Evaluating processes controlling subtropical humidity using water vapor isotope measurements

Camille Risi

CIRES, Boulder

<u>Thanks to</u>: David Noone, Sandrine Bony, TES data: John Worden, Jeonghoon Lee, Derek Brown, SCIAMACHY data: Christian Frankenberg, ACE-FTS data: Kaley Walker, Peter Bernath, ground-based FTIR: Debra Wunsh, Matthias Schneider

TES meeting, 17 June 2010

ション ふゆ く は マ く ほ マ く し マ

subtropical relative humidity strongly impacts

water vapor feedback (Soden et al 2008)

subtropical relative humidity strongly impacts

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)

subtropical relative humidity strongly impacts

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)

but high dispersion in climate models (Sherwood et al 2010)

- for present day relative humidity
- ► for projections

subtropical relative humidity strongly impacts

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)

but high dispersion in climate models (Sherwood et al 2010)

- for present day relative humidity
- for projections
- no link between mean state and projections (Santer et al 2009)

subtropical relative humidity strongly impacts

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)

but high dispersion in climate models (Sherwood et al 2010)

- for present day relative humidity
- for projections
- no link between mean state and projections (Santer et al 2009)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to evaluate the credibility of these projections?

dispersion reflects complexity of humidity controls

dispersion reflects complexity of humidity controls

 \Rightarrow need complementary evaluation tools

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ► fractionation

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

- water isotopes: $H_2^{16}O$, $H_2^{18}O$, HDO
- ▶ fractionation ⇒ record phase changes along air mass history

water isotopes: H₂¹⁶O, H₂¹⁸O, HDO
fractionation ⇒ record phase changes along

air mass history

4/13

 \Rightarrow Goal: use water isotopes to evaluate processes controlling humidity in climate models

isotope-enabled GCMs intercomparison (SWING2)

isotope-enabled GCMs intercomparison (SWING2)

isotope-enabled GCMs intercomparison (SWING2)

isotope-enabled GCMs intercomparison (SWING2)

isotope-enabled GCMs intercomparison (SWING2)

isotope-enabled GCMs intercomparison (SWING2)

- quality screening
- ► GCM-data comparison: collocated with simulation nudged by ECMWF; averaging kernels

Multidataset evaluation: annual mean

Multidataset evaluation: annual mean

Multidataset evaluation: seasonal

Multidataset evaluation: seasonal

Annual mean in TES

Annual mean in TES

Annual mean in TES

Seasonal variations in TES

Cloud effect in TES

12/13

æ

 Water isotopes can help detect and understand biases in water budgets in climate models

 ▶ Water isotopes can help detect and understand biases in water budgets in climate models
⇒ help evaluate the credibility of projected future relative humidity changes

 Water isotopes can help detect and understand biases in water budgets in climate models

 \Rightarrow help evaluate the credibility of projected future relative humidity changes

Perspectives:

 Water isotopes can help detect and understand biases in water budgets in climate models
⇒ help evaluate the credibility of projected future relative

humidity changes

- Perspectives:
 - Observations: maximum variations and biases in the mid/upper troposphere

 Water isotopes can help detect and understand biases in water budgets in climate models

 \Rightarrow help evaluate the credibility of projected future relative humidity changes

Perspectives:

- Observations: maximum variations and biases in the mid/upper troposphere
- Model-data comparison methodology: define consistently cloudy situations in data and GCMs

 Water isotopes can help detect and understand biases in water budgets in climate models

 \Rightarrow help evaluate the credibility of projected future relative humidity changes

Perspectives:

- Observations: maximum variations and biases in the mid/upper troposphere
- Model-data comparison methodology: define consistently cloudy situations in data and GCMs ⇒develop GCM simulators of satellite data

< □ > < @ > < \ext{abs} < \ext{abs} \ext{a

 Water isotopes can help detect and understand biases in water budgets in climate models

 \Rightarrow help evaluate the credibility of projected future relative humidity changes

Perspectives:

- Observations: maximum variations and biases in the mid/upper troposphere
- Model-data comparison methodology: define consistently cloudy situations in data and GCMs
 ⇒develop GCM simulators of satellite data
- Modelling: water isotopes in climate change inter-comparisons like CMIP?

 Water isotopes can help detect and understand biases in water budgets in climate models

 \Rightarrow help evaluate the credibility of projected future relative humidity changes

Perspectives:

- Observations: maximum variations and biases in the mid/upper troposphere
- Model-data comparison methodology: define consistently cloudy situations in data and GCMs ⇒develop GCM simulators of satellite data
- Modelling: water isotopes in climate change inter-comparisons like CMIP?

 \Rightarrow use intra-seasonal, seasonal, inter-annual isotope data as an observational test for model behavior in climate change?