The added value of water isotopic measurements to evaluate land surface processes in climate models

Camille Risi

CIRES, Boulder Colorado

with the contribution of: T. Bariac, S. Bony, C. Frankenberg, D. Noone, J. Ogée, N. Raz-Yaseef, J. Welker, J. Worden, L. Wingate

NEON, 22 April 2011

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

2/22

Introduction

Introduction

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3/22

Introduction

- $H_2^{16}O, HDO, H_2^{18}O, H_2^{17}O,$ fractionation
- records phase changes

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

- $H_2^{16}O, HDO, H_2^{18}O, H_2^{17}O,$ fractionation
- records phase changes

- $H_2^{16}O, HDO, H_2^{18}O, H_2^{17}O,$ fractionation
- records phase changes

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

- ▶ $H_2^{16}O$, HDO, $H_2^{18}O$, $H_2^{17}O$, fractionation
- records phase changes

isotopes to estimate budgets and study processes in nature

► to evaluate land surface models? (e.g. Henderson-Sellers et al 2006) 3/22

understand processes controlling isotopic composition

Introduction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

4/22

Introduction

5/22

Vapor and precipitation isotopes

2) Models

Vapor and precipitation isotopes

2) Models

Soil water and biosphere isotopes

 2 MIBA sites: Yatir (Israel, Raz-Yaseef et al 2009) and Le Bray (France, Wingate et al 2009, shown here)

Soil water and biosphere isotopes

 2 MIBA sites: Yatir (Israel, Raz-Yaseef et al 2009) and Le Bray (France, Wingate et al 2009, shown here)

Soil water and biosphere isotopes

 2 MIBA sites: Yatir (Israel, Raz-Yaseef et al 2009) and Le Bray (France, Wingate et al 2009, shown here)

Soil water isotopes

2) Models

River water isotopes

2) Models

Extensive evaluation of LMDZ and ORCHIDEE

- Extensive evaluation of LMDZ and ORCHIDEE
- Need to better evaluate isotopic representation
 ⇒ continuous, collocated meteorological, hydrological and isotopic data in different reservoirs

- Extensive evaluation of LMDZ and ORCHIDEE
- Need to better evaluate isotopic representation
 ⇒ continuous, collocated meteorological, hydrological and isotopic data in different reservoirs
 - ► combine networks: MIBA-US, CarboEurope, GNIP, USNIP

NEON

- Extensive evaluation of LMDZ and ORCHIDEE
- Need to better evaluate isotopic representation
 ⇒ continuous, collocated meteorological, hydrological and isotopic data in different reservoirs
 - combine networks: MIBA-US, CarboEurope, GNIP, USNIP
 NEON
- Goal: develop isotopic diagnostics to evaluate land surface processes in models relevant for hydrological projections

- Extensive evaluation of LMDZ and ORCHIDEE
- Need to better evaluate isotopic representation
 ⇒ continuous, collocated meteorological, hydrological and isotopic data in different reservoirs
 - combine networks: MIBA-US, CarboEurope, GNIP, USNIP
 NEON
- Goal: develop isotopic diagnostics to evaluate land surface processes in models relevant for hydrological projections

 $_{2) \text{ Models}}$ 4 potential isotopic diagnostics

< □ ▷ < □ ▷ < ≡ ▷ < ≡ ▷ = 10/22

1) surface water budget

1) surface water budget

soil water isotopic measurements -> bare soil evaporation ratio

1) surface water budget

soil water isotopic measurements -> bare soil evaporation ratio
Estimating bare soil evaporation ratio

Estimating bare soil evaporation ratio

3) sotopic diagnostics

Detecting changes in surface water budget

Detecting changes in surface water budget

Detecting changes in surface water budget

2) Diffusion/infiltration in soils

2) Diffusion/infiltration in soils

2) Diffusion/infiltration in soils

Risi et al in rev,a

Risi et al in rev,a

Risi et al in rev,a

Risi et al in rev, a

4) Continental recycling

Water tagging:

4) Continental recycling

Water tagging:

4) Continental recycling

Water isotopes and continental recycling

decrease in precip variance when soil moisture is prescribed

= 17/22

Water isotopes and continental recycling

decrease in precip variance when soil moisture is prescribed

Estimating continental recycling

Estimating continental recycling

$$d\left(\frac{r_{con}}{1-r_{con}}\right)/dx = \frac{d\delta_{v}/dx - d\delta_{voce}/dx}{\delta_{p} - \delta_{v}}$$

Estimating continental recycling

$$d\left(\frac{r_{con}}{1-r_{con}}\right)/dx = \frac{d\delta_{v}/dx - d\delta_{voce}/dx}{\delta_{p} - \delta_{v}}$$

 Main limitation in using vapor isotopic measurements for continental recycling: understanding atmospheric controls

Isotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

= 19/22

Isotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

Isotopic signature of land-atmosphere feedbacks

strong precipitation composite minus seasonal average:

Monitoring land-atmosphere feedbacks related to land use change or global warming

4xCO2

-80-50-20-5 5 20 50 80 -30-20-10 -5 5 10 20 30 precipitation change (%) Δr_{con} (%) 3)Isotopic diagnostics

20/22

Monitoring land-atmosphere feedbacks related to land use change or global warming

4xCO2

-80-50-20-5 5 20 50 80 -30-20-10 -5 5 10 20 30 precipitation change (%) Δr_{con} (%) (%) 3) |sotopic diagnostics

Monitoring land-atmosphere feedbacks related to land use change or global warming

Conclusion

 Potential of isotopic measurements to evaluate a broad range of processes in land surface models

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

exploit new data:

MIBA/NEON, new in-situ vapor data, satellite datasets

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

- exploit new data: MIBA/NEON, new in-situ vapor data, satellite datasets
- relevance for hydrological change projections
 - what are the processes whose representation determine the model's behavior in both present-day and projections? (global warming, land use change: deforestation, irrigation)

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

- exploit new data: MIBA/NEON, new in-situ vapor data, satellite datasets
- relevance for hydrological change projections
 - what are the processes whose representation determine the model's behavior in both present-day and projections? (global warming, land use change: deforestation, irrigation)

-> more sensitivity tests and process understanding

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

- exploit new data: MIBA/NEON, new in-situ vapor data, satellite datasets
- relevance for hydrological change projections
 - what are the processes whose representation determine the model's behavior in both present-day and projections? (global warming, land use change: deforestation, irrigation)
 - -> more senstitivity tests and process understanding
- robustness across models:
 - b do isotopic diagnostics constrain same processes in all models?
 - are processes found relevant for projections in LMDZ-ORCHIDEE equally relevant for all models?

Goal: develop observable isotopic diagnostics to evaluate land surface processes in climate models relevant for projections:

- exploit new data: MIBA/NEON, new in-situ vapor data, satellite datasets
- relevance for hydrological change projections
 - what are the processes whose representation determine the model's behavior in both present-day and projections? (global warming, land use change: deforestation, irrigation)
 - -> more senstitivity tests and process understanding
- robustness across models:
 - b do isotopic diagnostics constrain same processes in all models?
 - are processes found relevant for projections in LMDZ-ORCHIDEE equally relevant for all models?
 - model inter-comparisons:
 - ▶ ORCHIDEE, isoLSM, soon CLM and ORCHIDEE-multi-layer
 - SWING2, AR4 CMIP3

Conclusion and perspectives

Suppl material

Suppl material

Evaluation of soil and biosphere isotopes

> 2 MIBA sites: Le Bray (France) and Yatir (Israel, shown here)

Diurnal cycles in leaves: Kansas

Diurnal cycles in leaves: Germany

Evaluation against SCIAMACHY

Risi et al in rev,b

Evaluation against TES

