Using water stable isotopic measurements to better evaluate the atmospheric and land surface components of climate models

Camille Risi

CIRES, Boulder

 with contribution of:

 S Bony, D Noone

 <u>TES</u>: J Worden, J Lee, D Brown,

 <u>SCIAMACHY</u>: C Frankenberg,

 <u>MIPAS</u>: G Stiller, M Kiefer, B Funke

 <u>ACE-FTS</u>: K Walker, P Bernath,

 <u>FTIR</u>: M Schneider, D Wunch, P Wennberg,

 V Sherlock, N Deutscher, D Griffith

 <u>in-situ</u>: R Uemura, D Yakir

 <u>SWING2</u>: C Sturm

 <u>MIBA</u>: J. Ogée, T. Bariac, L. Wingate, N. Raz-Yaseef

CDG seminar at NCAR, 5 April 2011 () () ()

æ

2/27

キロマ 予告 アイロマー

æ

2/27

2/27

Introduction

Introduction

▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation

3/27

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

(日) (間) (日) (日) (日)

3/27

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

understand processes controlling isotopic composition

Introduction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

4/27

Introduction

Outline

Introduction

 tropical/subtropical free tropospheric relative humidity (RH) impacts:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)
- deep convection (Derbyshire 2004)

 tropical/subtropical free tropospheric relative humidity (RH) impacts:

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)
- deep convection (Derbyshire 2004)
- ► but:
 - significant dispersion in climate models (Sherwood et al 2010)
 - moist bias in the mid/upper troposphere (John and Soden 2005)

 tropical/subtropical free tropospheric relative humidity (RH) impacts:

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)
- deep convection (Derbyshire 2004)
- ► but:
 - significant dispersion in climate models (Sherwood et al 2010)
 - moist bias in the mid/upper troposphere (John and Soden 2005)

 \implies need process-based evaluation of RH in climate models

 tropical/subtropical free tropospheric relative humidity (RH) impacts:

- water vapor feedback (Soden et al 2008)
- clouds feedbacks (Sherwood et al 2010)
- deep convection (Derbyshire 2004)
- ► but:
 - significant dispersion in climate models (Sherwood et al 2010)
 - moist bias in the mid/upper troposphere (John and Soden 2005)

 \implies need process-based evaluation of RH in climate models \implies Goal: design observational diagnostics to evaluate processes controlling RH, detect and understand biases?

1) Processes controlling humidity

1) Processes controlling humidity

 model-data comparison: collocation; simulations nudged by ECMWF; averaging kernels; spatial/temporal variations
 1) Processes controlling humidity

8/27

Zonal anual mean

1) Processes controlling humidity

9/27

Zonal Seasonal variations (JJA-DJF)

What causes the moist biases in GCMs?

What causes the moist biases in GCMs?

robustness? additional tests, theoretical understanding

What causes the moist biases in GCMs?

robustness? additional tests, theoretical understanding

► frequent reason for moist bias=excessively diffusive advection 1) Processes controlling humidity

11/27

What causes the moist biases in GCMs?

robustness? additional tests, theoretical understanding

► frequent reason for moist bias=excessively diffusive advection 1) Processes controlling humidity

11/27

What impact on humidity projections?

What impact on humidity projections?

 How a moist bias affect humidity change projections depends on the reason for the bias
1) Processes controlling humidity

What impact on humidity projections?

 How a moist bias affect humidity change projections depends on the reason for the bias
1) Processes controlling humidity

 Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Excessive vertical diffusion during water vapor transport/insufficient vertical resolution is a widespread cause of moist bias in climate models

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Excessive vertical diffusion during water vapor transport/insufficient vertical resolution is a widespread cause of moist bias in climate models
- Understanding this reason is all the more important as humidity change projections depends on the reason for the moist bias

- Water vapor isotope measurements as observational diagnostics to understand the reasons for a moist bias in climate models
- Excessive vertical diffusion during water vapor transport/insufficient vertical resolution is a widespread cause of moist bias in climate models
- Understanding this reason is all the more important as humidity change projections depends on the reason for the moist bias
- Consequences on climate change? -> study feedbacks using radiative kernel decomposition (Soden et al 2008)

2) Convective processes

microphysical processes? (Emanuel and Pierrehumbert 1996)

rain sampled every 5 mins in Niamey during AMMA campaign

- rain sampled every 5 mins in Niamey during AMMA campaign
- interpretation with 2D model of transport/microphysics

- rain sampled every 5 mins in Niamey during AMMA campaign
- interpretation with 2D model of transport/microphysics

- rain sampled every 5 mins in Niamey during AMMA campaign
- interpretation with 2D model of transport/microphysics

Convective/large-scale fluxes

= 16/27~

Convective/large-scale fluxes

New TES profiles

New TES profiles

New TES profiles

Convective contribution to water budget

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・

æ

18/27

Convective contribution to water budget

Convective contribution to water budget

= 18/27~

 P_{LS}/P_{tot} ill-defined quantity, but influences cloudiness, intra-seas. variability, chemical tracor transport

2) Convective processes

MIPAS data at 200hPa, annual

-700 -640 -600 -560 -520 -480 -440 -400 -360 -320 $\delta D~(\%)$

2) Convective processes

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─

= 19/27~

MIPAS data at 200hPa, annual

20/27

Perspectives:

high frequency data: e.g. ground-based remote-sensing

・ロト ・雪ト ・ヨト ・ヨト

20/27

- Perspectives:
 - high frequency data: e.g. ground-based remote-sensing
 - A-train synergy: TES+CALIPSO/Cloudsat

Perspectives:

- high frequency data: e.g. ground-based remote-sensing
- A-train synergy: TES+CALIPSO/Cloudsat
- New physics of LMDZ for AR5 (Rio et al 2009)

3) Land atmosphere feedbacks

3) Land atmosphere feedbacks

model dispersion (Koster et al, Guo et al 2006)

3) Land atmosphere feedbacks

model dispersion (Koster et al, Guo et al 2006)

Partitionning surface fluxes

▶ ORCHIDEE-iso (*Risi et al in rev*)

Partitionning surface fluxes

ORCHIDEE-iso (*Risi et al in rev*)

lsotopic signature of evaporative origin

Water tagging:

lsotopic signature of evaporative origin

Water isotopes and continental recycling

decrease in precip variance when soil moisture is prescribed

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Water isotopes and continental recycling

decrease in precip variance when soil moisture is prescribed

Isotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

《曰》 《聞》 《臣》 《臣》

= 25/27

Isotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

3) Land-atmosphere feedbacks

lsotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

Summary on land-atmosphere feedbacks

work in progress:

- look at data (in-situ, GOSAT),
- sensitivity tests: physics-discriminating diagnostics?

Summary on land-atmosphere feedbacks

work in progress:

- look at data (in-situ, GOSAT),
- sensitivity tests: physics-discriminating diagnostics?
- refine isotopic diagnostics
 - minimize sensitivity to unrelated atmospheric processes
 - ▶ robustness of the diagnostics? ⇒ model inter-comparisons: ORCHIDEE, isoLSM, soon CLM and ORCHIDEE-multi-layer

Summary on land-atmosphere feedbacks

work in progress:

- look at data (in-situ, GOSAT),
- sensitivity tests: physics-discriminating diagnostics?
- refine isotopic diagnostics
 - minimize sensitivity to unrelated atmospheric processes
 - robustness of the diagnostics? ⇒ model inter-comparisons: ORCHIDEE, isoLSM, soon CLM and ORCHIDEE-multi-layer
- relevance for hydrological projections
 - Global warming, land use change (deforestation, irrigation)

・ロト ・聞 ト ・ヨト ・ヨト

27/27

 Ultimate goal: isotopic diagnostics to evaluate models and their projections:

- Ultimate goal: isotopic diagnostics to evaluate models and their projections:
 - new isotopic data

イロト イポト イヨト イヨト

э

- Ultimate goal: isotopic diagnostics to evaluate models and their projections:
 - new isotopic data
 - new model-data comparison methodologies

э

- Ultimate goal: isotopic diagnostics to evaluate models and their projections:
 - new isotopic data
 - new model-data comparison methodologies
 - isotopic model inter-comparisons

- Ultimate goal: isotopic diagnostics to evaluate models and their projections:
 - new isotopic data
 - new model-data comparison methodologies
 - isotopic model inter-comparisons
 - process/feedbacks studies comparing models behavior for present climate and for projections

Supl material

Evaluation against SCIAMACHY

Risi et al in rev,b

29/27

Evaluation against TES

Risiet al in reveb 30/27
 A
 Solution
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Estimating continental recycling

$$d\left(\frac{r_{con}}{1-r_{con}}\right)/dx = \frac{d\delta_{v}/dx - d\delta_{voce}/dx}{\delta_{p} - \delta_{v}}$$

Estimating continental recycling

$$d\left(\frac{r_{con}}{1-r_{con}}\right)/dx = \frac{d\delta_{v}/dx - d\delta_{voce}/dx}{\delta_{p} - \delta_{v}}$$

Estimating continental recycling

$$d\left(\frac{r_{con}}{1-r_{con}}\right)/dx = \frac{d\delta_{v}/dx - d\delta_{voce}/dx}{\delta_{p} - \delta_{v}}$$

Main limitation in using vapor isotopic measurements for continental recycling: understanding atmospheric controls