Les isotopes stables de l'eau: applications à l'étude de la convection atmosphérique et du cycle de l'eau

thèse dirigée par Sandrine Bony et Jean Jouzel collaborations avec Françoise Vimeux et Amaelle Landais (LSCE)

Camille Risi

LMD/IPSL, Paris

26 novembre 2009

ション ふゆ く は マ く ほ マ く し マ

Les isotopes stables de l'eau

- ► eau= molecules légères (H₂¹⁶ O) + lourdes (H₂¹⁸ O, HDO, H₂¹⁷ O)
- fractionnement isotopique
- composition isotopique
 - δ¹⁸ O=enrichissement en H₂¹⁸ O par rapport à un standard (‰)
 - ► δD=enrichissement en HDO par rapport à un standard (‰)
 - d-excess = $\delta D 8 \cdot \delta^{18} O$

2/48

sensible aux changements de phase

Introduction

Buts

- applications paléo-climatiques aux pôles, mais plus complexe dans les Tropiques
 - Quels sont les contrôles de la composition isotopique dans les Tropiques?
 - Rôle de la convection atmosphérique? Du recyclage continental?
- En retour:
 - Quelles informations sur le cycle de l'eau, les processus convectifs et hydrologiques de surface
 - Potentiel de contrainte des modèles?

Plan

<ロ> (四) (四) (三) (三) (三)

4/48

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

2. Isotopes de l'eau et humidité atmosphérique

3. Isotopes de l'eau et hydrologie continentale

Introduction

1. Isotopes et convection atmosphérique

Observations existantes

- Amount effect
- Effet de la convection à l'échelle synoptique

Lawrence et al 2004

5/48

Questions: Par quels processus la convection impacte-t-elle la composition isotopique? A quelles échelles de temps? Qu'en déduire en retour sur la convection?
 1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Modèle 1D

- modèle 1D d'équilibre radiatif-convectif sur océan
- Conditions aux limites
 schéma de convection d'Emanuel ⇒ représentation détaillée des processus isotopiques
 Colonne de GCM environ 300 x 300km)
 GCM modèle 1D

Modèle 1D

modèle 1D d'équilibre radiatif-convectif sur océan

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Evaluation du modèle 1D

bonne simulation de l'amount effect

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Bony, Risi et Vimeux 2008

∃⇒

ヘロト ヘアト ヘヨト ヘ

7/48

Quels processus expliquent l'amount effect?

Amount effect
$$= \frac{d\delta D_p}{dP} \simeq \frac{d\delta D_{evap}}{dP} + c_{cond} + c_{revap} + c_{downdraft}$$

 principaux processes: réévaporation de la pluie et descentes insaturées

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Risi, Bony et Vimeux 2008

Quelles sont les constantes de temps de l'amount effect?

- Simulation TOGA COARE (Pacifique Ouest)
- équation simple de relaxation:

 La composition isotopique intègre la convection sur les jours précédents

Prélèvements pendant la campagne AMMA

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Echantillonage intra-évènement

Ligne du grains du 11 aout 2006

11/48

Echantillonage intra-évènement

Ligne du grains du 11 aout 2006

Echantillonage intra-évènement

Ligne du grains du 11 aout 2006

Mesures le 11 aout 2006

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

Propriétés robustes entre les lignes de grains

forte variabilité entre lignes, mais propriétés robustes:

- ► $\delta^{18}O$ en W,
- b diminution du d-excess en début de zone stratiforme
 1. Isotopes de l'eau dans la précipitation et convection atmosphérique

13/48

Modèle 2D de lignes de grains

▶ 2D

- ► stationnaire
- schéma d'advection forcé par vents 3D obtenus par M. Chong à partir du MIT radar pour le 11 aout 2006
- microphysique de Kessler
- propriétés robustes simulées

Processus au cours de lignes de grains

Bilan des processus convectifs affectant la composition isotopique de la precipitation

- Processus identifiés à la fois dans données intra-événement et modèle 1D
 - réévaporation des gouttes
 - subsidences convectives
- intégration de la convection sur les jours précédents

Données à l'évènement au cours de la mousson

 collecte à la fin de chaque événement, pendant la mousson 2006, sur 3 sites autour de Niamey

Risi et al 2008

17/48

- les isotopes enregistrent l'activité convective
 - saut de mousson
 - avant la mousson: organisation et intensité des sytèmes

►

- les isotopes enregistrent l'activité convective
 - saut de mousson
 - avant la mousson: organisation et intensité des sytèmes
 - apres la mousson: le δ¹⁸ O intègre temporellement la convection

20/48

Utilisation de simulations avec LMDZ

- LMDZ4 GCM, physique AR4
- résolution horizontale: 2.5°x3.75°, 19 niveaux verticaux
- guidé par vents 3D des réanalyses NCEP
- représentation des isotopes
 - advectés comme l'eau
 - fractionnement à chaque changement de phase, sauf évaporation continentale

Evaluation sur le Sahel: données satellites SCIAMACHY

 δD intégré verticallement, couverture globale, 2003-2005, précision maximale sur le Sahel (Frankenberg et al 2009)

22/48

correlation entre eau precipitable et δD à l'échelle intra-saisonnière en JJA

1. Isotopes de l'eau dans la précipitation et convection atmosphérique 🛛 🔍 🗆 🕨 🗇 🖉 🖉 🗦 👘 🖹 23/48°

0.7

0.9

correlation entre eau precipitable et δD à l'échelle intra-saisonnière en JJA

1. Isotopes de l'eau dans la précipitation et convection atmosphérique 👘 🕫 🖓 🖓 👘 👘 😤 23/48°

correlation entre eau precipitable et δD à l'échelle intra-saisonnière en JJA

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

correlation entre eau precipitable water et δD à l'échelle intra-saisonnière en JJA

1. Isotopes de l'eau dans la précipitation et convection atmosphérique 🛛 🔍 🗆 🕨 🗇 🖉 🗦 🗮 23/48°

LMDZ-iso sur Niamey

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

◄ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ≥ 24/48°</p>

LMDZ-iso sur Niamey

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

LMDZ-iso sur Niamey

1. Isotopes de l'eau dans la précipitation et convection atmosphérique 💦 🔍 🖙 🕨 🛀 👘

Variabilité intra-saisonnière dans LMDZ

 avant le saut: réponse instantanée à la convection, par le biais de la réévaporation des gouttes

25/48

 après le saut: intégration de la convection, en partie par le biais de la vapeur

1. Isotopes de l'eau dans la précipitation et convection atmosphérique 🔹 🤇 🗆 🗧 🗧 🗦 📢 🗄 🖉 🗧

Utilisation du water tagging dans LMDZ

- Chaque molécule d'eau est coloriée d'une certaine couleur, selon une convention de coloriage
- Traceurs d'eau additionels dont la somme est égale à l'eau "normale"

example: coloriage de l'évaporation continentale:

Water tagging sur Niamey

% de la vapeur s'étant évaporée sur:

	JAS	DJF
continent	60%	30%
Atlantique	30%	45%
Mediterranée	2%	10%
Indien	10%	15%

% de la vapeur étant passée par:

	JAS	DJF
Flux de mousson	32%	20%
AEJ	32%	10%
CL saharienne	8%	60%

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

< E

27/48

lsotopes et origine de la vapeur

▶ signature particluière de la vapeur continentale ⇒ potentiel d'évaluation du recyclage continental?

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

lsotopes and convection

- ▶ signature particluière de la vapeur continentale ⇒ potentiel d'évaluation du recyclage continental?
- appauvrissement de la vapeur par les descentes insaturées
- à l'échelle intra-saisonnière: la vapeur océanique est appauvrie par les descentes insaturées le long des trajectoires du flux de

1. Isotopes de l'eau dans la précipitation et convection atmosphérique

mousson

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Bilan sur l'effet de la convection sur la composition de la précipitation

- Au sahel, δ¹⁸ O enregistre l'activité convective dans les données et LMDZ:
 - saut de mousson
 - avant le saut: réponse instantanée et locale par évaporation des gouttes
 - après le saut: le δ¹⁸O intègre la convection par appauvrissement progressif par les descentes insaturées
- cohérents avec processus mis en évidence en 1D et dans les données intra-évènement
- en retour, intérêt des isotopes de l'eau pour l'étude du cycle de l'eau et de la convection

2. Isotopes de l'eau et humidité atmosphérique

 contribution de la convection au transport d'eau troposphère-stratosphère?

lsotopes de l'eau et transport d'eau au travers de la tropopause tropicale

- Observations existantes
 - Moins pauvres que prévues
 - Forte variabilité associée aux nuages

32/48

2. Isotopes de l'eau et humidité atmosphérique

Résultats de modélisation

GCM LMDZ

- ▶ impact de l'activité convective à l'échelle journalière
- enrichissement dépend du détrainement de condensat

▶ potentiel des isotopes pour contraindre rôle de la convection
 2. Isotopes de l'eau et humidité atmosphérique

33/48

lsotopes et processus contrôlant l'humidité troposphérique

 contribution dynamique/microphysique dans le contrôle de l'humidité troposphérique

lsotopes et processus contrôlant l'humidité troposphérique

Effet humidifant de la réévaporation de la précipitation

- coloriage de la réévaporation de la précipitation
- estimation de l'effet humidifiant de la réévaporation par méthodes isotopiques?

36/48

3. Isotopes et hydrologie continentale

 Le taux de recyclage affecte gradients continentaux de δ (Rozanski et al 1992)

・ロッ ・雪 ・ ・ ヨ ・ ・

э

37/48

3. Isotopes de l'eau et hydrologie continentale

lsotopes et hydrologie continental

- Le taux de recyclage affecte gradients continentaux de δ (Rozanski et al 1992)
- Le type de recyclage affecte la
 - différence δ sol/évapo-transpiration (*Moreira et al 1997*)

38/48

- gradients continentaux (Gat et mastui 1991)
- 3. Isotopes de l'eau et hydrologie continentale

lsotopes et recyclage continental

Questions

- Quel impact des processus hydrologiques de surface sur la composition isotopique de l'eau?
- Quelles informations sur l'hydrologie continentale

Outil: modèle d'hydrologie continental ORCHIDEE

- sol: deux couches (Choisnel)
- couplé à LMDZ

3. Isotopes de l'eau et hydrologie continentale

Evaluation du modèle couplé LMDZ-ORCHIDEE-iso

 $\delta^{18}O$ precipitation LMDZ-ORCHIDEE

Evaluation du modèle couplé LMDZ-ORCHIDEE-iso

3. Isotopes de l'eau et hydrologie continentale

Evaluation du modèle couplé LMDZ-ORCHIDEE-iso

Reconstruction du bilan hydrologique de surface par les isotopes

expérience "modèle parfait"

- ► si hypothèses simples: $\{\delta^{18} O_{sol}, \delta^{18} O_p, T, rh\} \iff \frac{E}{P}$
- 3. Isotopes de l'eau et hydrologie continentale

Apports des isotopes aux problèmes d'hydrologie de surface

effet des processus hydrologiques de surface:

- second ordre pour la compositions atmsophériques
- fort impact sur les réservoirs continentaux
- ▶ en retour:
 - contrainte des bilans d'eaux continentaux par méthodes isotopiques
 - contrainte de paramétrisations
- perspectives: développement des réseaux inernationaux:
 - MIBA (sols, tiges, feuilles, vapeur),
 - ► GNIR (rivières),
 - IGLASS (eaux de surface et souterraines)

Conclusion

Perspectives (1/5): nouvelles données disponibles

données satellites de δD dans la vapeur:

- ► SCIAMACHY (Frankenberg et al 2009): vapeur couche limite
- TES (Worden et al 2007): vapeur 700hPa
- ► IASI (Herbin et al 2009): moyenne troposphère
- ODIN (Urban et al 2007), ACE (Nassar et al 2008), MIPAS (Payne et al 2007): haute troposphère-basse stratosphère

▶ données in-situ de δD et $\delta^{18}O$ dans la vapeur: picarros

44/48

Conclusion et perspectives

Perspectives (2/5): water tagging

- water tagging dans LMDZ et dans ORCHIDEE: outil diagnostique très prometteur
 - contrôles de l'humidité atmosphérique: traçage processus source d'humidité, identification de biais dans les modèles
 - composante continentale du cycle de l'eau: variations des débits des fleuves, rôle de l'irrigation...

Perspectives (3/5): contrainte de la sensibilité climatique des modèles

- comparaison directe des enregistrements isotopiques simulés et observés
- \blacktriangleright aux pôles: δ indique la température
- dans les Tropiques: δ indique plutôt l'activité convective
- nouvelles possibilités avec isotopes dans le modèle couplé: ex: cellulose des arbres dans LMDZ-ORCHIDEE

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

46/48

Conclusion et perspectives

Perspectives (4/5): contraintes de paramétrisations

 isotopes sensibles à processus peu contraints dans les paramétrisations:

- réévaporation de la pluie
- efficacité de précipitation
- partition drainage/ ruissellement/ évaporation de sol nu/ transpiration
- ▶ projets d'intercomparaison de GCMs (SWING) ⇒ potentiel de contrainte des paramétrisations physiques par les isotopes?

Perspectives (5/5): |'¹⁷*O*-excess: un nouveau traceur

d-excess = $\delta D - 8 \cdot \delta^{18} O$

$$^{17}O ext{-} ext{excess} = 10^{6} \cdot \left(\ln \left(rac{\delta^{17}O}{1000} + 1
ight) - 0.528 \cdot \ln \left(rac{\delta^{18}O}{1000} + 1
ight)
ight)$$

- analogue au d-excess
- exprimé en permeg
- conservé lors d'une distillation
- ▶ information complémentaire par rapport à δ ou d
- Mesures d'¹⁷ O-excess en cours au LSCE (Amaelle Landais)