Constraining future precipitation changes in South America using paleoclimate archives: 1) CMIP5 analysis 2) isotopic modeling

Camille Risi, Sandrine Bony, Françoise Vimeux

Informal seminar at University of Stockholm

29 July 2013

Spread in precipitation projections

 Can we assess the credibility of projections of South American precip using past changes?
If a model is good for the past, do we expect it to be good for the future?

Assesing future precip projections using CMIP5 analysis

Conditions to constrain projections using the past:

- 1. link between projected and past behavior
- 2. common physical processes
- 3. observations available and precise enough

Assesing future precip projections using CMIP5 analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conditions to constrain projections using the past:

- 1. link between projected and past behavior
- 2. common physical processes
- 3. observations available and precise enough

CMIP5:

- 4 models for LGM
- 9 models for $MH \Longrightarrow$ focus on MH
- RCP with same models
- Idealized simulations -> role of SSTs, CO2

Multi-model EOF of future precip changes

Multi-model EOF of future precip changes

Multi-model EOF of future precip changes

Link between future climate and MH

5/18

In models where precip decreases in Guyane and increases in Nordeste in RCP8.5:

► similar precipitation dipole in MH (r=0.93) ⇒Potential for constraining future projections using paleo data

In models where precip decreases in Guyane and increases in Nordeste in RCP8.5:

- ► similar precipitation dipole in MH (r=0.93) ⇒Potential for constraining future projections using paleo data
- ► similar pattern in sstClim4×CO2-sstClim (r=0.92) ⇒ some of the dispersion is due to direct CO2 effect

In models where precip decreases in Guyane and increases in Nordeste in RCP8.5:

- ► similar precipitation dipole in MH (r=0.93) ⇒Potential for constraining future projections using paleo data
- ► similar pattern in sstClim4×CO2-sstClim (r=0.92) ⇒ some of the dispersion is due to direct CO2 effect
- ► similar pattern in amipFuture-amip (r=0.78)⇒ some of the dispersion is associated with atmospheric response to SSTs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In models where precip decreases in Guyane and increases in Nordeste in RCP8.5:

- ► similar precipitation dipole in MH (r=0.93) ⇒Potential for constraining future projections using paleo data
- ► similar pattern in sstClim4xCO2-sstClim (r=0.92) ⇒ some of the dispersion is due to direct CO2 effect
- ► similar pattern in amipFuture-amip (r=0.78)⇒ some of the dispersion is associated with atmospheric response to SSTs
- ► southern Atlantic warms more than Northen Atlantic (r=0.67) ⇒ some of the dispersion is due to change in SST pattern

In models where precip decreases in Guyane and increases in Nordeste in RCP8.5:

- ► similar precipitation dipole in MH (r=0.93) ⇒Potential for constraining future projections using paleo data
- ► similar pattern in sstClim4xCO2-sstClim (r=0.92) ⇒ some of the dispersion is due to direct CO2 effect
- ► similar pattern in amipFuture-amip (r=0.78)⇒ some of the dispersion is associated with atmospheric response to SSTs
- ▶ southern Atlantic warms more than Northen Atlantic (r=0.67) ⇒ some of the dispersion is due to change in SST pattern
- ► the double ITCZ problem is less frequent (r=-0.66) ⇒link with present day biases

Perspectives on CMIP5 analysis

► Work in progress to understand mechanisms in future, MH: Bony et al 2013: decomposition of future precip changes:

Perspectives on CMIP5 analysis

► Work in progress to understand mechanisms in future, MH: Bony et al 2013: decomposition of future precip changes:

Actually using paleo constrains: ex: water isotopic archives?

What does $\delta^{18}O_p$ records?

• Thompson et al 2000 \rightarrow proxy de temperature

What does $\delta^{18}O_p$ records?

- Thompson et al 2000 \rightarrow proxy de temperature
- ▶ Vuille et al 2005, Pausata et al 2011 \rightarrow proxy de precipitation

What does $\delta^{18}O_p$ records?

- Thompson et al 2000 \rightarrow proxy de temperature
- \blacktriangleright Vuille et al 2005, Pausata et al 2011 \rightarrow proxy de precipitation

 \implies Use LMDZ with isotopes: 11 different climates (e.g. LGM, MH); 4 different model physics

Paleo simulations with LMDZ-iso

underestimate of LGM depletion= frequent problem in GCMs

9/18

improvement with resolution

Causes of $\delta^{18}O_p$ changes at LGM?

importance of temperature effect

Temperature and amount effects at LGM

- temperature effect over land + slight amplification with alitude, compensated by changes in α's
- ▶ amount effect due to rain-vapor desequilibrium + residual (⇒upstram convection), compensated by changes in h_{loc}

11/18

Is $\delta^{18}O_p$ a proxy for temperature?

temperature = significant control at paleo time scales

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

12/18

but sensitive to model physics

Is $\delta^{18}O_p$ a proxy for precipitation?

- $\delta^{18}O_p$ influenced by past regional precipitation changes
- but sensitive to model physics

Summary on isotopic paleo records in South America

- ► LMDZ can reproduce several aspects of past δ¹⁸O changes, but underestimates depletion at LGM
- At paleo time-scales and especially during LGM, temperature is a major control in LMDZ

- Also significant relationship with upstream precip
- But sensitive to the model physics

Comparison with the Tibetan Plateau

- Temperature effect, stronger, more robust to model physics, stronger amplication with altitude
- Relationship with upstream precip, sensitive to model physics 15/18°

Perspectives (1/2)

- Why does LMDZ underestimate $\delta^{18}O$ changes at LGM?
 - \blacktriangleright more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
 - temperature or precip effects underestimated? missing process?

how common is it among models?

Perspectives (1/2)

• Why does LMDZ underestimate $\delta^{18}O$ changes at LGM?

- more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
- temperature or precip effects underestimated? missing process?

how common is it among models?

 \Longrightarrow comparison with isoGSM: 4xCO2, MH and LGM with same SSTs as LMDZ (thanks to Kei)

Perspectives (1/2)

• Why does LMDZ underestimate $\delta^{18}O$ changes at LGM?

- more data synthesis needed for paleo $\delta^{18}O$ to evaluate models
- temperature or precip effects underestimated? missing process?
- how common is it among models?

 \implies comparison with isoGSM: 4xCO2, MH and LGM with same SSTs as LMDZ (thanks to Kei)

Perspectives (2/2)

- Senstivity to model and model parameters: which is the most realistic?
 - understand sensitivity to model physics: what controls the dominance of temperature vs precip effect?

Perspectives (2/2)

- Senstivity to model and model parameters: which is the most realistic?
 - understand sensitivity to model physics: what controls the dominance of temperature vs precip effect?
 - ► use present day measurements to better test climate-δ¹⁸O relationships?
 - in-situ data (precip, vapor)
 - > satellite data: e.g. TES: 3D, weekly δD in troposphere

Perspectives (2/2)

- Senstivity to model and model parameters: which is the most realistic?
 - understand sensitivity to model physics: what controls the dominance of temperature vs precip effect?
 - ► use present day measurements to better test climate-δ¹⁸O relationships?
 - in-situ data (precip, vapor)
 - \blacktriangleright satellite data: e.g. TES: 3D, weekly δD in troposphere

Use present-day measurements?

- are some sensitivity tests more realistic at daily time scales?
- b do we expect them to be more realistic for paleo time scales?

Use present-day measurements?

- are some sensitivity tests more realistic at daily time scales?
- b do we expect them to be more realistic for paleo time scales?

correlation between $\delta^{18}O_p$ at site and precipitation around

Use present-day measurements?

- are some sensitivity tests more realistic at daily time scales?
- b do we expect them to be more realistic for paleo time scales?

correlation between $\delta^{18}O_p$ at site and precipitation around

 \implies Understanding daily controls not enough to understand paleo controls

18/18