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Introduction
Precipitation and clouds in GCMs can be produced by deep convection (DC), shallow
convection (SC) and large-scale condensation (LS) parameterizations (fig 1). The
relative importance of these 3 parameterizations is arbitrary and model-dependent.
However, it has a strong impact on latent heating profiles andon the tropospheric
water budget. We explore the possibility of using water vapor isotopic measurements
to better evaluate the relative role of DC, SC and LS parameterizations, using the
LMDZ GCM enabled with isotopes ([5]).

Fig 1: Roles of DC, SC and LS on the tropospheric water budget in tropical regions
of large-scale ascent, as represented by GCM parameterizations.

q = specific humidity;δD= HDO concentration inh anomalies relatively to sea
water;ω= large-scale vertical velocity.
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2) Shallow vs deep convection
In the lower troposphere, there is normal amount effect onlywhen ascent is in the upper tro-
posphere. When ascent is in the lower troposphere,δD is more enriched as ascent is stronger
(fig 5a), in LMDZ and TES (fig 5b) and IASI observations ([1], not shown). TES or IASI
observations could help constrain the shape ofω profiles, and thus the DC/SC partitionning.

Fig 5a: δD at 600 hPa as a function of monthlyω at the altitude where it is maximum (Pmax),
in LMDZ simulations, depending onPmax. b: proxy of the amount effect as a function ofPmax

for LMDZ and TES observations.

Perspectives
* Compare with results in 1D (more sensitivity tests, idealizedω forcing, interactiveω)
* Link with latent heat profiles: less arbitrary diagnostic of the DC/SC/LS partitionning.
* Link with degree of organization?
* CombineδD with cloud data and/or with air tracers (CO,O3, Be)?
* Help from CRMs to better understand processes.

Fig 3: Rayleigh distillation (pro-
gressive drying by condensation) has
a log shape while mixing has a
hyperbolic shape ([7]). This ex-
plains why large-scale condensation
is more depleting than compensating
subsidence for a given drying.

Controls on tropical water vapor δD
The different moistening processes (fig 1) don’t have the same effects onδD (figs 2,3).
Convective detrainment is strongly enriching ([3]), vertical advection is moderately
enriching, rain reevaporation is enriching or depleting ([7, 4]). Same for the different
drying processes: large-scale condensation is more depleting than the compensating
subsidence of convection ([2] , figs 2,3).

Fig 2: q tendencies andδD signature from different processes , simulated by LMDZ.

1) Deep convection vs LS condensation
In the mid/upper troposphere, the amount effect (quantifiedhere as theδD decrease from
regimes of moderate to strong ascent) is steeper when the precipitation is simulated more by
LS vs DC (fig 4a). TES observations ([7]) may help constrainPDC/P (fig 4b).

Fig 4a: δD at 400 hPa as a function of monthlyω at 500hPa, for all tropical ocean grid boxes,
in different LMDZ sensitivity tests ([6]). b: amount effectproxy as a function ofPDC/P .
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