the altitude at which the air originates.

•Rorig is a function of qorig following Rayleigh distillation: Rorig = R0 · r
αeff−1
orig

•Revap follows [Craig and Gordon, 1965] as a function of Roce, αeq(SST ), αK and h0.

•Horizontal advection is characterized by φ = Fadv · qadv/E and β = Radv/R0 .

•Rain evaporation is characterized by η = Fevap/E and Revap = αevap · R0.

δD
0

(h
)

Camille Risi1, Joseph Galewsky2, Gilles Reverdin3, Florent Brient4

For δD0-based estimates of zorig to be useful, we need a precision that is better than what we already know of mixing

processes: a few hundred meters in deep convective regions and smaller than 20 m in stratocumulus regions. We quantify

the different sources of uncertainties on zorig.
=⇒ To reach a useful precision, we would need:

• daily measurements of δD in the mid-troposphere

• accurate measurements of δD0 (down to 0.1 h in the case of stratocumulus clouds, which is currently difficult to obtain).

• information on the horizontal distribution of δD to account for horizontal advection effects

• full δD profiles to quantify the uncertainty associated with assuming that δD profiles follow Rayleigh distillation.

• Innovative techniques to quantify the effect of rain evaporation, which is an issue in all regimes, even in stratocumulus

clouds.

We get :

R0 =
Roce

αeq
·

1

h0 + αK · (1− h0) ·










(1 + η) ·
1−r

αeff
orig

1−rorig
− η · αevap + φ · (1− β)











(1)

If rorig = η = φ = 0, we get [Merlivat and Jouzel, 1979] closure.

=⇒ An important property of Eq. 1 is that R0 does not depend on the strength of mixing/entrainement M , but on zorig,
which reflects the processes underlying this mixing/entrainement.

simulated δD0
sum of contributions
contribution of rorig
contribution of αeff
contribution of SST
contribution of h0
contribution of
rain evaporation
contribution of
horizontal advection

(season, location)
number of samples

mid-tropospheric

depletion
by rain evaporation

moister free troposphere

rain evaporation

lower in altitude

and is thus moister

colder SST

drier SCL

air comes from

What controls the spatial and seasonal variations in δD0?

•We use an AMIP-type LMDZ simulation ([Risi et al., 2010]) and diagnose all variables from it.

•We calculate zorig so that R0 predicted by Eq. 1 matches simulated R0.

•We decompose the simulated δD0 into different contributions based on equation 1.

•We further decompose rorig into different contributions based on:

rorig =
h(zorig) · qs(T̄ (zorig) + δT (zorig), P (zorig))

q0

=⇒ δD0 variations are mainly controlled by mid-tropospheric depletion and rain evaporation in ascending regions, and by

SST and zorig in subsiding regions.
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Perspectives

•water tagging to check zorig estimate in LMDZ

• compare with observations: e.g. EUREC4A campaign (e.g. [Bony et al., 2017])

•Large-eddy simulations (e.g. [Moore et al., 2014]) to investigate processes
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